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I am going to use Stata’s sem commands in this handout. An older handout shows how to do the same things using
LISREL. Alan Acock’s Discovering Structural Equation Modeling Using Stata, Revised Edition is an excellent
source for a beginner using sem.

STRUCTURAL AND MEASUREMENT MODELS. We have focused on structural models. Such models
assume that all variables are measured without error. Of course, this assumption is often not
reasonable. As we saw earlier in the course,

e Random measurement error in the dependent variable does not bias regression coefficients.
However, it does result in larger standard errors.

e Random measurement error in the independent variables results in biased estimates. In the
case of a bivariate regression, estimates will be biased toward zero. With more IVs, the bias
can be upwards or downwards.

e Systematic error, of course, can produce either an upward or downward bias.

Factor analysis is one way of dealing with measurement error. With factor analysis, a large
number of items are reduced to a smaller number of factors, or “latent variables”. For example, 7
personality measures might be reduced into a single “locus of control” scale. This scale would be
more reliable than any of the individual measures that constructed it.

Factor analysis can be either
e cxploratory — the computer determines what the underlying factors are

e confirmatory — the researcher specifies what factor structure she thinks underlies the
measures, and then tests whether the data are consistent with her hypotheses.

Stata 12 added the sem suite of commands. Programs such as sem or LISREL make it possible
to combine structural equation modeling and confirmatory factor analysis. (I understand
programs like AMOS and M-Plus and the g1 1amm addon routine to Stata can do these sorts of
things too but I have never used them. These programs may be easier to use and/or cheaper
and/or more powerful, so you may want to check them out if you want to do heavy-duty work in
this area. For example, some programs can handle ordinal or binary dependent variables, while,
at least as of Stata version 12, sem cannot.) Some traits of sem:

e There is both a measurement model and a structural model.

o The measurement model indicates how observed indicators are linked to underlying
latent variables. (e.g. X1 and X2 may be indicators of Locus of control; X3 and X4 may
be indicators of Socio-economic status).

o The structural model indicates how the latent variables are linked to each other.
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o As various sources discuss (e.g. see the Thomson and Williams piece discussed below)
having multiple indicators of concepts can help deal with measurement error and thereby
produce unbiased estimates of structural effects.

e sem can handle a wide array of problems and models. These include
o Models with measurement error
o Nonrecursive models
o Manova-type problems
o Multiple group comparisons (e.g. you can have separate models for blacks & whites)

o Tests of constraints (e.g. two or more coefficients equal each other, a subset of
coefficients equals zero, parameters are equal across populations)

o Confirmatory factor analysis models

I’1l give just a few examples, not all of which I will talk about in class. It is hard to show in a
handout, but sem can let you draw the model and will then generate the code for you. This is
often the easiest way to go, but the code it generates is not necessarily the clearest or most
concise.

EXAMPLE 1: Measurement and Structural Models Combined. In their classic 1982 paper,
“Beyond Wives Family Sociology: A Method for Analyzing Couple Data,” Thomson and
Williams estimate both measurement and structural parameters in a series of models of couple
childbearing expectations. In their data, husbands and their wives were presented with several
possible consequences of having another child within 20 months.

J Products of their subjective probability of each consequence (0 = no chance to 10 =
certain) and their evaluations of the consequence (-3 = extremely bad thru +3 = extremely
good) were constructed to form “subjective expected utilities” of another child. The
subjective expected utilities of “a fulfilled family life” (W1 and H1) and “watching
another child grow and develop” (W2 and H2) were used as multiple indicators of child
utility.

o Also, respondents were asked to estimate the likelihood that the couple would have
another child within 20 months (1 = extremely unlikely thru 7 = extremely likely.)
Responses of both partners (W3 and H3) were used as multiple indicators of couple
childbearing expectations.

Thomson and Williams began by estimating a “couple” model, in which the wife’s and
husband’s responses about the utility of another child are all imperfectly measured indicators of a
single latent variable, the couple’s child utility. Here is their original diagram for this model:
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FIGURE 1. COUPLE'S UTILITY OF ANOTHER CHILD AND COUPLE’'S CHILDBEARING EXPECTION

(VARIABLE LABELS DEFINED IN TABLE 1)
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Here is how this model can be estimated with sem. The raw data are not available, but the

published analyses include the means, standard deviations and correlations for the variables. As
in the past, we could use the corr2data command to create a pseudo-replication of the data,
but the new ssd commands (Summary Statistics Data) can now achieve the same purpose.
Basically, you first create matrices with the published values and then use the ssd commands to
tell Stata what the means, correlations and standard deviations are. (I have deleted some of the

output that Stata provides along the way.)

