Sociology 63993 Exam 1 Answer Key February 15, 2008

- 1. True-False. (20 points) Indicate whether the following statements are true or false. If false, briefly explain why.
- 1. Cohen and Cohen's Dummy Variable Adjustment technique has been totally discredited and should not be used under any circumstances.

False. The method can be useful when the missing value simply simply does not exist, e.g. the question is on spouse's attitudes and there is no spouse.

2. There is an inherent downward bias in the R^2 statistic, i.e. $E(R^2) < \rho^2$.

False. There is an inherent upward bias. Because of sampling variability, even effects that are truly zero will be estimated as non-zero and cause R² to increase.

- 3. A researcher runs the following analysis:
- . alpha v1 v2 v3, i

Test scale = mean(unstandardized items)

Item	Obs	Sign	item-test correlation	item-rest correlation	average inter-item covariance	alpha
v1 v2 v3	+ 3975 3975 3975	+ + +	0.7493 0.7853 0.9918	0.5546 0.5922 0.9660	.2940328 .2614789 .0459916	0.8210 0.7834 0.3323
Test scale	÷ 				.2005011	0.7977

Based on these results, she should drop v3 from her scale.

False. That would be the worst thing to do, since the scale's reliability would drop to .3323. If anything, drop v1, as that will make the scale slightly more reliable.

4. Robust standard errors are one means for dealing with the problem of multicollinearity.

False. Robust standard errors are a way of dealing with errors that are not iid.

5. A researcher has collected earnings data on a firm for each of the past 60 months. When she computes the Durbin-Watson statistic, she gets a value of 2.0. This indicates that first-order serial correlation is a problem in her data.

False. A value of 2.0 indicates that there is no first order serial correlation.

II. Short answer. Discuss all three of the following problems. (15 points each, 45 points total.) In each case, the researcher has used Stata to test for a possible problem, concluded that there is a problem, and then adopted a strategy to address that problem. Explain (a) what problem the researcher was testing for, and why she concluded that there was a problem, (b) the rationale behind the solution she chose, i.e. how does it try to address the problem, and (c) one alternative solution she could have tried, and why. (NOTE: a few sentences on each point will probably suffice – you don't have to repeat everything that was in the lecture notes.)

. reg psyscore workatt qscale01

Source	ss	df	MS		Number of obs F(2, 7)	
Model Residual	1775.55796 652.122126	7 93.1	.778982 1603037		Prob > F R-squared Adj R-squared	= 0.0100 = 0.7314 = 0.6546
Total	2427.68009	9 269	.742232		Root MSE	= 9.652
psyscore	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
workatt qscale01 _cons	1.414823 3.57697 -43.93438	.6474377 .9083323 8.64232	2.19 3.94 -5.08	0.065 0.006 0.001	1161239 1.429106 -64.37022	2.94577 5.724835 -23.49854

. list

-	+ psyscore	female	workatt	qscale01	qscale02
1. 2. 3. 4. 5.	-38.83 -29.43 7.969999 -31.23 -6.83	Female Female Female Female Female	-3.65 5.35 8.35 65 1.35	2 4 8 8 8	: : : : :
6. 7. 8. 9. 10.	4.370001 1.969999 -2.629999 -3.83 -9.83	Female Female Female Female	3.35 3.35 -3.65 5.35 -7.65	10 12 12 12 12	: : :
11. 12. 13. 14. 15.	-5.429998 .7699985 11.37 .7699985	Male Male Male Male Male	-5.65 -3.65 65 4.35 6.35	· · · ·	12 13 14 14 15
16. 17. 18. 19. 20.	3.17 28.97 -4.629999 17.37 47.77	Male Male Male Male Male	-6.65 4.35 -11.65 -2.65 4.35	: : : :	15 16 16 17 21

. gen qscale = qscale01
(10 missing values generated)

. replace qscale = qscale02 if missing(qscale) (10 real changes made)

