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Overview. From the Stata 17 Reference Manual:

intreg fits a linear model to an outcome that may be either observed exactly or unobserved but
known to fall within some interval. The values of the outcome variable may be observed (point
data), unobserved but known to fall within an interval with fixed endpoints (interval-censored
data), unobserved but known to fall within an interval that has a fixed upper endpoint (left-
censored data), or unobserved but known to fall within an interval that has a fixed lower endpoint
(right-censored data). Such censored data arise naturally in many contexts, such as wage data.
Often, you know only that, for example, a person’s salary is between $30,000 and $40,000.

Thus, with intreg, you have two dependent variables, representing the lower and upper bounds
of the interval the respondent falls in.

depvary and depvars should have the following form:

Type of data depvary depvary
point data a=la,a] a a
interval data [a,b] a b
left-censored data (—00.b] . b
right-censored data  [a,+00) a

missing

Example 1. As the Stata 17 manual notes, “womenwage2.dta contains the yearly wages of
working women in interval form. Women were asked to indicate a category for their yearly
income from employment. The categories were $5,000 or less, $5,001-$10,000, ... , $25,001—
$30,000, $30,001-$40,000, $40,001-$50,000, and more than $50,000. The lower and upper
endpoints of the wage categories (in $1,000s) are recorded in variables wagel and wage2.”

. webuse womenwage2, clear
(Wages of women, fictional data)
. des

Contains data from https://www.stata-press.com/data/rl7/womenwage2.dta

Observations: 488 Wages of women, fictional data
Variables: 9 3 Jan 2021 13:00
Variable Storage Display Value
name type format label Variable label
wagel byte %9.0g Wage lower endpoint ($1000s)
wage2 byte %9.0g Wage upper endpoint ($1000s)
age byte %8.0g Age in current year
nev_mar byte %8.0g 1 if never married
rural byte %8.0g 1 if not SMSA
school byte %8.0g Current grade completed
tenure float %9.0g Job tenure, in years
wage byte %9.0g Wages in 1000s of dollars
wagecat byte %9.0g Wage category ($1000s)
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* Add value labels for
label define wagecat 5

wagecat
"$5,000 or less" 10 "$5,001 to $10,000" ///
$15,000" 20 "$15,001 to $20,000" ///
$25,000" 30 "$25,001 to $30,000" ///
$40,000" 50 "$40,001

to $50,000" ///

> 15 "$10,001 to

> 25 "$20,001 to

> 40 "$30,001 to

> 51 "More than $50,000"
label values wagecat wagecat
fre wagecat

wagecat -- Wage category ($1000s)

Valid 5 $5,000 or less

10 $5,001 to $10,000

15 510,001
20 $15,001
25 $20,001
30 $25,001
40 $30,001
50 $40,001

to
to
to
to
to
to

$15,000
$20,000
$25,000
$30,000
$40,000
$50,000

51 More than $50,000

Total

100.

Two recode commands can get you the upper and lower bounds of the intervals.

* wagel and wage2 are already in the dataset but we will
* re-compute them to show how it is done.
rename (wagel wage2)

>

recode wagecat(51=.), gen(wage2)

(xwagel xwage2)
recode wagecat (5=.) (10=5) (15=10) (20=15) (25=20) ///
(30=25) (40=30) (50=40) (51=50) , gen(wagel)
(488 differences between wagecat and wagel)

(6 differences between wagecat and wage2)
label variable wagel "Wage lower endpoint ($1000s)"
label variable wage2 "Wage upper endpoint ($1000s)"

* List a few cases
set seed 123456
. bysort wagecat: gen firstcase

(479 missing values generated)

list wagecat wagel wage2 if firstcase ==

15.
98.
256.
363.

420.
450.
469.
483.

$5,001 to
$10,001 to
$15,001 to
$20,001 to

$25,001 to
$30,001 to
$40,001 to
More than

wagecat wagel
or less .
$10,000 5
$15,000 10
$20,000 15
$25,000 20
$30,000 25
$40,000 30
$50,000 40
$50,000 50

1 if n==
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* Run intreg
intreg wagel wage2 c.age c.agef#fc.age i.nev_mar i.rural school tenure, nolog

