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Multicollinearity 
Richard Williams, University of Notre Dame, https://academicweb.nd.edu/~rwilliam/  

Last revised July 24, 2025 
 

Stata Example (See appendices for full example).  
 
. use https://academicweb.nd.edu/~rwilliam/statafiles/multicoll.dta, clear 
. reg  y x1 x2, beta 
 
      Source |       SS       df       MS              Number of obs =     100 
-------------+------------------------------           F(  2,    97) =    3.24 
       Model |  55.7446181     2   27.872309           Prob > F      =  0.0436 
    Residual |  835.255433    97  8.61088075           R-squared     =  0.0626 
-------------+------------------------------           Adj R-squared =  0.0432 
       Total |  891.000051    99  9.00000051           Root MSE      =  2.9344 
 
------------------------------------------------------------------------------ 
           y |      Coef.  Std. Err.     t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
          x1 |   .0153846   .1889008     0.08   0.935                  .025641 
          x2 |   .1353847   .1889008     0.72   0.475                 .2256411 
       _cons |   10.49231   .6655404    15.77   0.000                        . 
------------------------------------------------------------------------------ 
 
. corr y x1 x2, means 
 
(obs=100) 
 
    Variable |         Mean    Std. Dev.         Min          Max 
-------------+---------------------------------------------------- 
           y |           12            3     4.899272     18.91652 
          x1 |           10            5    -1.098596     23.10749 
          x2 |           10            5    -.0284863     23.72392 
 
 
             |        y       x1       x2 
-------------+--------------------------- 
           y |   1.0000 
          x1 |   0.2400   1.0000 
          x2 |   0.2500   0.9500   1.0000 
 

Note that 

• The t-statistics for the coefficients are not significant. Yet, the overall F is significant. 

• Even though both IVs have the same standard deviations and almost identical correlations 
with Y, their estimated effects are radically different. 

• X1 and X2 are very highly correlated (r12 = .95). 

• The N is small 
These are all indicators that multicollinearity might be a problem in these data. (See the 
appendices for more ways of detecting problems using Stata.) 
 

https://academicweb.nd.edu/%7Erwilliam/
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What multicollinearity is. Let H = the set of all the X (independent) variables. Let Gk = the set 
of all the X variables except Xk. The formula for standard errors is then 
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Questions: What happens to the standard errors as R2
YH increases? As N increases? As the 

multiple correlation between one DV and the others increases? As K increases?  
From the above formulas, it is apparent that 

• The bigger R2
YH is, the smaller the standard error will be. 

• Larger sample sizes decrease standard errors (because the denominator gets bigger). This 
reflects the fact that larger samples will produce more precise estimates of regression 
coefficients. 

• The bigger R2
XkGk is (i.e. the more highly correlated Xk is with the other IVs in the model), 

the bigger the standard error will be. Indeed, if Xk is perfectly correlated with the other IVs, 
the standard error will equal infinity. This is referred to as the problem of multicollinearity. 
The problem is that, as the Xs become more highly correlated, it becomes more and more 
difficult to determine which X is actually producing the effect on Y. 

• Also, 1 - R2
XkGk is referred to as the Tolerance of Xk. A tolerance close to 1 means there 

is little multicollinearity, whereas a value close to 0 suggests that multicollinearity may 
be a threat.  

• The reciprocal of the tolerance is known as the Variance Inflation Factor (VIF). The VIF 
shows us how much the variance of the coefficient estimate is being inflated by 
multicollinearity. For example, if the VIF for a variable were 9, its standard error would 
be three times as large as it would be if its VIF was 1. In such a case, the coefficient 
would have to be 3 times as large to be statistically significant. 

• Adding more variables to the equation can increase the size of standard errors, especially if 
the extra variables do not produce increases in R2

YH. Adding more variables decreases the 
(N-K-1) part of the denominator. More variables can also decrease the tolerance of the 
variable and hence increase the standard error. In short, adding extraneous variables to a 
model tends to reduce the precision of all your estimates. 