* EXAMPLE 1: Measurement and Structural Models Combined

clear all

. matrix input corr = (1,.47,.46,.312,.628,.596\.47,1,.27,.223,.421,.347\ ///

> .46,.27,1,.495,.498,.586\.312,.223,.495,1,.381,.422\ ///
> .628,.421,.498,.381,1,.816\.596, .347, .586, .422,.816,1)

. matrix input means = (11.36,22.34,9.75,18.5,3.64,3.66)
. matrix input sds = (11.45,10.89,10.73,10.30,2.66,2.60)

ssd init wl w2 hl h2 w3 h3

ssd set observations 340

* Means were in the paper but not used in the models,
*ssd set means (stata) means

ssd set sd (stata) sds

ssd set correlations (stata) corr

ssd list

Observations = 340
Means undefined; assumed to be 0

Standard deviations:

wl w2 hl h2 w3 h3
11.45 10.89 10.73 10.3 2.66 2.6
Correlations:
wl w2 hl h2 w3 h3
1
.47 1
.46 .27 1
.312  .223  .495 1
.628 .421 .498 .381 1
.596 .347 .586 .422 .8l6 1

so not used here
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Using Stata’s sem builder (on the menus, click Statistics > Structural equation
modeling (SEM) > Model building and estimation, I drew this diagram. Stata
filled in the estimates after I told it to run the model. The code that was then generated follows.

w1
‘E’{; w2 w3 -&‘E’1A
=5 > Cexpect
h1 h3 4-@ 1.2
1.2
@-‘Q h2

sem (Cutil -> Cexpect) (Cutil@l -> wl) (Cutil -> w2) (Cutil -> hl) ///
(Cutil -> h2) (Cexpect@l -> w3) (Cexpect -> h3), latent(Cutil Cexpect )

V .

The latent option tells sem that Cutil (Couple’s Child Utility) and Cexpect (Couple’s
expectations) are the two latent variables. The other parts of the command describe the various
paths in the model. Cutil affects Cexpect (the  parameter in the original diagram). The
indicators of Cutil are wl,w2, hl and h2. Cutil@]1 says the path from Cutil to w1 is fixed at 1;
such constraints are necessary in order to set the scale for the latent variable. You can think of
this as meaning that Cutil equals what w1 would equal if w1l were measured without error.
Similarly, the indicators for Cexpect are w3 and h3, and Cexpect equals what w3 would equal if
w3 were measured without error. The output from the command is as follows.

Endogenous variables

Measurement: wl w2 hl h2 w3 h3
Latent: Cexpect

Exogenous variables
Latent: Cutil

Fitting target model:

Iteration O: log likelihood = -6362.6743

Iteration 1: log likelihood = -6361.2996

Iteration 2: log likelihood = -6361.2701

Iteration 3: log likelihood = -6361.2701

Structural equation model Number of obs = 340
Estimation method = ml

Log likelihood = -6361.2701
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(1) [w3]Cexpect = 1
(2) [wl]Cutil = 1
| OIM
| Coef. Std. Err. Z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
Structural |
Cexpect <- |
Cutil | 2495012 .0194118 12.85 0.000 .2114548 .2875475
_____________ +________________________________________________________________
Measurement |
wl <- |
Cutil | 1 (constrained)
___________ +________________________________________________________________
w2 <- |
Cutil | 6363228 .0738795 8.61 0.000 .4915216 .7811239
___________ +________________________________________________________________
hl <- |
Cutil | 8486948 .0783366 10.83 0.000 .695158 1.002232
___________ +________________________________________________________________
h2 <- |
Cutil | 6240916 .0742715 8.40 0.000 .478522 .7696611
___________ +________________________________________________________________
w3 <- |
Cexpect | 1 (constrained)
___________ +________________________________________________________________
h3 <- |
Cexpect | 9930094 .0482589 20.58 0.000 .8984238 1.087595
_____________ +________________________________________________________________
Variance |
e.wl | 58.38456 6.162924 47.47308 71.804
e.w2 | 88.95545 7.375962 75.61241 104.6531
e.hl | 62.69452 5.953596 52.04725 75.51989
e.h2 | 77.60523 6.478218 65.89244 91.40003
e.w3 | 1.38832 .2220985 1.014652 1.899598
e.h3 | 1.152595 .2115496 .8043509 1.651612
e.Cexpect | 1.16372 .2843919 .7208259 1.87874
Cutil | 72.33235 9.919165 55.28465 94.6369
LR test of model vs. saturated: chi2(8) = 58.91, Prob > chi2 = 0.0000