Interval regression Number of obs = 488
Uncensored = 0
Left-censored = 14
Right-censored = 6
Interval-cens. = 468
LR chi2 (6) = 221.61
Log likelihood = -856.33293 Prob > chiz2 = 0.0000
| Coefficient Std. err. Z P> z| [95% conf. interval]
_____________ +________________________________________________________________
age | .7914438 .4433604 1.79 0.074 -.0775265 1.660414
|
c.ageffc.age | -.0132624 .0073028 -1.82 0.069 -.0275757 .0010509
|
l.nev mar | -.2075022 .8119581 -0.26 0.798 -1.798911 1.383906
l.rural | -3.043044 .7757324 -3.92 0.000 -4.563452 -1.522637
school | 1.334721 .1357873 9.83 0.000 1.068583 1.600859
tenure | .8000664 .1045077 7.66 0.000 .5952351 1.004898
_cons | -12.70238 6.367117 -1.99 0.046 -25.1817 -.2230583
_____________ +________________________________________________________________
/1lnsigma | 1.987823 .0346543 57.36 0.000 1.919902 2.055744
_____________ +________________________________________________________________
sigma | 7.299626 .2529634 6.82029 7.81265

We interpret results pretty much the same way we interpret results in an OLS regression. For
example, those in rural areas make about $3,000 a year less on average than do those in urban
areas. Each year of schooling increases income by about $1,334. Never-married people tend to
make slightly less than ever-married people but the effect is not statistically significant.

Using margins with intreg. Given that i nt reg output looks much like the output from OLS
regression, it is not surprising that margins produces similar looking output as it does for OLS.

* AMESs
. margins, dydx(*)

Average marginal effects Number of obs = 488
Model VCE: OIM

Expression: Linear prediction, predict()
dy/dx wrt: age l.nev _mar l.rural school tenure

Delta-method

|
| dy/dx std. err. z P>|z| [95% conf. interval]
_____________ +________________________________________________________________
age | .0294002 .0623938 0.47 0.637 -.0928894 .1516898
l.nev mar | -.2075022 .8119581 -0.26 0.798 -1.798911 1.383906
l.rural | -3.043044 .7757324 -3.92 0.000 -4.563452 -1.522637
school | 1.334721 .1357873 9.83 0.000 1.068583 1.600859
tenure | .8000664 .1045077 7.66 0.000 .5952351 1.004898

Note: dy/dx for factor levels is the discrete change from the base level.
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Note that the AMEs for 4 of the 5 variables are identical to the estimated coefficients. Age is
different because the model actually includes age and age”2 and the AME reflects this. This is
the same thing that happens with an OLS regression. Both the coefficients and the AMEs reflect
linear effects of the independent variables on the dependent variable; whereas with commands
like logit the independent variables have nonlinear effects on the probability of the event
occurring.

See help intreg postestimation for descriptions of other post-estimation commands
and options after running intreg.

Example 2. Here is a hypothetical example using intreg.y is a continuous var that ranges
from about -70 to 88. It is normally distributed. ycat is a collapsed, ordinal version of y. y1 and
y2 are the upper and lower bounds of the y intervals.

use "https://academicweb.nd.edu/~rwilliam/xsoc73994/statafiles/intreg.dta", clear
(Hypothetical data for intreg example)

des

Contains data from D:\Soc73994\Statafiles\intreg.dta

obs: 1,000 Hypothetical data for intreg
example
vars: 7 6 Nov 2006 07:57
size: 32,000 (99.9% of memory free)
storage display value
variable name type format label variable label
y float %9.0g Continuous Y, ranges from -70.4
to 88.06
ycat float %10.0g ycat Y collapsed into 5 intervals
yl float %9.0g Lower bound of Y interval
y2 float %9.0g Upper bound of Y interval
x1 float %9.0g
X2 float %9.0g
x3 float %9.0g
sum y
Variable | Obs Mean Std. Dev. Min Max
_____________ +________________________________________________________
v o 1000 14.01144 25.05774 -70.36776 88.0509
fre ycat
ycat -- Y collapsed into 5 intervals
| Freq Percent Valid Cum
_____________________ +____________________________________________
Valid 1 LE O | 287 28.70 28.70 28.70
2 0 to 15 | 224 22.40 22.40 51.10
3 15 to 30 | 203 20.30 20.30 71.40
4 30 to 45 | 183 18.30 18.30 89.70
5 45 or more | 103 10.30 10.30 100.00
Total | 1000 100.00 100.00
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* intreg with collapsed Y
intreg yl y2 x1 x2 x3, nolog