Causes of multicollinearity 

• Improper use of dummy variables (e.g. failure to exclude one category) 
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• Including a variable that is computed from other variables in the equation (e.g. family income 
= husband’s income + wife’s income, and the regression includes all 3 income measures) 

• In effect, including the same or almost the same variable twice (height in feet and height in 
inches; or, more commonly, two different operationalizations of the same identical concept) 

• The above all imply some sort of error on the researcher’s part. But, it may just be that 
variables really and truly are highly correlated. 

Consequences of multicollinearity 

• Even extreme multicollinearity (so long as it is not perfect) does not violate OLS 
assumptions. OLS estimates are still unbiased and BLUE (Best Linear Unbiased Estimators) 

• Nevertheless, the greater the multicollinearity, the greater the standard errors. When high 
multicollinearity is present, confidence intervals for coefficients tend to be very wide and t-
statistics tend to be very small. Coefficients will have to be larger in order to be statistically 
significant, i.e. it will be harder to reject the null when multicollinearity is present. 

• Note, however, that large standard errors can be caused by things besides multicollinearity. 

• When two IVs are highly and positively correlated, their slope coefficient estimators will tend 
to be highly and negatively correlated. When, for example, b1 is greater than β1, b2 will tend 
to be less than β2. Further, a different sample will likely produce the opposite result. In other 
words, if you overestimate the effect of one parameter, you will tend to underestimate the 
effect of the other. Hence, coefficient estimates tend to be very shaky from one sample to the 
next. 

Detecting high multicollinearity. Multicollinearity is a matter of degree. There is no irrefutable 
test that it is or is not a problem. But, there are several warning signals: 

• None of the t-ratios for the individual coefficients is statistically significant, yet the overall F 
statistic is. If there are several variables in the model, though, and not all are highly 
correlated with the other variables, this alone may not be enough. You could get a mix of 
significant and insignificant results, disguising the fact that some coefficients are 
insignificant because of multicollinearity. 

• Check to see how stable coefficients are when different samples are used. For example, you 
might randomly divide your sample in two. If coefficients differ dramatically, 
multicollinearity may be a problem. 

• Or, try a slightly different specification of a model using the same data. See if seemingly 
“innocuous” changes (adding a variable, dropping a variable, using a different 
operationalization of a variable) produce big shifts.  

• In particular, as variables are added, look for changes in the signs of effects (e.g. switches 
from positive to negative) that seem theoretically questionable. Such changes may make 
sense if you believe suppressor effects are present, but otherwise they may indicate 
multicollinearity. 

• Examine the bivariate correlations between the IVs, and look for “big” values, e.g. .80 and 
above. However, the problem with this is 
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 One IV may be a linear combination of several IVs, and yet not be highly correlated with 
any one of them 

 Hard to decide on a cutoff point. The smaller the sample, the lower the cutoff point 
should probably be. 

 Ergo, examining the tolerances or VIFs is probably superior to examining the bivariate 
correlations. Indeed, you may want to actually regress each X on all of the other X’s, to 
help you pinpoint where the problem is. A commonly given rule of thumb is that VIFs of 
10 or higher (or equivalently, tolerances of .10 or less) may be reason for concern. This 
is, however, just a rule of thumb; Allison says he gets concerned when the VIF is over 2.5 
and the tolerance is under .40. In Stata you can use the vif command after running a 
regression, or you can use the collin command (written by Philip Ender at UCLA). 

• Look at the correlations of the estimated coefficients (not the variables). High correlations 
between pairs of coefficients indicate possible collinearity problems. In Stata you get it by 
running the vce, corr command after a regression. 

• Sometimes condition numbers are used (see the appendix). An informal rule of thumb is that 
if the condition number is 15, multicollinearity is a concern; if it is greater than 30 
multicollinearity is a very serious concern. (But again, these are just informal rules of 
thumb.)  In Stata you can use collin. 

Dealing with multicollinearity 

• Make sure you haven’t made any flagrant errors, e.g. improper use of computed or dummy 
variables. 

• Increase the sample size. This will usually decrease standard errors, and make it less likely 
that results are some sort of sampling “fluke.” 

• Use information from prior research. Suppose previous studies have shown that β1 = 2*β2. 
Then, create a new variable, X3 = 2X1 + X2. Then, regress Y on X3 instead of on X1 and X2. 
b3 is then your estimate of β2 and 2b3 is your estimate of β1. 