Two things are of particular interest to us. The structural effect of Cutil on Cexpect is .25. We
can think of this as the effect that w1l would have on w3 if both were measured without error.
The LR test reported at the end tells you how well the model fits the data. The smaller the LR
value, the better. [Note that, with 6 observed variables, there are 21 variances and covariances.
As the printout shows, only 13 parameters were used in the model, leaving 8 degrees of freedom.
Basically, the LR test is testing whether 13 parameters are enough to account for the 21
variances and covariances. The p value says that the fit of the model is not very good, but there
are also other ways to assess model fit.]

Thomson and Williams argued that the fit of this model was unacceptable and that rather than
having a single couple utility variable, there should be two separate variables, one for husbands
and one for wives:
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FIGURE 2. WIFL'S AND HUSBAND'S UTILITY O ANOTHER CHEL 1) AND COUPLE™S CHi : G
EXPECTATION (VARIABLE LABELS DEFINED IN TABLE 1) ) LDBEARING
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Also, in their final model (which for some reason they hid in the discussion instead of presenting
in the tables) all corresponding parameters between wives and husbands were constrained to be
equal. The diagram I created with sem builder and the resulting code it generated is

ol
o'l
O m
O

sem (Wutil@l -> wl) (Wutil@k2 -> w2) (Wutil@bl -> Cexpect) (Hutil@l -> hl) (Hutil@k2
-> h2) (Hutil@bl -> Cexpect) (Cexpect@l -> w3) (Cexpect@l ->
> h3), covstruct(_lexogenous, diagonal) latent(Wutil Hutil Cexpect ) cov( Wutil@vl
Wutil*Hutil e.wl@lxl e.w2@1x2 Hutil@vl e.hl@lxl e.h2@1x2 e.w3@1lx3
> e.h3@1x3) nocapslatent

Terms like (wutilex2 -> w2) and mHutilek2 -> h2 mean that all coefficients we have specified
as k2 are constrained to be equal. The cov option is specifying the variance/covariance structure.
So, Wutil and Hutil can freely covary with each other, and various other variances are
unconstrained, but all the other covariances are constrained to be 0.
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Endogenous variables

Measurement: wl w2 hl h2 w3 h3
Latent: Cexpect

Exogenous variables
Latent: Wutil Hutil

Fitting target model:

Structural equation model Number of obs = 340
Estimation method = ml
Log likelihood = -6345.5868
(1) [w3]Cexpect = 1
( 2) [h3]Cexpect =1
( 3) [wl]lWutil = 1
( 4) [w2]Wutil - [h2]Hutil = 0
(5) [h1]Hutil = 1
( 6) [Cexpect]Wutil - [Cexpect]Hutil = 0
(7) [var(e.wl)] cons - [var(e.hl)] cons = 0
( 8) [var(e.w2)] cons - [var(e.h2)] cons = 0
(9) [var(e.w3)] cons - [var(e.h3)] cons = 0
(10) [var (Wutil)] cons - [var(Hutil)] cons = 0
| OIM
| Coef. std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
Structural |
Cexpect <- |
wutil | .1175738 .0079036 14.88 0.000 .102083 .1330645
Hutil | .1175738 .0079036 14.88 0.000 .102083 .1330645
_____________ +________________________________________________________________
Measurement |
wl <- |
Wutil | 1 (constrained)
___________ +________________________________________________________________
w2 <- |
Wutil | 6447185 .0536132 12.03 0.000 .5396386 7497984
___________ +________________________________________________________________
hl <- |
Hutil | 1 (constrained)
___________ +________________________________________________________________
h2 <- |
Hutil | 6447185 .0536132 12.03 0.000 .5396386 7497984
___________ +________________________________________________________________
w3 <- |
Cexpect | 1 (constrained)
___________ +________________________________________________________________
h3 <- |
Cexpect | 1 (constrained)
_____________ +________________________________________________________________
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Variance