. reg psyscore workatt qscale

Source	ss	df	MS		Number of obs F(2, 17)	
Model Residual	6152.90086 1128.801		.45043 000591		Prob > F R-squared Adj R-squared	= 0.0000 = 0.8450 = 0.8267
Total	7281.70187	19 383.	247467		Root MSE	= 8.1486
psyscore	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
workatt qscale _cons	1.298731 3.866786 -46.59477	.3443179 .4198989 5.377861	3.77 9.21 -8.66	0.002 0.000 0.000	.5722835 2.980876 -57.94106	2.025178 4.752695 -35.24847

The researcher is worried about missing data. Half his cases are missing in the original regression. After listing the values, he realizes that only females have scores on qscale01, and only males have scores on qscale02. He therefore decides to combine the items into a single scale. This may be a great strategy if the two scales really are the same questions but asked at different points in the questionnaire. Skip patterns might produce such a result. If the items aren't the same though, this could be a terrible strategy and it may be better just to stick with listwise deletion, keeping in mind that you would then only be analyzing females.

II-2.

. reg hscale age black female

Source	SS	df	MS		Number of obs F(3, 10331)	= 1033! = 533.4	
Model Residual	95636.8263 617392.308		1878.9421 9.7611372		Prob > F R-squared Adj R-squared	= 0.0000 $= 0.1340$ $= 0.1330$	0
Total	713029.135	10334	58.998368		Root MSE	= 7.730	-
hscale	Coef.	Std. Eri	. t	P> t	[95% Conf.	Interval]
age black female _cons	1662599 -3.521926 5391638 21.69226	.0044192 .248113 .1522892 .2388228	$ \begin{array}{rrr} -14.19 \\ -3.54 \end{array} $	0.000	1749225 -4.008275 8376801 21.22412	157597 -3.03557 240647 22.160	6 5

. predict rstandard, rstandard

(2 missing values generated)

. extremes rstandard hscale age black female

_	+					+	
	obs:	rstandard	hscale	age	black	female	
	3446. 6078.	-2.225543 -2.225543	1 1	21 21	0 0	0 0	
	174.	-2.204013	1	22	0	0	
	503.	-2.182483	1	23	0	0	
	8122.	-2.15577	1	21	0	1	

+					+
7299.	2.433496	25	72	1	0
8187.	2.460159	25	70	1	1
110.	2.503239	25	72	1	1
378.	2.546324	25	74	1	1
8.	30.83233	250	57	0	1
+					+

. qreg hscale age black female, nolog

Median regress	sion deviations	71056 (abou	ıt. 9)	Nu	umber of obs	= 10335
	deviations 62'		,	Ps	seudo R2	= 0.1174
hscale	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
age black female _cons	1794872 -4.282051 3589744 21.02564	.0052734 .2978292 .1820799 .2853329	-34.04 -14.38 -1.97 73.69	0.000 0.000 0.049 0.000	189824 -4.865854 7158863 20.46633	1691503 -3.698248 0020625 21.58495

Outliers are a concern. Case 8 has a score on hscale that is very extreme compared to other values. The researcher therefore decides to use median regression, which is less sensitive to the pull of outliers. If I were the researcher, though, I would check to see if an extra zero accidentally got added to case 8. I would also try out other methods, e.g. robust regression, or dropping the outlier, to see if it made much difference how the outlier was handled.

II-3.

. reg health height weight female

Source	SS	df	MS		Number of obs F(3, 10331)	=	10335 145.08
Model Residual	1227409.22 29134953.1		409136.406 2820.1484		Prob > F R-squared Adi R-squared	=	0.0000 0.0404 0.0401
Total	30362362.4	10334	2938.10358		Root MSE	=	53.105
health	Coef.	Std. E	rr. t	P> t	[95% Conf.	In	terval]
height weight female _cons	1.541938 4657993 10.15199 -174.9994	.07987 .03881 1.4655 13.313	45 -12.00 99 6.93	0.000 0.000 0.000 0.000	1.385363 5418833 7.279136 -201.0972	 1	.698513 3897153 3.02485 48.9017

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: fitted values of health
 chi2(1) = 114.87

Prob > chi2 = 0.0000

- . * Compute the natural log of health and use it instead
- . gen lnhealth = ln(health)

(2 missing values generated)