• Use factor analysis or some other means to create a scale from the X’s. It might even be 
legitimate just to add variables together. In fact, you should do this anyway if you feel the 
X’s are simply different operationalizations of the same concept (e.g. several measures might 
tap the same personality trait). In Stata relevant commands include factor and alpha. 

• Use joint hypothesis tests—instead of doing t-tests for individual coefficients, do an F test for 
a group of coefficients (i.e. an incremental F test). So, if X1, X2, and X3 are highly 
correlated, do an F test of the hypothesis that β1 = β2 = β3 = 0.  

• It is sometimes suggested that you “drop” the offending variable. If you originally added the 
variable “just to see what happens,” dropping may be a fine idea. But, if the variable really 
belongs in the model, this can lead to specification error, which can be even worse than 
multicollinearity. 

• It may be that the best thing to do is simply to realize that multicollinearity is present, and be 
aware of its consequences. 
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Appendix: Stata example. 
We use the corr, regress, vif, vce, and collin commands. 
. use https://academicweb.nd.edu/~rwilliam/statafiles/multicoll.dta, clear 
. corr y x1 x2, means 
 
(obs=100) 
 
    Variable |         Mean    Std. Dev.         Min          Max 
-------------+---------------------------------------------------- 
           y |           12            3     4.899272     18.91652 
          x1 |           10            5    -1.098596     23.10749 
          x2 |           10            5    -.0284863     23.72392 
 
 
             |        y       x1       x2 
-------------+--------------------------- 
           y |   1.0000 
          x1 |   0.2400   1.0000 
          x2 |   0.2500   0.9500   1.0000 
 
. reg  y x1 x2, beta 
 
      Source |       SS       df       MS              Number of obs =     100 
-------------+------------------------------           F(  2,    97) =    3.24 
       Model |  55.7446181     2   27.872309           Prob > F      =  0.0436 
    Residual |  835.255433    97  8.61088075           R-squared     =  0.0626 
-------------+------------------------------           Adj R-squared =  0.0432 
       Total |  891.000051    99  9.00000051           Root MSE      =  2.9344 
 
------------------------------------------------------------------------------ 
           y |      Coef.  Std. Err.     t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
          x1 |   .0153846   .1889008     0.08   0.935                  .025641 
          x2 |   .1353847   .1889008     0.72   0.475                 .2256411 
       _cons |   10.49231   .6655404    15.77   0.000                        . 
------------------------------------------------------------------------------ 
 
. vif 
 
    Variable |       VIF       1/VIF   
-------------+---------------------- 
          x1 |     10.26    0.097500 
          x2 |     10.26    0.097500 
-------------+---------------------- 
    Mean VIF |     10.26 
 
. vce, corr 
 
             |       x1       x2    _cons 
-------------+--------------------------- 
          x1 |   1.0000 
          x2 |  -0.9500   1.0000 
       _cons |  -0.1419  -0.1419   1.0000 
 
 

Note that 

• X1 and X2 are very highly correlated (r12 = .95). Of course, the tolerances for these variables 
are therefore also very low and the VIFs exceed our “rule of thumb” of 10. 
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• The t-statistics for the coefficients are not significant. Yet, the overall F is significant. 

• Even though both IVs have the same standard deviations and almost identical correlations 
with Y, their estimated effects are radically different. 

• The correlation between the coefficients for X1 and X2 is very high, -.95 

• The sample size is fairly small (N = 100). 

• The condition number (reported below) is 16.964. This falls within our “rule of thumb” range 
for concern. Again, this is based on the uncentered variables; if I thought centering was more 
appropriate I would just need to change the means of X1 and X2 to 0. (Doing so produces a 
condition number of 6.245, as Stata confirms below.) 

All of these are warning signs of multicollinearity. A change of as little as one or two cases could 
completely reverse the estimates of the effects. 
 