|

e.wl | 35.13733 6.177044 24.89602 49.59154

e.w2 | 75.59106 4.771882 66.79379 85.54699

e.hl | 35.13733 6.177044 24.89602 49.59154

e.h2 | 75.59106 4.771882 66.79379 85.54699

e.w3 | 1.270596 .0974503 1.09326 1.476698

e.h3 | 1.270596 .0974503 1.09326 1.476698

e.Cexpect | 1.670199 .2734497 1.211734 2.302128

Wutil | 87.61817 9.179941 71.35296 107.5911

Hutil | 87.61817 9.179941 71.35296 107.5911

_____________ +________________________________________________________________
Covariance |
Wutil |

Hutil | 55.4943 7.204317 7.70 0.000 41.3741 69.6145

LR test of model vs. saturated: chi2(13) = 27.54, Prob > chi2 = 0.0105

This model estimates a total of 8 parameters (remember there are equality constraints on several
paraemters), and fits well. Among other things, Thomson and Williams conclude that husbands
and wives are not identical in their feelings about the subjective expected utility of children but
they are equally influential in determining the couple’s expectations for children.

EXAMPLE 2: Nonrecursive Models. The following model has reciprocal effects and is hence
nonrecurvice. Using OLS would produce incorrect estimates. Nonrecursive models can be
estimated with 2sls or other methods.

X1 > x3 ¢ u
X2 > X4 4— v

We only have single indicators of each X, so no measurement model is used here. This one is
pretty easy just to write the code for. First I will estimate using the reg3 command and 2sls and
then sem.
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reg3 (x3 = x4 x1) (x4 = x3 x2) , 2sls

Two-stage least-squares regression

Equation Obs Parms RMSE "R-sq" F-Stat p
%3 500 2 1.779967 0.8009 889.60 0.0000
x4 500 2 4.438984 0.2340 168.62 0.0000
| Coef. Std. Err. t P>t [95% Conf. Intervall]
_____________ +________________________________________________________________
x3 |
x4 | -.2758339 .0238423 -11.57 0.000 -.322621 -.2290468
x1 | .4052316 .0096958 41.79 0.000 .386205 .4242582
_cons | 5.627888 .33629 16.74 0.000 4.967969 6.287808
_____________ +________________________________________________________________
x4 |
x3 | .6436013 .0651293 9.88 0.000 .5157947 .771408
x2 | .4166959 .0229007 18.20 0.000 .3717567 .4616351
cons | -1.859593 1.091455 -1.70 0.089 -4.001414 .2822268
Endogenous variables: x3 x4
Exogenous variables: x1 x2
use "https://academicweb.nd.edu/~rwilliam/statafiles/nonrecur.dta", clear
sem (x1 -> x3) (x2 -> x4) (x3 -> x4) (x4 -> x3), cov( e.x4*e.x3)
Endogenous variables
Observed: x3 x4
Exogenous variables
Observed: x1 x2
Fitting target model:
Iteration O: log likelihood = -5966.0177
Iteration 1: log likelihood = -5966.0177
Structural equation model Number of obs = 500
Estimation method = ml
Log likelihood = -5966.0177
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|

| Coef Std. Err 4 P>|z| [95% Conf. Interval]

_____________ +________________________________________________________________
Structural |
x3 <- |

x4 | -.2758339 .0237707 -11.60 0.000 -.3224236 -.2292441

x1 | .4052316 .0096667 41.92 0.000 .3862852 .4241779

cons | 5.627888 .3352796 16.79 0.000 4.970752 6.285024

___________ +________________________________________________________________
x4 <- |

x3 | .6436013 .0649336 9.91 0.000 .5163338 .7708688

x2 | .4166959 .0228319 18.25 0.000 .3719463 .4614456

cons | -1.859593 1.088176 -1.71 0.087 -3.992378 .2731915

_____________ +________________________________________________________________
Variance |

e.x3 | 3.149273 .2030317 2.775453 3.573443

e.x4 | 19.58635 1.54716 16.77705 22.86606

_____________ +________________________________________________________________
Covariance |
e.x3 |

e.x4 | -3.002073 .5543294 -5.42 0.000 -4.088538 -1.915607

LR test of model vs. saturated: chi2 (0) = 0.00, Prob > chi2 =

Also, Duncan-Haller-Portes presented a model of peer influence, where peers had reciprocal
influence on each other.

