Sociology 63993 Exam 2 March 28, 2014 - I. True-False. (20 points) Indicate whether the following statements are true or false. If false, briefly explain why. - 1. A researcher runs the following regression: - . reg income black educ | Source | SS | df | MS | | Number of obs F(2, 531) | | | |-------------------|----------|--------------------------------|------------------------|-------|----------------------------------|----|-------------------------------| | Model
Residual | | 2 33
531 13 | 3429.7606
31.051749 | | Prob > F R-squared Adj R-squared | = | 0.0000
0.4900 | | Total | 136448 | 533 | 256 | | Root MSE | | | | income | Coef. | | | | [95% Conf. | In | terval] | | black | .0175821 | 5.19801
.1624378
.495394 | 0.00 | 0.997 | -10.1936
3.180736
9731727 | 3 | 0.22877
.818935
9731726 | Based on these results, the researcher should conclude that a person's race has no effect on his or her income. - 2. A researcher runs the following: - . gen edmale = ed * male - . reg warm male ed edmale | Source | SS | df | MS | | Number of obs F(3, 2289) | | |-------------------------------------|------------|---|-----------------|--------------------|--|---| | Model
Residual | 144.755012 | | | | Prob > F R-squared Adj R-squared | = 0.0000
= 0.0733 | | Total | 1974.75098 | 2292 . | 861584198 | | Root MSE | = .89413 | | warm | Coef. | Std. Er | r. t | P> t | [95% Conf. | Interval] | | male
ed
edmale
_cons | | .150928
.009114
.01197
.113323 | 3 8.5
6 -2.7 | 1 0.000
1 0.007 | 2370216
.0597334
0558989
1.595584 | .3549188
.0954797
0089293
2.040043 | This means that the estimated effect of education is positive for both men and women. 3. A researcher has run the following commands: ``` reg y x1 x2 x3 est store m1 reg y x1 x4 est store m2 ``` She can now use an incremental F test or a Likelihood Ratio test to determine which of her two regression models is better. 4. A model includes two independent variables: education, measured in years, and income, measured in thousands of dollars. If the researcher wishes to compare the effects of these two variables, she should test the hypotheses H_0 : $\beta_{education} = \beta_{income}$ H_A : $\beta_{education} \neq \beta_{income}$ 5. A researcher has inadvertently omitted an important variable from her model. Fortunately, as the sample size gets bigger and bigger, the omitted variable bias will diminish and eventually disappear. II. Path Analysis/Model specification (25 pts). A sociologist believes that the following model describes the relationship between X1, X2, X3, and X4. All her variables are in standardized form. The estimated value of each path in her model is included in the diagram. - a. (5 pts) Write out the structural equation for each endogenous variable, using both the names for the paths (e.g. β_{42}) and the estimated value of the path coefficient. - b. (10 pts) Part of the correlation matrix is shown below. Determine the complete correlation matrix. Show your work. (Remember, variables are standardized.) | | x1 | x2 | x3 | x4 | |----------------------|----|--------|--------|--------| | x1
x2
x3
x4 | | 1.0000 | 1.0000 | 1.0000 | - c. (5 pts) Decompose the correlation between X2 and X4 into - Correlation due to direct effects - Correlation due to indirect effects - Correlation due to common causes d. (5 pts) Suppose the above model is correct, but instead the researcher believed in and estimated the following model: What conclusions would the researcher likely draw? In particular, what would the researcher conclude about the effect of changes in X3 on X4? Why would he make these mistakes? Discuss the consequences of this mis-specification. III. Group comparisons (25 points). The signup period for the Affordable Care Act will end in a few days. Democratic Party officials are worried that opposition to the act will hurt the party in the mid-term elections. They are therefore trying to identify factors that are related to support for the ACA. In particular, They fear that people who already have insurance through their employers will be less favorable toward the Act. A random sample of more than 4,400 American adults has therefore been asked about the following: | Variable | Description | |----------|---| | aca | Support for the Affordable Care Act. Scores | | | potentially range from a low of 0 to a high of 100. | | ses | Socio-Economic Scale. The scale has been centered | | | to have a mean of zero. Observed values on the | | | centered scale range from about -50 to +100. | | employer | Does the respondent already have insurance | | | provided by an employer? $1 = yes$, $0 = no$ | | empses | Interaction term; employer * ses | The results of the analysis are as follows: #### . ttest aca, by(employer) Two-sample t test with equal variances | - | • | | Std. Err. | | - | Interval] | |----------|-----------------------|----------------------|-------------------------|----------|--------------|-----------------------| | 0
1 | 2112 | 52.27996
38.47903 | .2252155
.2224307 | 10.35011 | 51.8383 | 52.72163
38.91521 | | combined | | 45.05565 | .1891882 | 12.59488 | 44.68474 | 45.42655 | | diff | • | | .3170529 | | 13.17936 | 14.42252 | | diff = | = mean(0) -
= 0 | mean(1) | | degrees | t of freedom | = 43.5288
= 4430 | | | iff < 0
) = 1.0000 | Pr(| Ha: diff != T > t) = | | | iff > 0
) = 0.0000 | ## . nestreg: reg aca ses employer empses Block 1: ses | | | | SS | | | | | Number of ob
F(1, 4430 | | |-------|--|--|--|---|--|---|---|---|--| | | Model | 1939 | 909.975
983.622 | 1
4430 | 1939
114 | 909.975 | | Prob > F
R-squared
Adj R-square | = 0.0000 $= 0.2759$ | | | Total | | 893.598 | | | .630918 | | Root MSE | | | | aca | | Coef. | Std. | Err. | t | P> t | [95% Conf | . Interval] | | | ses | 38 | 873433 | .0094 | 1286 | -41.08 | 0.000 | 405828
44.73999 | 3688586
45.37131 | | Block | 2: em | ployer | | | | | | | | | | Source | | SS | df | | MS | | Number of ob
F(2, 4429 | | | D. | | |
628.413
265.185 | | | | | Prob > F
R-squared | = 0.0000 | | | | -+ | 263.163