. * Use collin with uncentered data, the default. (Same as SPSS) 
. collin x1 x2 if !missing(y) 
 
  Collinearity Diagnostics 
 
                        SQRT                   R- 
  Variable      VIF     VIF    Tolerance    Squared 
---------------------------------------------------- 
        x1     10.26    3.20    0.0975      0.9025 
        x2     10.26    3.20    0.0975      0.9025 
---------------------------------------------------- 
  Mean VIF     10.26 
                           Cond 
        Eigenval          Index 
--------------------------------- 
    1     2.8546          1.0000 
    2     0.1355          4.5894 
    3     0.0099         16.9635 
--------------------------------- 
 Condition Number        16.9635  
 Eigenvalues & Cond Index computed from scaled raw sscp (w/ intercept) 
 Det(correlation matrix)    0.0975 
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. * Use collin with centered data using the corr option 

. collin x1 x2 if !missing(y), corr 
 
  Collinearity Diagnostics 
 
                        SQRT                   R- 
  Variable      VIF     VIF    Tolerance    Squared 
---------------------------------------------------- 
        x1     10.26    3.20    0.0975      0.9025 
        x2     10.26    3.20    0.0975      0.9025 
---------------------------------------------------- 
  Mean VIF     10.26 
 
                           Cond 
        Eigenval          Index 
--------------------------------- 
    1     1.9500          1.0000 
    2     0.0500          6.2450 
--------------------------------- 
 Condition Number         6.2450  
 Eigenvalues & Cond Index computed from deviation sscp (no intercept) 
 Det(correlation matrix)    0.0975 
 

collin is a user-written command; type findit collin to locate it and install it on your 
machine. Note that, with the collin command, you only give the names of the X variables, not 
the Y. If Y has missing data, you have to make sure that the same cases are analyzed by the 
collin command that were analyzed by the regress command. There are various ways of doing 
this. By adding the optional if !missing(y) I told Stata to only analyze those cases that 
were NOT missing on Y. By default, collin computed the condition number using the raw 
data (same as SPSS); adding the corr parameter makes it compute the condition number using 
centered data. [NOTE: coldiag2 is yet another Stata routine that can give you even more 
information concerning eigenvalues, condition indices, etc.; type findit coldiag2 to locate 
and install it.] 
Incidentally, assuming X1 and X2 are measured the same way (e.g. years, dollars, whatever) a 
possible solution we might consider is to simply add X1 and X2 together. This would make even 
more sense if we felt X1 and X2 were alternative measures of the same thing. Adding them could 
be legitimate if (despite the large differences in their estimated effects) their two effects did not 
significantly differ from each other. In Stata, we can easily test this. 
. test x1 = x2 
 
 ( 1)  x1 - x2 = 0 
 
       F(  1,    97) =    0.10 
            Prob > F =    0.7484 
 

Given that the effects do not significantly differ, we can do the following: 
. gen x1plusx2 = x1 + x2 
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. reg y x1plusx2 
 
      Source |       SS       df       MS              Number of obs =     100 
-------------+------------------------------           F(  1,    98) =    6.43 
       Model |  54.8536183     1  54.8536183           Prob > F      =  0.0128 
    Residual |  836.146432    98  8.53210645           R-squared     =  0.0616 
-------------+------------------------------           Adj R-squared =  0.0520 
       Total |  891.000051    99  9.00000051           Root MSE      =   2.921 
 
------------------------------------------------------------------------------ 
           y |      Coef.  Std. Err.     t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    x1plusx2 |   .0753846   .0297309     2.54   0.013     .0163846    .1343846 
       _cons |   10.49231   .6624892    15.84   0.000      9.17762      11.807 
------------------------------------------------------------------------------ 

 
The multicollinearity problem is obviously gone (since we only have one IV). As noted before, 
factor analysis could be used for more complicated scale construction. 
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Appendix: Models with nonlinear or nonadditive (interaction) terms. 
Sometimes models include variables that are nonlinear or nonadditive (interactive) functions of 
other variables in the model. For example, the IVS might include both X and X2. Or, the model 
might include X1, X2, and X1*X2. We discuss the rationale for such models later in the 
semester. In such cases, the original variables and the variables computed from them can be 
highly correlated. Also, multicollinearity between nonlinear and nonadditive terms could make it 
difficult to determine whether there is multicollinearity involving other variables. Consider the 
following simple example, where X takes on the values 1 through five and is correlated with X2. 
. clear all 
. set obs 5 
obs was 0, now 5 
. gen X = _n 
. gen XSquare = X ^ 2 
. list 
 