Intelligence  (Xq) 27 [
. X
\\\* Occupational ‘)/ Y

22

15 Aspiration {r, )
19 —
Family SES (X¢)
2
(Friand)

25 Occupﬂﬁonun \
. Aspiration YE .
..—-""/"' (Friend) .'\QQ-J(N

Fre. 2.—Model 11

30

Intelligence (X 4)
{ Friend)

Using the published information in their paper, this model is pretty easy to estimate using sem.

* Duncan Haller Portes p. 8
* A slight variation of this example using same data is in the Stata help
clear all
. ssd init rintelligence rparasp rses roccasp redasp ///
> bfintelligence bfparasp bfses bfoccasp bfedasp
ssd set observations 329
ssd set corr ///
1.0000 \ ///
.1839 1.0000 \ ///
.2220 .0489 1.0000 \ ///
.4105 .2137 .3240 1.0000 \ ///
.4043 .2742 .4047 .6247 1.0000 \ ///
.3355 .0782 .2302 .2995 .2863 1.0000 \ ///
.1021 .1147 .0931 .0760 .0702 .2087 1.0000 \ ///
.1861 .0186 .2707 .2930 .2407 .2950 -.0438 1.0000 \ ///
.2598 .0839 .2786 .4216 .3275 .5007 .1988 .3607 1.0000 \ ///

VVVVVVVVYV:
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> .2903 .1124 .3054 .3269 .3669 .5191 .2784 .4105 .6404 1.0000
sem (rintelligence -> roccasp) (rses -> roccasp) (bfintelligence -> bfoccasp) ///
> (bfses -> bfoccasp) (roccasp -> bfoccasp) (bfoccasp -> roccasp), ///
> cov( e.roccasp*e.bfoccasp)
Endogenous variables
Observed: roccasp bfoccasp
Exogenous variables

Observed: rintelligence rses bfintelligence bfses

Fitting target model:

Iteration O: log likelihood = -2619.6916
Iteration 1: log likelihood = -2619.1002
Iteration 2: log likelihood = -2619.0915
Iteration 3: log likelihood = -2619.0914
Structural equation model Number of obs = 329
Estimation method = ml
Log likelihood = -2619.0914
\ OIM
| Coef. Std. Err. Z P>|z| [95% Conf. Interval]
___________________ +________________________________________________________________
Structural
roccasp <- \
bfoccasp | .4079437 .104743 3.89 0.000 .2026512 .6132362
rintelligence | .251426 .0538545 4.67 0.000 .1458732 .3569789
rses | .1749922 .0460249 3.80 0.000 .084785 .2651993
_________________ +________________________________________________________________
bfoccasp <- |
roccasp | .348331 .1258765 2.717 0.006 .1016175 .5950444
bfintelligence | .3276121 .0580873 5.64 0.000 .213763 .4414612
bfses | .1862807 .0454284 4.10 0.000 .0972427 .2753187
___________________ +________________________________________________________________
Variance \
e.roccasp | .706912 .0590185 .6002061 .8325882
e.bfoccasp | .6476102 .0543616 .5493666 .7634227
___________________ +________________________________________________________________
Covariance
e.roccasp |
e.bfoccasp | -.3321255 .1236722 -2.69 0.007 -.5745186 -.0897324
LR test of model vs. saturated: chi2 (2) = 4.08, Prob > chi2 = 0.1297

The estimates are very similar to the published results.

Example 3: Decomposing Correlations. We talked at length about how to decompose the
correlation between two variables into direct and indirect effects. Consider the following model.
Assume that all the X’s are standardized, i.e. have mean 0 and variance 1. Also assume that
changes in X1 cannot produce changes in X2, and changes in X2 cannot produce changes in X1.
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X1 > X
Xo > X

The correlation matrix is

corr
(obs=1000)
| x1 x2 x3
_____________ +_____________________________
x1 | 1.0000
X2 | 0.6000 1.0000
x3 | 0.5400 0.5800 1.0000
x4 | 0.5700 0.7900 0.7900

1.0000

Sem can estimate this model and, by using the estat teffect command, decompose the

correlations into direct and indirect effects.