893.598 | | | | | Adj R-square
Root MSE | ed = 0.3734 | | | 10tai | | | 4431 | 130. | .030910 | | ROOL MSE | - 9.9702 | | | aca | | Coef. | Std. | Err. | t | P> t | [95% Conf | . Interval] | | en | ses
mployer
_cons | 23
 -9
 49 | 387547
.37911
.96529 | .0104
.3567
.2393 | 1332
7215
3692 | -22.88
-26.29
208.74 | 0.000
0.000
0.000 | 2592089
-10.07846
49.49601 | 2183004
-8.679758
50.43457 | | | | | | | | | | | | | Block | 3. em | nses | | | | | | | | | Block | 3: em | | SS | df | | MS | | Number of ob | os = 4432 | | Block | Source |
-+ | SS | | | | | Number of ob | 8) = 880.52 | | | Source

Model
esidual |
 -+
 2620
 4402 |
637.684
255.913 | 3
4428 | 8754
99.4 | 15.8948
1254546 | | F(3, 4428
Prob > F
R-squared | 8) = 880.52
= 0.0000
= 0.3737 | | | Source

Model
esidual |
 -+
 2620
 4402 |
637.684 | 3
4428 | 8754
99.4 | 15.8948
1254546 | | F(3, 4428
Prob > F | (3) = 880.52
= 0.0000
= 0.3737
ed = 0.3732 | | | Source

Model
esidual |
 -+
 2626
 4402
 -+
 7028 | 637.684
255.913

893.598 | 3
4428

4431 | 8754
99.4
158. | 45.8948
4254546

.630918 | | F(3, 4428
Prob > F
R-squared
Adj R-square | 8) = 880.52
= 0.0000
= 0.3737
ed = 0.3732
= 9.9712 | | Re | Source
Model
esidual
Total
aca |
 2626
 4402
 7028 | 637.684
255.913

893.598

Coef. | 3
4428
4431
Std. | 8754
99.4
158.
Err. | -15.17 | P> t
0.000 | F(3, 4428
Prob > F
R-squared
Adj R-square
Root MSE
[95% Conf | 8) = 880.52
= 0.0000
= 0.3737
ed = 0.3732
= 9.9712
 | | Re | Source Model esidual Total aca ses mployer | 2626
 4402
 7028 | 637.684
255.913

893.598

Coef.