. reg lnhealth height weight female

Source	SS	df	MS		Number of obs $F(3, 10331)$		10335 168.05
Model Residual	699.558344 14335.4632		3.186115 38761623		Prob > F R-squared Adi R-squared	= = =	0.0000 0.0465 0.0463
Total	15035.0216	10334 1.	45490822		Root MSE	=	1.178
lnhealth	Coef.	Std. Err	. t	P> t	[95% Conf.	Int	erval]
height weight female _cons	.0378505 010879 .3079935 -2.311375	.0017718 .000861 .0325098 .2953265	21.36 -12.64 9.47 -7.83	0.000 0.000 0.000 0.000	.0343773 0125667 .2442681 -2.890272	0	0413236 0091913 .371719 .732478

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of lnhealth

chi2(1) = 1.02Prob > chi2 = 0.3134

The initial Breusch-pagan test indicates that heteroskedasticity is a problem with these data. The researcher decides to address the problem by transforming the dependent variable, i.e. he takes the log of it. After doing this, heteroskedasticity is no longer a problem. This is often a good approach, but the researcher needs to think about whether the variable transformation makes sense or not, i.e. from a theoretical standpoint, does it make more sense to use logged or non-logged health? We'll talk more later about the rationales behind different kinds of variable transformations.

III. Computation and interpretation. (35 points total)

Hillary Clinton's presidential campaign is reeling after a series of losses to Barack Obama. Clinton's new campaign manager, Maggie Williams, is confident that victory is still possible. But, she feels the campaign must better identify the issues that have the strongest impact on voters' opinions of Clinton and deal with them accordingly. She has therefore commissioned a survey of 5,000 <u>likely</u> voters in the upcoming primary states of Wisconsin, Texas, Ohio and Pennsylvania. All attitudinal items are measured on scales that range from 0 to 200. The variables include

Variable	Description
hillary	Attitudes toward Hillary. The higher the score, the more favorable the impression. This is the dependent variable in the analysls.
security	Attitudes toward national security. The higher the score, the more important strong national security is to the respondent.
healthcare	Attitudes towards national health care. The higher the score, the more important national health care is to the respondent.
economy	Attitudes toward the economy. The higher the score, the more important economic issues are to the respondent.
female	Coded 1 if the respondent is female, 0 if male.

An analysis of the data yields the following results. [NOTE: You'll need some parts of the following to answer the questions, but other parts are extraneous. You'll have to figure out which is which.]

. corr , means (obs=5000)

Variable	Mean	Std. Dev.	Min	Max
hillary	166.3653	9.3227	136.797	200
security	70.4279	15.2894	30.84	159.44
healthcare	62.45453	21.84582	10.66667	196
economy	152.6836	15.24664	86	174
female	.4002	.4899877	0	1

	hillary	security	health~e	economy	female
hillary security	1.0000 0.4627	1.0000			
healthcare	0.0741	-0.0707	1.0000		
economy	0.0782	0.0813	0.1120	1.0000	
female	0.6769	0.3592	0.0423	0.0608	1.0000

. pcorr2 hillary security healthcare economy female

(obs=5000)

economy

female

Partial and Semipartial correlations of hillary with

Variable	Partial	SemiP	Partial^2	SemiP^2	Sig.
security healthcare	0.3253	0.2388 0.0653	0.1058 0.0088	0.0570 0.0043	0.000
economy female	0.0207	0.0143 0.5403	0.0004 0.3773	0.0002 0.2919	0.144

. reg hillary security healthcare economy female, beta

Source	SS	df	MS		Number of obs = 5000
Model Residual	225188.625 209288.162	4995	56297.1563 [2]		F(4, 4995) = [1] Prob > F = 0.0000 R-squared = 0.5183 Adj R-squared = 0.5179
Total	434476.787		86.91274		Root MSE = 6.473
hillary	Coef.	Std. Er	r. t	P> t	Beta
security healthcare	.1571209 [3]	.006461		0.000	.2576811 .0660868

conomy | .0088624 .0060693 1.46 0.144 female | 11.04764 .2008013 [4] 0.000 _cons | 147.7639 1.010788 146.19 0.000