* EXAMPLE 3: Decomposing Correlations
clear all

ssd init x1 x2 x3 x4

ssd set observations 1000

ssd set corr (ltd) 1 .60 1 .54 .58 1
sem (x1 x2 -> x3) (x2 x3 -> x4)

.57

Endogenous variables
Observed: x3 x4

Exogenous variables
Observed: x1 x2

Fitting target model:

-4419.8481
-4419.8481

Iteration O:
Iteration 1:

log likelihood
log likelihood

Structural equation model
Estimation method = ml
Log likelihood = -4419.8481
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|
| Coef. Std. Err. Z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
Structural |
x3 <- |
x1 | .3 .0307713 9.75 0.000 .2396893 .3603107
x2 | .4 .0307713 13.00 0.000 .3396893 .4603107
___________ +________________________________________________________________
x4 <- |
X3 | .5 .0177892 28.11 0.000 .4651338 .5348662
x2 | .5 .0177892 28.11 0.000 .4651338 .5348662
_____________ +________________________________________________________________
Variance |
e.x3 | .605394 .027074 .554589 .6608532
e.x4 | .20979 .0093821 .1921843 .2290085
LR test of model vs. saturated: chi2 (1) = 0.00, Prob > chi2 = 1.0000
estat teffects
Direct effects
| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
Structural |
x3 <- |
x1 | .3 .0307713 9.75 0.000 .2396893 .3603107
x2 | .4 .0307713 13.00 0.000 .3396893 .4603107
___________ +________________________________________________________________
x4 <- |
x3 | .5 .0177892 28.11 0.000 .4651338 .5348662
x1 | 0 (no path)
x2 | .5 .0177892 28.11 0.000 .4651338 .5348662
Indirect effects
| OIM
| Coef. Std. Err. z P> z| [95% Conf. Interval]
_____________ +________________________________________________________________
Structural |
x3 <- |
x1 | 0 (no path)
x2 | 0 (no path)
___________ +________________________________________________________________
x4 <- |
x3 | 0 (no path)
x1 | .15 .016285 9.21 0.000 .1180821 .1819179
x2 | .2 .0169515 11.80 0.000 .1667758 .2332242
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Total effects

| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
Structural |
x3 <- |
x1 | .3 .0307713 9.75 0.000 .2396893 .3603107
X2 | ! .0307713 13.00 0.000 .3396893 .4603107
___________ +________________________________________________________________
x4 <- |
x3 | .5 .0177892 28.11 0.000 .4651338 .5348662
x1 | .15 .016285 9.21 0.000 .1180821 .1819179
X2 | .7 .0213769 32.75 0.000 .658102 .741898

Hence, sem can do some of the decomposition of effects that you have previously done by hand.
In complicated models, such decompositions are difficult to compute manually. Knowing the
total effect of a variable can be useful, since it tells you how much a 1 unit change in an IV will
change the expected value of a DV.

Example 4: Using sem for Manova. Sometimes we are interested in situations where X
variables affect multiple dependent variables.

You could estimate such a model using the manova and mvreg commands:

use https://academicweb.nd.edu/~rwilliam/statafiles/blwh.dta, clear
quietly manova income educ jobexp = black

. mvreg
Equation Obs Parms RMSE "R-sqg" F p
income 500 2 7.768778 0.2520 167.7605 0.0000
educ 500 2 3.698475 0.1385 80.066 0.0000
jobexp 500 2 4.931661 0.0526 27.66301 0.0000
| Coef. std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
income |
l.black | -11.25 .8685758 -12.95 0.000 -12.95652 -9.543475
cons | 30.04 .3884389 77.34 0.000 29.27682 30.80318
_____________ +________________________________________________________________
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educ

l.black -3.7 .413502
_cons 13.9 .1849237

jobexp
l.black -2.9 .5513765
_cons 14.1 .2465831

0.000 -4.512424
0.000 13.53667
0.000 -3.983311
0.000 13.61553

-2.887576
14.26333

-1.816689
14.58447

Using sem (the covstructure option allows the residuals for the three dependent variables

to be freely correlated),

sem black -> income educ jobexp, covstructure(e._En, unstructured)

Endogenous variables
Observed: 1income educ jobexp
Exogenous variables

Observed: black

Fitting target model:

Iteration O: log likelihood = -4474.1119
Iteration 1: log likelihood = -4474.1119

Structural equation model

Number of obs =

500

Estimation method = ml
Log likelihood = -4474.1119
| OIM
| Coef std. Err
_____________ +
Structural |
income <- |
black | -11.25 .8668369
cons | 30.04 .3876613
_____ P
educ <- |
black | -3.7 .4126742
cons | 13.9 .1845535
——————————— +
jobexp <- |
black | -2.9 .5502727
_cons | 14.1 .2460894
_____________ +

0.000 -12.94897
0.000 29.2802
0.000 -4.508827
0.000 13.53828
0.000 -3.978515
0.000 13.61767

-9.551031
30.7998

-2.891173
14.26172

-1.821485
14.58233
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Variance

e.income
e.educ
e.jobexp

Covariance

e.income
e.educ
e.jobexp

53.10435
12.03566
21.39987

0.000
0.000

19.10632
4.487431

0.000

-5.915945

LR test of model vs.