352496
387526 | 4428
4431

Std.
.0155 | 8754
99.4
1588
Err.
5117
3209 | -15.17
-26.24 | P> t
0.000
0.000 | F(3, 4428
Prob > F
R-squared
Adj R-square
Root MSE
[95% Conf
2656603
-10.08903 | 8) = 880.52
= 0.0000
= 0.3737
ed = 0.3732
= 9.9712
F. Interval]
 | | Re | Source
Model
esidual
Total
aca | 2626
 4402
 7028 | 637.684
255.913

893.598

Coef. | 3
4428
4431
Std. | 8754
99.4
1588
Err.
5117
3209 | -15.17 | P> t
0.000
0.000
0.760 | F(3, 4428
Prob > F
R-squared
Adj R-square
Root MSE
[95% Conf | 8) = 880.52
= 0.0000
= 0.3737
ed = 0.3732
= 9.9712
 | | Re | Source Model esidual Total aca ses mployer empses | 2626
 4402
 7028 | 637.684
255.913

893.598

Coef.

352496
387526
064017 | 3
4428
4431
Std.
.0155
.3578
.0209
.2639 | 8754
99.4
158.
Err.
5117
3209
9634
9912 | -15.17
-26.24
-0.31
189.40 | P> t
0.000
0.000
0.760 | F(3, 4428
Prob > F
R-squared
Adj R-square
Root MSE
[95% Conf
2656603
-10.08903
0475003 | 8) = 880.52
= 0.0000
= 0.3737
ed = 0.3732
= 9.9712
F. Interval]
 | | | Source Model esidual Total aca ses mployer empses cons | 2626
 4402
 7028

 7028

 49 | 637.684
255.913

893.598

Coef.

352496
387526
064017
.99927 | 3
4428
4431
Std.
.0155
.3578
.0209
.2639 | 8754
99.4
158.
Err.
5117
3209
9634
9912 | -15.17
-26.24
-0.31
189.40 | P> t
0.000
0.000
0.760
0.000 | F(3, 4428 Prob > F R-squared Adj R-square Root MSE [95% Conf2656603 -10.089030475003 49.48172 | 8) = 880.52
= 0.0000
= 0.3737
ed = 0.3732
= 9.9712
F. Interval]
 | | | Source Model esidual Total aca ses mployer empses | 2626
 4402
 7028

 7028

 49 | 637.684
255.913

893.598

Coef.

352496
387526
064017
.99927 | 3
4428
4431
Std.
.0155
.3578
.0209
.2639 | 8754
99.4
158.
Err.
5117
3209
9634
9912 | -15.17
-26.24
-0.31
189.40 | P> t
0.000
0.000
0.760 | F(3, 4428
Prob > F
R-squared
Adj R-square
Root MSE
[95% Conf
2656603
-10.08903
0475003
49.48172 | 8) = 880.52
= 0.0000
= 0.3737
ed = 0.3732
= 9.9712
F. Interval]
 | | | Source Model esidual Total aca ses mployer empses cons lock | 2626
 4402
 7028

 7028

 49 | 637.684
255.913
893.598
Coef.
352496
387526
064017
.99927 | 3
4428
4431
Std.
.0155
.3578
.0209
.2639 | 8754
99.4
158.
Err.
5117
3209
9634
9912 | 45.8948
4254546