.0144938 .5806478

. vif

Variable	VIF	1/VIF
security female healthcare economy	1.16 [5] 1.02 1.02	0.858783 0.865810 0.976340 0.978808
Mean VIF	1.09	

. test security healthcare economy female

. test economy = healthcare

(1) - healthcare + economy = 0

$$F(1, 4995) = 6.15$$

 $Prob > F = 0.0132$

. test female = 10

(1) female = 10
$$F(1, 4995) = 27.22$$

$$Prob > F = 0.0000$$

a) (10 pts) Fill in the missing quantities [1] - [5].

First off, here are the uncensored parts of the printout:

. reg hillary security healthcare economy female, beta

Source	SS	df	MS		Number of obs = 5000 F(4, 4995) = 1343.62
Model Residual	225188.625 209288.162		97.1563 8995319		Prob > F = 0.0000 R-squared = 0.5183 Adj R-squared = 0.5179
Total	434476.787	4999 8	6.91274		Root MSE = 6.473
hillary	Coef.	Std. Err.	t	P> t	Beta
security healthcare economy female _cons	.1571209 .0282025 .0088624 11.04764 147.7639	.0064615 .0042413 .0060693 .2008013	24.32 6.65 1.46 55.02 146.19	0.000 0.000 0.144 0.000 0.000	.2576811 .0660868 .0144938 .5806478

. vif

Variable	VIF	1/VIF
security female healthcare economy	1.16 1.15 1.02 1.02	0.858783 0.865810 0.976340 0.978808
Mean VIF	1.09	

To confirm the results,

[1] F = 1343.62. The easiest way to solve this is to simply note that the first test command does the calculation for you. Other formulas also work.

[2] MSE =
$$(Root MSE)^2 = 6.473^2 = 41.9$$
. Or, MSE = SSE/DFE = 209288.162/4995 = 41.9

[3]
$$b_{healthcare} = t_{healthcare} * se_{healthcare} = 6.65 * .0042413 = .0282$$
.

[4]
$$t_{female} = b_{female} / se_{female} = 11.04764/.2008013 = 55.02$$

[5]
$$tol_{female} = 1/vif_{female} = 1/0.865810 = 1.15$$

- b) (25 points) Answer the following questions about the analysis and the results, explaining how the printout supports your conclusions.
- 1. Based on these results, the Clinton campaign is very concerned about turnout by women voters, i.e. it is worried that not enough women are likely to vote. What is the basis for this concern?

The regressions indicated that women like Hillary, so she wants them to vote. But, the means show that only 40% of the likely voters are women. Perhaps women have become demoralized over the recent losses and hence are not planning to vote. Hillary needs to get those women voters to the polls.

2. If you were Clinton's campaign manager, what issue would you tell her to emphasize most, i.e. what issue is most important for people liking her? Cite several items from the printout that support your argument.

National security issues seem to have the strongest impact on how much people like her. Since the attitude items are all measured on 200 point scales, it is legitimate to compare the metric coefficients, and security has the largest effect. Of the different attitudes, it also has the largest t-value, the largest standardized coefficient, and the largest partial and semipartial correlations. If Hillary can successfully hammer away at national security issues and make people more concerned about them, it may drive her popularity ratings higher.

3. For months, Bill Clinton has been telling his wife's campaign staff that "It is the economy, stupid." He thinks Hillary should be paying far more attention to economic issues. He had to fight with the pollsters to include the economy questions, and even then they only got added at the end of the questionnaire when respondents were tired and rushing to get finished. Do you think the results support the former President's claims? If not, can you make an argument as to why he might be right anyway?

The effect of the economy variable is small and insignificant, which undercuts Bill Clinton's argument. However, if people were rushed when they answered the economy questions, the resulting scale may suffer from random measurement error, which could cause the effect of economic attitudes to be understated. The fact that the economy variable has the highest mean might also indicate that it is important to voters. Of course, if voters don't feel that Hillary can do much about the economy or that both candidates are equally good in this area, that could explain why the variable has so little effect. (Bill could also argue that if Hillary handled the issue differently the issue would have more effect, i.e. the coefficient would change and the economy would have more of an impact if the topic were handled better.)