     +-------------+ 
     | X   XSquare | 
     |-------------| 
  1. | 1         1 | 
  2. | 2         4 | 
  3. | 3         9 | 
  4. | 4        16 | 
  5. | 5        25 | 
     +-------------+ 
 
. corr X XSquare, means 
(obs=5) 
 
    Variable |         Mean    Std. Dev.          Min          Max 
-------------+---------------------------------------------------- 
           X |            3     1.581139            1            5 
     XSquare |           11      9.66954            1           25 
 
 
             |        X  XSquare 
-------------+------------------ 
           X |   1.0000 
     XSquare |   0.9811   1.0000 

 
As we see, the correlation between X and X2 is very high (.9811). High correlations can likewise 
be found with interaction terms. 
It is sometimes suggested that, with such models, the original IVs should be centered before 
computing other variables from them. You center a variable by subtracting the mean from every 
case. The mean of the centered variable is then zero (the standard deviation, of course, stays the 
same). The correlations between the IVs will then often be far smaller. For example, if we center 
X in the above problem by subtracting the mean of 3 from each case before squaring, we get 
. replace X = X - 3 
(5 real changes made) 
. replace XSquare = X ^ 2 
(5 real changes made) 
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. list 
 
     +--------------+ 
     |  X   XSquare | 
     |--------------| 
  1. | -2         4 | 
  2. | -1         1 | 
  3. |  0         0 | 
  4. |  1         1 | 
  5. |  2         4 | 
     +--------------+ 
 
. corr X XSquare, means 
(obs=5) 
 
    Variable |         Mean    Std. Dev.          Min          Max 
-------------+---------------------------------------------------- 
           X |            0     1.581139           -2            2 
     XSquare |            2     1.870829            0            4 
 
 
             |        X  XSquare 
-------------+------------------ 
           X |   1.0000 
     XSquare |   0.0000   1.0000 

 
As you see, the extremely high correlation we had before drops to zero when the variable is 
centered before computing the squared term. 
We’ll discuss nonlinear and nonadditive models later in the semester. We’ll also see other 
reasons why centering can be advantageous. In particular, centering can make it a lot easier to 
understand and interpret effects under certain conditions. The specific topic of centering is 
briefly discussed on pages 30-31 of Jaccard et al’s Interaction Effects in Multiple Regression. 
Also see pp. 35-36 of Aiken and West’s Multiple Regression: Testing and Interpreting 
Interactions. Note, incidentally, that centering is only recommended for the IVs; you generally 
do not need or want to center the DV. 
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Appendix: Multicollinearity in Non-OLS techniques 
 

The examples above use OLS regression. As we will see, OLS regression is not an appropriate 
statistical technique for many sorts of problems. For example, if the dependent variable is a 
dichotomy (e.g. lived or died) logistic regression or probit models are generally better. However, 
as Menard notes in Applied Logistic Regression Analysis, much of the diagnostic information 
for multicollinearity (e.g. VIFs) can be obtained by calculating an OLS regression model using 
the same dependent and independent variables you are using in your logistic regression model. 
“Because the concern is with the relationship among the independent variables, the functional 
form of the model for the dependent variable is irrelevant to the estimation of collinearity.” 
(Menard 2002, p. 76). In other words, you could run an OLS regression, and ignore most of the 
results but still use the information that pertained to multicollinearity. Even more simply, in 
Stata, the collin command can generally be used regardless of whether the ultimate analysis 
will be done with OLS regression, logistic regression, or whatever. 
In short, multicollinearity is not a problem that is unique to OLS regression, and the various 
diagnostic procedures and remedies described here are not limited to OLS. 
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Appendix: Condition Numbers (Optional) 
 

Warning: This is a weak area of mine so if you really want to understand these you should do a 
lot more reading. 
Sometimes eigenvalues, condition indices and the condition number will be referred to when 
examining multicollinearity. While all have their uses, I will focus on the condition number. The 
condition number (κ) is the condition index with the largest value; it equals the square root of the 
largest eigenvalue (λmax) divided by the smallest eigenvalue (λmin), i.e.  

