Models for Group Comparisons - Summary

Richard Williams, University of Notre Dame, https://academicweb.nd.edu/~rwilliam/ Last revised February 20, 2015

Since we are estimating and comparing several models, it will be helpful to list several of them all in one place. This handout summarizes how to do group comparisons by running separate models for each group and by using interaction terms. We won't go through this handout separately, but it may help you to keep everything straight.

I. Pooled (Constrained) Model. Blacks and whites are combined into a single analysis, hence the coefficient estimates are constrained to be the same for both racial groups, i.e. the intercepts and the effect of education and job experience are the same for both groups.

. use "https://academicweb.nd.edu/~rwilliam/statafiles/blwh.dta"

II. Unconstrained Models: Separate Models for each group. Here, we estimate separate models, first for whites, then blacks. This makes it possible for the intercepts and slope coefficients to freely differ across populations. This is equivalent to Model IIIC.

Whites:

. reg income educ jobexp if black == 0

Source	SS	df	MS		Number of obs F(2, 397)	
Model Residual 	18361.9894 5878.16991	397 14.8	.99472 064733 522791		F(2, 397) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 $= 0.7575$
income	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ jobexp _cons	1.893338 .722255 -6.461189	.0562591 .0412236 1.089219	33.65 17.52 -5.93	0.000 0.000 0.000	1.782735 .6412111 -8.602547	2.003941 .8032988 -4.31983

Blacks:

. reg income educ jobexp if black == 1

Source	SS	df	MS		Number of obs	
Model Residual Total	4924.27286 891.81705 5816.08991	97 9 	462.13643 .19399021 58.748383		F(2, 97) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.8467
income	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
educ jobexp _cons	1.677949 .421975 -3.0512	.072547 .058102 1.15460	1 7.2	6 0.000	1.533962 .3066585 -5.342771	1.821936 .5372915 7596302

Doing an incremental F Test (see earlier notes for details):

$$F_{K+1,N_1+N_2-2K-2} = \frac{(SSE_c - SSE_u)*(N_1 + N_2 - 2K - 2)}{SSE_u*(K+1)} = \frac{(7383 - 6770)*494}{6770*3} = 14.91$$

- III. Unconstrained and Partially Unconstrained Models: Dummy Variables and Interaction Effects. In this approach, interaction effects and dummy variables are used to allow for racial differences in parameter effects. Interaction effects allow more flexibility in model specification.
- Illa. Intercepts vary across groups, all other parameters the same. To do this, you regress Y on the IVs and include a dummy variable for race.
- . reg income educ jobexp i.black

Source	SS +	df	MS		Number of obs		500
	33206.4588 6974.79047	3 1106 496 14.0	8.8196 620776		F(3, 496) Prob > F R-squared Adj R-squared	= =	787.14 0.0000 0.8264 0.8254
Total	•	499 80.5			Root MSE		3.7499
income	 Coef.	Std. Err.			[95% Conf.	Int	erval]
educ jobexp	1.840407	.0467507 .0350604	39.37 18.58	0.000	1.748553 .5825406		932261 203111

- * Wald test of differences in intercepts
- . testparm i.black

(1) 1.black = 0
$$F(1, 496) = 29.02$$

$$Prob > F = 0.0000$$

IIIb. Intercepts and some slopes vary across groups, other slopes are the same. Regress Y on the IVs, a dummy variable for race, and (in this example) one interaction term:

. reg income educ jobexp i.black i.black#c.jobexp

Source + Model Residual	SS 33352.2559 6828.99339	4 8338	MS 3.06397 959462	F P:	umber of obs : (4, 495) : rob > F : -squared :	= 604.39 = 0.0000
Total	40181.2493	499 80.5	235456		dj R-squared : pot MSE :	= 0.8287 = 3.7143
income	Coef.	Std. Err	t. t	P> t	[95% Conf	. Interval]
educ jobexp 1.black	.7128145	.0463385 .0395293 1.040728	18.03	0.000 0.000 0.653	1.743732 .6351486 -1.576103	1.925821 .7904805 2.513475
black#c.jobexp 1 cons	 2556117 -5.514076	.0786289		0.001	4100993 -7.373561	1011242 -3.654592

- . * Wald test of racial difference in effect of jobexp
- . testparm i.black#c.jobexp

IIIc. Intercepts and all slopes free to vary across groups (totally unconstrained). Equivalent to Model II, where we estimated separate models for each group.

. reg income educ jobexp i.black i.black#c.educ i.black#c.jobexp

Source	SS 33411.2623 6769.98696 40181.2493	494 13.704	25246 14271	F(Pr R- Ad	squared = j R-squared =	487.60 0.0000 0.8315
income	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	1.893338 .722255 3.409988	.0396598		0.000 0.000 0.053	.6443322	
black#c.educ 1	 2153886 	.1038015	-2.08	0.039	4193354	0114418
black#c.jobexp 1	 3002799	.0812705	-3.69	0.000	4599584	1406015
_cons	-6.461189	1.0479	-6.17	0.000	-8.520079	-4.402298

- . * Wald test of differences in slopes
- . testparm i.black#c.educ i.black#c.jobexp

```
( 1)  1.black#c.educ = 0
( 2)  1.black#c.jobexp = 0

F( 2, 494) = 7.47
  Prob > F = 0.0006
```

. * Wald test of any differences across groups, including intercepts
. testparm i.black i.black#c.educ i.black#c.jobexp

Note that $N_u = 500$, $SSE_u = 6770$, $DFE_u = 494$. These are the exact same numbers we got for the incremental F test using the Model II procedure of estimating separate models for each racial group. Further, the regression coefficients estimated under this approach can easily be converted to the betas estimated under the previous approach, and vice versa.