Interval regression Number of obs = 1,000
Uncensored = 0
Left-censored = 287
Right-censored = 103
Interval-cens. = 610
LR chi2 (3) = 386.33
Log likelihood = -1372.3949 Prob > chiz2 = 0.0000
| Coefficient Std. err. Z P> z| [95% conf. interval]
_____________ +________________________________________________________________
x1 | 1.221547 .2544077 4.80 0.000 .7229169 1.720177
x2 | .8989353 .0799428 11.24 0.000 .7422503 1.05562
x3 | .9384835 .2191945 4.28 0.000 .5088702 1.368097
_cons | .0771196 1.451354 0.05 0.958 -2.767483 2.921722
_____________ +________________________________________________________________
/1lnsigma | 3.003777 .0320312 93.78 0.000 2.940997 3.066557
_____________ +________________________________________________________________
sigma | 20.16155 .6457982 18.93472 21.46787
Observation summary: 287 left-censored observations
0 uncensored observations
103 right-censored observations
610 interval observations
* OLS regression with original Y
reg y x1 x2 x3
Source | SS df MS Number of obs = 1000
————————————— Fomm e F( 3, 996) = 188.94
Model | 227500.386 3 75833.4619 Prob > F = 0.0000
Residual | 399761.928 996 401.367397 R-squared = 0.3627
————————————— o Adj R-squared = 0.3608
Total | 627262.313 999 627.890204 Root MSE = 20.034
v o Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
x1 | 1.120216 .2308738 4.85 0.000 .6671616 1.573271
x2 | .9312722 .0706904 13.17 0.000 .792553 1.069991
x3 | .8474134 .1983744 4.27 0.000 .4581337 1.236693
cons | .196622 1.245274 0.16 0.875 -2.247039 2.640284

Several things to note about the above:

e The nice thing about intreg, as opposed to other ordinal methods, is that you interpret
its parameters the same way you do the parameters from an OLS regression. The sigma
that intreg reports is equivalent to the root mean square error (i.e. the standard error of
the residuals) from an OLS regression

e In this particular example, intreg does remarkably well. Its coefficients, standard

errors, etc. are very similar to those produced by OLS regression on the un-collapsed y
variable.
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e [ caution, however, that the example is “rigged” in intreg’s favor, in that the
assumptions it makes about normality are true in the constructed data set. You can’t
always count on it working this well. As the Stata manual notes, intreg assumes
normality.

Assessing how well infreq works in practice. Of course, in real situations, we don’t know
what the true value of Y is. If we did, we wouldn’t be using intreg. To address this problem,
the Stata manual recommends estimating an oprobit model using wagecat as the dependent
variable and the same independent variables:

. * oprobit with collapsed Y
. oprobit ycat xl1 x2 x3, nolog

Ordered probit regression Number of obs = 1000
LR chi2(3) = 386.49

Prob > chi?2 = 0.0000

Log likelihood = -1368.7378 Pseudo R2 = 0.1237
ycat | Coef. std. Err Z P> z| [95% Conf. Interval]
_____________ +________________________________________________________________
x1 | .0604916 .0126526 4.78 0.000 .035693 .0852902

x2 | .0445961 .004006 11.13 0.000 .0367445 .0524476

x3 | .0466968 .0108907 4.29 0.000 .0253514 .0680421
_____________ +________________________________________________________________
/cutl | .0091044 .0732018 -.1343684 .1525773

/cut2 | .7462179 .0751763 .5988751 .8935608

/cut3 | 1.4150098 .0809962 1.256348 1.573848

/cutd | 2.285878 .0952678 2.099156 2.472599

The key is to compare the log-likelihoods of the intreg and oprobit models. In this case,
the log-likelihoods for intreqg (-1372.3949) and oprobit (-1368.7378) are almost identical,
meaning both models fit the data about equally well. The z values for the models are also about
the same. (NOTE: You should compare the log-likelihoods rather than the model chi-squares
when comparing intreg and oprobit.) Since both models fit equally well, you may want to
use intreg because the coefficients from it are so much easier to interpret.

If, on the other hand, oprobit fits much better, the Stata manual suggests you might want to
modify the intreg model (e.g. take logs of the interval points) or use oprobit or ologit or
some other ordinal method instead. The Stata Reference Manual entry for intreg illustrates
how to do this with Example 1, and this handout’s Appendix elaborates even further.

Note: The Stata 17 manual warns that the oprobit/intreg comparison is not always
appropriate. “We can directly compare the log likelihoods for the intreg and oprobit models
because both likelihoods are discrete. If we had point data in our intreg estimation, the likelihood
would be a mixture of discrete and continuous terms, and we could not compare it directly with
the oprobit likelihood.” In other words, if one of the intervals consisted of a single point, e.g
depvarl = depvar2 = 25, you couldn’t use oprobit to test how well intreg was working.
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Appendix: Example 1 Revisited

The hypothetical data in Example 1 also includes the “real” value for age, so we can assess the
intreg model the same way we did in Example 2. We run the int reg model, the
corresponding oprobit model, and then the OLS regress model using real wage.