min

max

λ
λκ =  

When there is no collinearity at all, the eigenvalues, condition indices and condition number will 
all equal one. As collinearity increases, eigenvalues will be both greater and smaller than 1 
(eigenvalues close to zero indicate a multicollinearity problem), and the condition indices and the 
condition number will increase. An informal rule of thumb is that if the condition number is 15, 
multicollinearity is a concern; if it is greater than 30 multicollinearity is a very serious concern. 
(But again, these are just informal rules of thumb.)  In SPSS, you get these values by adding the 
COLLIN parameter to the Regression command; in Stata you can use collin.  
 
CAUTION:  There are different ways of computing eigenvalues, and they lead to different 
results. One common approach is to center the IVs first, i.e. subtract the mean from each 
variable. (Equivalent approaches analyze the standardized variables or the correlation matrix.)  In 
other instances, the variables are left uncentered. SPSS takes the uncentered approach, whereas 
Stata’s collin can do it both ways. If you center the variables yourself, then both approaches 
will yield identical results. If your variables have ratio-level measurement (i.e. have a true zero 
point) then not centering may make sense; if they don’t have ratio-level measurement, then I 
think it makes more sense to center. In any event, be aware that authors handle this in different 
ways, and there is sometimes controversy over which approach is most appropriate.  
I have to admit that I don’t fully understand all these issues myself; and I have not seen the 
condition number and related statistics widely used in Sociology, although they might enjoy 
wider use in other fields. See Belsley, Kuh and Welsch’s Regression Diagnostics: Identifying 
Influential Data and Sources of Collinearity (1980) for an in-depth discussion. 
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Appendix: SPSS Example (Optional) 
Consider the following hypothetical example: 
MATRIX DATA VARIABLES = Rowtype_ Y X1 X2/ FORMAT = FREE full 
                        /FILE = INLINE / N = 100. 
 
BEGIN DATA. 
MEAN     12.00     10.00   10.00 
STDDEV   3.00     5.00   5.00 
CORR     1.00      .24    .25 
CORR      .24     1.00   0.95 
CORR     0.25     0.95   1.00 
END DATA. 
 
REGRESSION   matrix = in(*) 
            /VARIABLES Y X1 X2 
            /DESCRIPTIVES 
            /STATISTICS DEF TOL BCOV COLLIN TOL 
            /DEPENDENT Y 
            /method ENTER X1 X2 . 

Regression 

 

 

 

 

Descriptive Statistics

12.000000 3.0000000 100
10.000000 5.0000000 100
10.000000 5.0000000 100

Y
X1
X2

Mean Std. Deviation N

Correlations

1.000 .240 .250
.240 1.000 .950
.250 .950 1.000

Y
X1
X2

Pearson Correlation
Y X1 X2

Variables Entered/Removedb

X2, X1a . Enter
Model
1

Variables
Entered

Variables
Removed Method

All requested variables entered.a. 

Dependent Variable: Yb. 

Model Summary

.250a .063 .043 2.9344301
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), X2, X1a. 
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ANOVAb

55.745 2 27.872 3.237 .044a

835.255 97 8.611
891.000 99

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), X2, X1a. 

Dependent Variable: Yb. 

Coefficientsa

10.492 .666 15.765 .000
.015 .189 .026 .081 .935 .098 10.256
.135 .189 .226 .717 .475 .098 10.256

(Constant)
X1
X2

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Tolerance VIF

Collinearity
Statistics

Dependent Variable: Ya. 

Coefficient Correlationsa

1.000 -.950
-.950 1.000
.036 -.034

-.034 .036

X2
X1
X2
X1

Correlations

Covariances

Model
1

X2 X1

Dependent Variable: Ya. 

Collinearity Diagnosticsa

2.855 1.000 .02 .00 .00
.136 4.589 .98 .02 .02
.010 16.964 .00 .98 .98

Dimension
1
2
3

Model
1

Eigenvalue
Condition

Index (Constant) X1 X2
Variance Proportions

Dependent Variable: Ya. 
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