4. Suppose the researcher now ran backwards stepwise regression using the .05 level of significance, i.e. gave the command

. sw, pr(.05): reg hillary security healthcare economy female

How would the results differ from the regression reported above? i.e. what variables, if any, would be dropped, and what would the new value of R^2 be?

economy would be dropped. It has the smallest squared semipartial and is not statistically significant. The squared semipartial for economy is .0002 so R² will go from .5183 down to .5181. To confirm,

p = 0.1443 >= 0.0500 removing economy

Source 	SS 225099.288 209377.499 434476.787	4996 41	MS 33.0961 .909027 5.91274		Number of obs F(3, 4996) Prob > F R-squared Adj R-squared Root MSE	= 1790.38 = 0.0000 = 0.5181
hillary	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
security healthcare female _cons	.1578254 .0289232 11.05516 149.0194	.0064442 .0042129 .2007579 .5314737	24.49 6.87 55.07 280.39	0.000 0.000 0.000 0.000	.145192 .020664 10.66158 147.9774	.1704587 .0371824 11.44873 150.0613

5. An earlier and much larger survey found that the coefficient for female was 10. There is concern in the Clinton camp that her support among females has eroded since then. Clinton's researchers therefore decide to test

$$H_0$$
: $\beta_{female} = 10$
 H_A : $\beta_{female} < 10$

Based on the results presented above and using the .05 level of significance, should the researchers reject or not reject the null hypothesis?

Do not reject the null! Remember, this is a one-tailed alternative, and the actual result ($b_{female} = 11.04764$) is in the opposite direction of what was predicted, i.e. the effect of female is actually greater than it used to be (although again, it may not do much good if

females don't go out and vote). The test female = 10 statement above is misleading because it does a two-tailed test when a one-tailed test is called for.

Appendix: Stata Commands for Exam 1. Here are the commands I used to generate the Stata output on the exam. Alas, I haven't really conducted any new nationwide studies, but I have manipulated and disguised other data sets I have sitting around.

```
* Problem I-3.
use http://www.nd.edu/~rwilliam/xsoc63993/statafiles/anomia.dta, clear
clonevar v1 = anomia1
clonevar v2 = anomia9
corr2data e
gen v3 = v1 + v2 + e*.20
alpha v1 v2 v3, i
*** Problem II-1.
use http://www.nd.edu/~rwilliam/xsoc63993/statafiles/reg01.dta, clear
gen psyscore = (income * 2 - 48.83)
gen female = race
label define female 1 "Female" 0 "Male"
label values female female
gen workatt = jobexp - 12.65
gen qscale01 = educ if female
gen gscale02 = educ if !female
keep psyscore female workatt gscale01 gscale02
reg psyscore workatt qscale01
list
gen qscale = qscale01
replace qscale = qscale02 if missing(qscale)
reg psyscore workatt qscale
*** Problem II-2.
webuse nhanes2f, clear
gen hscale = health ^2
replace hscale = 250 in 8
reg hscale age black female
predict rstandard, rstandard
extremes rstandard hscale age black female
qreg hscale age black female, nolog
*** Problem II-3.
webuse nhanes2f, clear
replace health = exp(health)
reg health height weight female
hettest
* Compute the natural log of health
gen lnhealth = ln(health)
reg lnhealth height weight female
hettest
*** Problem III.
webuse nhanes2f, clear
* Cleverly disguise the data!
gen hillary = height
gen security = weight
gen healthcare = iron
gen economy = zinc
recode female (0=1)(1=0)
replace healthcare = healthcare * 2/3
replace economy = 2 * economy
```

```
sort economy, stable
keep in 1/5000
order hillary security healthcare economy female
keep hillary security healthcare economy female
corr, means
pcorr2 hillary security healthcare economy female
reg hillary security healthcare economy female
rest security healthcare economy female, beta
vif
test security healthcare economy female
test economy = healthcare
test female = 10
sw, pr(.05): reg hillary security healthcare economy female
```