.630918

t
-15.17
-26.24
-0.31
189.40
 | P> t
0.000
0.000
0.760
0.000
R2 | F(3, 4428 Prob > F R-squared Adj R-square Root MSE [95% Conf2656603 -10.089030475003 49.48172 Change in R2 | 8) = 880.52
= 0.0000
= 0.3737
ed = 0.3732
= 9.9712
F. Interval]
 | | | Source Model esidual Total aca ses mployer empses _cons | 2626
 4402
 7028

 7028

 49 | 637.684
255.913

893.598

Coef.
3
352496
387526
064017
.99927

Block
df | 3
4428
4431
Std.
.0155
.3578
.0209
.2639 | 8754
99.4
158.
Err.
5117
3209
9634
9912 | 15.8948
1254546

.630918
t
-15.17
-26.24
-0.31
189.40

Pr > F
0.0000
0.0000 | P> t
0.000
0.000
0.760
0.000
R2 | F(3, 4428 Prob > F R-squared Adj R-square Root MSE [95% Conf2656603 -10.089030475003 49.48172 | 8) = 880.52
= 0.0000
= 0.3737
ed = 0.3732
= 9.9712
F. Interval]
 | #### . ttest ses, by (employer) Two-sample t test with equal variances | Group | | Mean | Std. Err. | Std. Dev. | [95% Conf. | Interval] | |-------------------|---------------------|-----------------------|-------------|---------------------|-----------------------|-----------------------| | 0 | 2112 | -9.694785
8.825596 | .3044379 | 13.9909
14.68371 | -10.29181
8.227782 | -9.097755
9.423411 | | combined | 4432 | | .2565389 | 17.07863 | 5029449 | .5029439 | | diff | +
 | -18.52038 | .4318123 | | -19.36695 | -17.67381 | | diff = Ho: diff = | = mean(0)
= 0 | - mean(1) | | degrees | t
of freedom | = -42.8899
= 4430 | | | iff < 0
= 0.0000 | Pr(| Ha: diff != | | | iff > 0
) = 1.0000 | The initial t-test shows that those with employer-provided health insurance have significantly lower levels of support for the Affordable Care Act. Based on the remaining results, explain to the Democratic Party officials why that is the case. When thinking about your answers, keep in mind the various reasons that two groups can differ on some outcome measure. Specifically, answer the following: - a) (10 pts) The researchers estimate a series of models. Which of the models do you think is best, and why? What do these models tell us about how SES and employer-provided insurance affect the amount of support for the ACA? What ways (if any) do the determinants of support for the ACA differ by those who have and do not have employer-provided insurance? - b) (5 pts) Suppose you had two people with average SES scores, one of whom had insurance through their employer while the other did not. According to your preferred model, what would be the predicted ACA score for each person? - c) (10 pts) The researchers then do one last t-test. What does this test tell us about how SES differs between those who have and do not have employer-provided insurance? What additional insights, if any, does this test give us as to why those with insurance from their employers are less supportive of the ACA? - IV. Short answer. Answer *both* of the following questions. (15 points each, 30 points total.) In each of the following problems, a researcher runs through a sequence of commands. Explain why she didn't stop after the first command, i.e. explain what the purpose of each subsequent command was, what it told her, and why she did not run additional commands after the last one. If she had stopped after the first command, what would the consequences have been, i.e. in what ways would her conclusions have been incorrect or misleading? Include diagrams or scatterplots that describe the relationships if they have not already been provided in the problem. # 1. ### . reg y c.age | Source | SS | df | | MS | | Number of obs | | 10337 | |---------------------|---------|----------------|--------------|----------------|-------|--|-------------|---| | Model