*%** Example 1 revisited **¥*
webuse womenwage2, clear
(Wages of women, fictional data)
intreg wagel wage2 c.age c.agef#c.age i.nev_mar i.rural school tenure, nolog
Number of obs 488
Uncensored = 0

Interval regression

Left-censored = 14
Right-censored = 6
Interval-cens. = 468
LR chi2 (6) = 221.61
Log likelihood = -856.33293 Prob > chi?2 = 0.0000
| Coefficient Std. err z P>|z| [95% conf. interval]
_____________ o o
age | .7914438 .4433604 1.79 0.074 -.0775265 1.660414
|
c.agefc.age | -.0132624 .0073028 -1.82 0.069 -.0275757 .0010509
|
l.nev mar | -.2075022 .8119581 -0.26 0.798 -1.798911 1.383906
l.rural | -3.043044 . 7757324 -3.92 0.000 -4.563452 -1.522637
school | 1.334721 .1357873 9.83 0.000 1.068583 1.600859
tenure | .8000664 .1045077 7.66 0.000 .5952351 1.004898
_cons | -12.70238 6.367117 -1.99 0.046 -25.1817 -.2230583
_____________ +________________________________________________________________
/lnsigma | 1.987823 .0346543 57.36 0.000 1.919902 2.055744
_____________ o
sigma | 7.299626 .2529634 6.82029 7.81265

oprobit wagecat c.age c.agef#c.age

Ordered probi

Log likelihoo

t regression

d =

-763.31049

.nev_mar i

.rural school

Number of obs
LR chi2 (6)
Prob > chi2
Pseudo R2

tenure, nolog

488
235.68
0.0000

= 0.1337

c.agef#c.age

l.nev_mar
l.rural
school
tenure

[95% conf.

in

tervall]

-.0027983

-.0046417
-.5270036
.2010587

.0620333

.0010214

.1126737
.1100449
.0201189
.0147887

.0458689

-.0048001

-.225478
-.7426875
.1616263
.0700063

.289035

0007964

2161946
3113196
2404911
.127977

2.650637
3.941018
5.085205
5.875534
6.468723
6.922726
7.34471

I
+
I
I
I
I
I
I
I
I .0989916
+
I
I
I
I
I
I
I
| 7.963441

.8957245
.8979167
.9056582
.9120933

.918117

.9215455
.9237628
.9338881

.8950495
2.181134
3.310148
4.087864
4.669247

5.11653
5.534168
6.133054

.406225
.700903
.860263
.663204
.268199
.728922
.155252
.793828
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In the above, oprobit fits much better than intreg, i.e. it has a much smaller log likelihood.

Further, if we run the OLS regression with “real” wage, we see that the intreg and OLS

estimates differ by fairly large amounts.

reg wage c.age c.agef#fc.age i.nev_mar i.rural school tenure

Source

Model
Residual

2863.76974
63.9113578

17182.6184
30741.3631

Number of obs
F(o6, 481)
Prob > F

488
44.81
0.0000
0.3585
0.3505
7.9945

c.age#c.age

l.nev _mar
1l.rural
school
tenure

conf.

.5078072

-.0083304

-.1652674
-2.915707
1.336653
.8993539
-8.409316

.4708266

.0077619

.864845
.8283239
.1444367
.1110741
6.755676

R-squared

Adj R-squared

Root MSE
P>t [95%
0.281 -.4173239
0.284 -.0235819
0.849 -1.864608
0.000 -4.543288
0.000 1.052848
0.000 .6811034
0.214 -21.6836

1.

432938

.006921

.534074
.288127
.620458
.117604
.864966

Income is generally not normally distributed, which is a requirement for the use of intreg. The
Stata Manual notes that “Normality is more closely approximated if we model the log of wages.”
So, we will compute the logs of wagel, wage2, and wage, and see how well intreg works

then. (There is no need to compute the log of wagecat, since the only thing that matters to

oprobit is the ordering of categories, not their specific values.)