60.1125 3.801848
13.624 .8616574
24,224 1.532006
22.2856 1.62211 13.74
7.9032 1.742771 4.53
-4.28 .834681 -5.13
saturated: chi2 (0) =

Example 5: Using sem for Group Comparisons. We are often interested in making
comparisons across groups. For example, we have previously worked with examples like this:

use "https:
reg income

Source

Model
Residual

//academicweb.nd.edu/~rwilliam/statafiles/gender.dta"
educ jobexp if !female

19350.4582
10185.7638

Number of obs =

F( 2,
Prob > F
R-squared
Adj R-squared
Root MSE

222)

225
210.87
0.0000
.6551
.6520
L7736

o O O

.8195378
1.384972
-.9294128

0.000
0.000
0.536

.6085108
1.208545
-3.88108

.030565
.561398
.022254

reg income

Source

Model
Residual

_ 4+ — — 4+ —

5276.94296
5979.19312

Number of obs
F( 2, 272)
Prob > F
R-squared

Adj R-squared
Root MSE

275
120.03
0.0000
.4688
.4649
.6885

S O O

1.525582
-.0049199
5.470545

df MS
2 9675.22912
222 45.8818188
224 131.858134
sStd. Err t
.1070818 7.65
.08952406 15.47
1.49777 -0.62
df MS
2 2638.47148
272 21.9823276
274 41.0807886
std. Err t
.10040906 15.19
.0773587 -0.06
1.589722 3.44

0.000
0.949
0.001

[95% Conf.
1.327903
-.1572178
2.340821

Interval]

1.
.1
8.

723261
473779
600269

We’ve shown various ways to test whether effects differ across groups, and if so how they differ.
sem offers another alternative. First, we will show how sem can replicate the above results (note
the use of the group option; that causes separate models to be estimated for each group).
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*** No constraints across groups

sem (educ -> income)
Endogenous variables
Observed: income
Exogenous variables
Observed:

educ jobexp

Fitting target model:

(jobexp -> income), group (female)

Number of obs
Number of groups

500

[95% Conf.

Interval]

.70
.28

.57
.06

0.000
0.000

0.000
0.949

.6110651
1.329859

1.21068
-.1557109

-3.845353
2.371789

1.02801
1.721305

1.559263
.145871

1.986527
8.569301

37.63215
18.39582

54.45818
25.69808

Iteration O: log likelihood = -4327.8267
Iteration 1: log likelihood = -4327.8267
Structural equation model
Grouping variable = female
Estimation method = ml
Log likelihood = -4327.8267
| OIM
| Coef sStd. Err
_____________ +
Structural |
income <- |
educ |
male | .8195378 .1063656 7
female | 1.525582 .0998604 15
jobexp |
male | 1.384972 .0889258 15
female | -.0049199 .0769356 -0
_cons |
male | -.9294128 1.487752 -0
female | 5.470545 1.581027 3
_____________ +
Variance |
e.lincome |
male | 45.27006 4.268102
female | 21.74252 1.854208
LR test of model vs. saturated: chi?2

est store ml

Note that these are the same as the coefficient estimates we got running separate regressions. We

can now estimate a model in which only the intercepts are allowed to differ.
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reg income educ jobexp female

Source | SS df MS Number of obs = 500
————————————— F-——— = F( 3, 496) = 189.85
Model | 24326.2478 3 8108.74928 Prob > F = 0.0000
Residual | 21184.389 496 42.7104618 R-squared = 0.5345
————————————— Fomm Adj R-squared = 0.5317
Total | 45510.6369 499 91.2036811 Root MSE = 6.5353

income | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ +________________________________________________________________
educ | 1.281368 .0803805 15.94 0.000 1.12344 1.439296

jobexp | .7738483 .0652862 11.85 0.000 .6455767 .90212
female | -4.071767 .5990074 -6.80 0.000 -5.248671 -2.894862

_cons | 2.511457 1.269321 1.98 0.048 .0175474 5.005367

*** Pooled model; only intercepts allowed to differ
sem (educ -> income) (jobexp -> income), group (female) ginvariant (scoef serrvar)

The ginvariant option on the sem command specifies which values are allowed to differ

across groups. In this case, the coefficients and the error variance is being constrained to be equal
across groups (but not the constant).