Residual | | 1
10335
 | 3656
235. | .60319 | | F(1, 10335) Prob > F R-squared Adj R-squared Root MSE | =
=
= | 15.53
0.0001
0.0015
0.0014
15.344 | | у | Coef. | Std. | | t | | [95% Conf. | In | terval] | | age
_cons | .034547 | .0087 | 664 | 3.94
158.44 | 0.000 | .0173632
69.38848 | | 0517309 | #### . estat ovtest Ramsey RESET test using powers of the fitted values of y Ho: model has no omitted variables $F\left(3\text{, }10332\right) = 65.30$ Prob > F = 0.0000 ### . reg y c.age c.age#c.age | Source | SS | df | MS | | Number of obs | = | 10337 | |-------------|------------|-----------|---------|-------|---------------|----|---------| | + | | | | | F(2, 10334) | = | 104.31 | | Model | 48224.7286 | 2 241 | 12.3643 | | Prob > F | = | 0.0000 | | Residual | 2388802.52 | 10334 231 | .159524 | | R-squared | = | 0.0198 | | + | | | | | Adj R-squared | = | 0.0196 | | Total | 2437027.25 | 10336 2 | 35.7805 | | Root MSE | = | 15.204 | | | | | | | | | | | УΙ | Coef. | Std. Err. | t | P> t | [95% Conf. | In | terval] | | + | | | | | | | | | age | .9165035 | .0641083 | 14.30 | 0.000 | .7908388 | 1 | .042168 | | | | | | | | | | | c.age#c.age | 0094794 | .0006827 | -13.89 | 0.000 | 0108176 | | 0081412 | | | | | | | | | | | _cons | 52.56348 | 1.347931 | 39.00 | 0.000 | 49.92127 | 5. | 5.20568 | | | | | | | | | | ### . estat ovtest ``` Ramsey RESET test using powers of the fitted values of y Ho: model has no omitted variables F\left(3,\ 10331\right)\ =\ 1.09 Prob\ >\ F\ =\ 0.3523 ``` # 2. # . reg y x | Source | SS | df | MS | | Number of obs | = | 100 | |----------|------------|-------|------------|-------|---------------|-----|---------| | + | | | | | F(1, 98) | = | 53.34 | | Model | 14049.5785 | 1 | 14049.5785 | | Prob > F | = | 0.0000 | | Residual | 25810.4821 | 98 | 263.372267 | | R-squared | = | 0.3525 | | + | | | | | Adj R-squared | = | 0.3459 | | Total | 39860.0606 | 99 | 402.626875 | | Root MSE | = | 16.229 | | | | | | | | | | | у | | Std. | Err. t | P> t | [95% Conf. | Int | terval] | | x | 11.65543 | 1.595 | 811 7.30 | 0.000 | 8.488591 | 1 2 | 4.82226 | | cons | 4.036725 | 1.644 | | | .7723995 | | .301051 | | | 1.000720 | | | | | | | # . curvefit $y \times f(1 \ 0)$ Curve Estimation between y and \boldsymbol{x} | | Variable | Linear | Growth | |------|----------|-------------------|-------------------| | b0 | <u> </u> | 4 0267050 | 21200105 | | | _cons | 4.0367252
2.45 | .31302195
4.04 | | | | 0.0159 | 0.0001 | | b1 | 1 | | | | | _cons | 11.655426 | 1.4498163 | | | | 7.30
0.0000 | 58.10
0.0000 | | St.a | tistics | | | | | N I | 100 | 100 | | | r2_a | .34586516 | .9826695 | | | | | | legend: b/t/p # . glm y x, link(log) | Generalized linear Optimization | | | | Resid | f obs =
ual df =
parameter = | = 98 | |---------------------------------|------------------------|----------------------|-------|-----------------|------------------------------------|--------------------------| | Deviance
Pearson | = 738.07°
= 738.07° | | | (1/df) | Deviance = | | | Variance function | ` ' | | | [Gaus:
[Log] | sian] | | | Log likelihood | = -241.83 | 77796 | | AIC
BIC | | = 4.876756
= 286.7707 | | у I | Coef. | OIM
Std. Err. | z | P> z | [95% Conf. | . Interval] | | x
_cons | 1.449816
.3130218 | .0237301
.0738521 | 61.10 | 0.000 | 1.403306
.1682745 | |