* intreg doesn't work that well, so lets try log(wages) instead
= log(wagel)

gen logwage

1

(14 missing values generated)
gen logwage2

gen logwage

= log(wage2)
(6 missing values generated)

= log (wage)
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intreg logwagel logwage2 c.age c.agef#c.age i.nev_mar i.rural school tenure, nolog

Interval regression Number of obs = 488
Uncensored = 0
Left-censored = 14
Right-censored = 6
Interval-cens. = 468
LR chi2 (6) = 231.40
Log likelihood = -773.36563 Prob > chi2 = 0.0000
| Coefficient Std. err. Z P>|z| [95% conf. interval]
_____________ +________________________________________________________________
age | .0645589 .0249954 2.58 0.010 .0155689 .1135489
|
c.agef#fc.age | -.0010812 .0004115 -2.63 0.009 -.0018878 -.0002746
|
l.nev mar | -.0058151 .0454867 -0.13 0.898 -.0949674 .0833371
l.rural | -.2098361 .0439454 -4.77 0.000 -.2959675 -.1237047
school | .0804832 .0076783 10.48 0.000 .0654341 .0955323
tenure | .0397144 .0058001 6.85 0.000 .0283464 .0510825
_cons | .7084023 .3593193 1.97 0.049 .0041495 1.412655
_____________ +________________________________________________________________
/lnsigma | -.906989 0356265 -25.46 0.000 -.9768157 -.8371623
_____________ +________________________________________________________________
sigma | .4037381 0143838 3765081 .4329373
oprobit wagecat c.age c.agef#ic.age i.nev_mar i.rural school tenure, nolog
Ordered probit regression Number of obs = 488
LR chi2 (6) = 235.68
Prob > chi2 = 0.0000
Log likelihood = -763.31049 Pseudo R2 = 0.1337
wagecat | Coefficient Std. err. z P>|z| [95% conf. interval]
_____________ +________________________________________________________________
age | .1674519 .0620333 2.70 0.007 .0458689 .289035
|
c.age#c.age | -.0027983 .0010214 -2.74 0.006 -.0048001 -.0007964
|
l.nev mar | -.0046417 .1126737 -0.04 0.967 -.225478 .21619406
l.rural | -.5270036 .1100449 -4.79 0.000 -.7426875 -.3113196
school | .2010587 .0201189 9.99 0.000 .1616263 .2404911
tenure | .0989916 .0147887 6.69 0.000 .0700063 .127977
_____________ +________________________________________________________________
/cutl | 2.650637 .8957245 .8950495 4.406225
/cut2 | 3.941018 .8979167 2.181134 5.700903
/cut3 | 5.085205 .9056582 3.310148 6.860263
/cutd | 5.875534 .9120933 4.087864 7.663204
/cuth | 6.468723 .918117 4.669247 8.268199
/cuté | 6.922726 .9215455 5.11653 8.728922
/cut7 | 7.34471 .9237628 5.534168 9.155252
/cut8 | 7.963441 .9338881 6.133054 9.793828

Now the fit of intreg and oprobit is almost identical. Further, the Z values for the
coefficients are very similar.
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Using OLS with the log of “real” wage,

reg logwage c.age c.age#c.age i.nev_mar i.rural school tenure

Model

48.3502704
74.9286926

8.0583784
.155776908

Number of obs
F(6, 481)
Prob > F
R-squared
Adj R-squared

488
51.73
0.0000
0.3922
0.3846
.39469

c.ageffc.age

l.nev mar
l.rural
school
tenure

conf.

.057249

-.0009289

.0158159
-.1902597
.0741954
.0399751
.8962183

.0232447

.0003832

.0426973
.0408943
.0071308
.0054837
.3335272

Root MSE

P>t [95%

0.014 .0115753
0.016 -.0016818
0.711 -.0680804
0.000 -.2706133
0.000 .060184
0.000 .0292001
0.007 .2408679

.1029226

-.0001759

.0997123
-.1099062
.0882068
.0507502
1.551569

We see that the coefficients and Z values for intreg and regress are very similar.

Summary. If you want to evaluate whether it is ok to use intreg,
e Run both intreg and the corresponding oprobit model. If the model fits (i.e. the Log
Likelihoods) and coefficient Z values are similar, then you may want to use intreg
because its coefficients can be much easier to interpret.
e Ifthe fit of oprobit is much better than the fit of intreg, consider whether there is
some transformation of the dependent variable that would work better. int reg assumes
normality, and the log of income is more likely to be normally distributed than income is.
e If] after trying transformations of the dependent variable, oprobit still fits much better

than intreg, then you probably don’t want to use intreg. Use something like

oprobit or ologit instead.
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