Endogenous variables
Observed: income
Exogenous variables
Observed: educ jobexp

Fitting target model:

Iteration O log likelihood = -4632.8768

Iteration 1 log likelihood = -4547.3852

Iteration 2: log likelihood = -4429.6844

Iteration 3: log likelihood = -4412.6934

Iteration 4: log likelihood = -4412.1075

Iteration 5 log likelihood = -4412.1073

Structural equation model Number of obs = 500
Grouping variable = female Number of groups = 2
Estimation method = ml

Log likelihood = -4412.1073
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(1) [income] Obn.female#c.educ - [income]l.female#c.educ = 0

( 2) [income] Obn.female#c.jobexp - [income]l.female#c.jobexp = 0
( 3) [var (e.income) ]O0bn.female - [var(e.income)]l.female = 0
| OIM
| Coef. Sstd. Err. z P>z [95% Conf. Interval]
_____________ +________________________________________________________________
Structural |
income <- |
educ |
[*1 | 1.281368 .0800583 16.01 0.000 1.124456 1.438279
jobexp |
[*] | .7738483 .0650245 11.90 0.000 .6464026 .901294
_cons |
male | 2.511455 1.264233 1.99 0.047 .033604 4.989306
female | -1.560305 1.151915 -1.35 0.176 -3.818017 .6974067
_____________ +________________________________________________________________
Variance |
e.income |
[*1 | 42.36871 2.679629 37.42921 47.96008

Note: [*] identifies parameter estimates constrained to be equal across
groups.
LR test of model vs. saturated: chi2 (3) = 168.56, Prob > chi2 = 0.0000

est store m2

We can also estimate models in which even the intercepts aren’t allowed to differ.

reg income educ jobexp

Source | SS df MS Number of obs = 500
————————————— e F( 2, 497) = 239.86
Model | 22352.7545 2 11176.3773 Prob > F = 0.0000
Residual | 23157.8824 497 46.5953368 R-squared = 0.4912
————————————— e Adj R-squared = 0.4891
Total | 45510.6369 499 91.2036811 Root MSE = 6.8261

income | Coef. Std. Err. t P>t [95% Conf. Intervall]
_____________ +________________________________________________________________
educ | 1.309229 .0838474 15.61 0.000 1.14449 1.473968

Jjobexp | .8533107 .0670888 12.72 0.000 .7214982 .9851233

cons | -1.076636 1.205717 -0.89 0.372 -3.445568 1.292296

. sem (educ -> income) (jobexp -> income), group(female) ginvariant (scoef serrvar scons)
Endogenous variables

Observed: income

Exogenous variables

Observed: educ jobexp

Fitting target model:

Structural equation model Number of obs = 500
Grouping variable = female Number of groups = 2
Estimation method = ml

Log likelihood = -4434.375
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e.income
[*] 46.31576 2.929266 40.91609 52.42803

(1) [income] Obn.female#c.educ - [income]l.female#c.educ = 0
( 2) [income] Obn.female#c.jobexp - [income]l.female#c.jobexp = 0
( 3) [var (e.income) ]O0bn.female - [var(e.income)]l.female = 0
(4) [income]Obn.female - [income]l.female = 0
| OIM
| Coef. Std. Err. Z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
Structural |
income <- |
educ |
[*1 | 1.309229 .0835954 15.66 0.000 1.145385 1.473073
jobexp |
[*1 | .8533107 .0668872 12.76 0.000 .7222143 .9844072
_cons |
[*] | -1.076636 1.202095 -0.90 0.370 -3.432699 1.279427
_____________ +________________________________________________________________
Variance |
|
|

Note: [*] identifies parameter estimates constrained to be equal across
groups.
LR test of model vs. saturated: chi2 (4) = 213.10, Prob > chi2 = 0.0000

est store m3

Previously, we did things like F tests to test constraints. Now we can use LR chi-square
contrasts. So, contrasting Model 2 (only the constant is allowed to differ across groups) with
Model 3 (even the constant is not allowed to differ) we get

lrtest m2 m3

Likelihood-ratio test LR chi2 (1) 44 .54
(Assumption: m3 nested in m2) Prob > chi2 = 0.0000

We would reject the hypothesis that the constants are the same for the two groups.
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