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n the preceding chapters, we have assumed that the variables used in a
regression equation are measured at least at the interval level or, if ordinal
variables are used, that scores can be assigned to the ordered categories that
approximate the intervals between the categories (see Chapter 1 for definitions
of the levels of measurement). In order to compute sums, deviation scores, and
the amount by which Y changes per unit increase in X, it is necessary to have
measures of the variables that reflect the amount by which one case differs
from another case on each variable. Nominal variables do not provide infor-
mation about the intervals between the categories of a variable nor do they
rank-order the categories. Nominal variables are simply classification schemes
that group units into mutually exclusive categories, where each category is
defined by some attribute shared by all members of the category. Examples of
nominal variables are sex (male or female), race (e.g., black, white, American
Indian, or Asian), marital status (married, separated, divorced, widowed, or
never-married), and employment status (employed full-time, employed part-
time, not employed, or retired). For variables such as these, there is no mea-
surement system that specifies how high or low members of one category are
in comparison to members of other categories. Although it is common to assign
numeric codes to the categories of nominal variables (e.g., full-time = 1, part-
time = 2, not employed = 3, retired = 4), these numbers are purely arbitrary
and are used only for purposes of record-keeping and data processing.
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Nevertheless, nominal variables may still contain information that is useful
for explaining variation in Y. The fact that these variables do not provide or-
dinal and interval information does not mean that there are no meaningful
differences between the categories in terms of the dependent variable under
investigation. Before we can use regression analysis to extract such potentially
valuable information, however, it is necessary to create one or more appro-
priately coded variables from the nominal variable. These new variables are
then included in the regression equation to represent the nominal variable.
Although not just any coding scheme for these variables will work, there are
several alternative schemes that will provide meaningful interpretations and
tests of the effects of the nominal variable on Y. We will examine dummy vari-
able coding (perhaps the most widely used coding) as well as effects coding
and contrast coding.

Dummy Variable Coding
Dichotomous Nominal Variables

We will begin with the simplest type of nominal variable, one that contains
only two categories (i.e., a dichotomous variable). We will also begin with bi-
variate regression before moving on to the multivariate case. When using
regression to analyze a dependent variable and a nominal independent vari-
able, the focus is on whether the categories of the nominal variable (whether
there are two or more than two) have different means on Y. For example, do
blacks and whites (the nominal variable) have different income means (Y's), or
do Protestants, Catholics, Jews, and atheists (the nominal variable) have dif-
ferent mean frequencies of church or temple attendance (Y's)? When there are
only two groups/categories, a t test for the difference of means may be used to
decide if the mean difference is significant; when there are two or more cate-
gories of the nominal variable, the F test provided by a one-way analysis of
variance (ANOVA) may be used to determine whether there are any mean
differences in Y between the groups defined by the nominal variable. Regres-
sion analysis can also be used to extract the same information and more.

In order to understand how regression analysis can be used to test for dif-
ferences in means, it is useful to remember that the linear regression of Y on
an interval level X is also a test for differences in means. Figure 5.1 shows a
regression line fit to a scatterplot of a perfectly linear relationship between X
and Y. For each value of X, there is a distribution of Y scores (a conditional
distribution of Y). For each value of X, the regression line passes through the
conditional mean of Y (Y,, ,, Y, Y,), that is, through the mean of Y for all cases
with the same value of X. The discussion of the sum of squares in Chapter 2
pointed out that the mean is a least-squares statistic; that is, the sum of squared
deviations around the mean of a variable is smaller than the sum of squared
deviations around any other value of that variable. As a result, the prediction
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FIGURE 5.1 Scatterplot and Linear Regression Line for X and Y
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of Y that minimizes the sum of squared residuals (the least-squares criterion)
for all cases with the same value of X is the mean of Y for those cases (i.e., the
conditional mean of Y). Thus, a perfectly linear relationship between X and Y
is one in which the conditional means of Y all fall on a straight line. The test
for the regression slope is actually a test for a linear trend in the conditional
means of Y.

When X is a dichotomous nominal variable, there will be a conditional dis-
tribution of Y for each of the two groups defined by X. When using X to predict
Y, the least-squares criterion would lead to the prediction of the conditional
mean of Y for each group/category defined by X. This is shown in Figure 5.2
for the two categories of the nominal variable, which are labeled A and B. The
prediction of Y, for all cases in group A would minimize the sum of squared
residuals for group A, i.e., 2 (Y, — Y,)% and the prediction of Yy for all cases in
group B would minimize ¥ (Yy — Yy)% Thus, the least-squares regression line
would pass through the two conditional means in order to minimize the total
sum of squared residuals, as shown in Figure 5.2. Notice that no numeric values
are shown for groups A and B. In terms of finding the best-fitting line, it is
arbitrary how we score A and B. Whatever scores we assign to A and B (which
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FIGURE 5.2 Least-Squares Line for Y and a Dichotomous Nominal X

Group

we can refer to as X; and Xp), the least-squares line will pass through the
coordinates (Xg, Y) and (X, Y,). The slope of the line will be

Y, -Y, V.-V,
XB.—XA_—XA_XB

Equation 5.1 indicates that regardless of which group is given the higher score
and what the difference in the scores is, we can find a line that gives the best
predictions of Y simply by dividing the difference between the means of Y for
groups A and B by the difference between whatever scores we assign to groups
A and B. We will see, however, that some scores that we can assign to X will
give particularly meaningful interpretations of the slope.

To illustrate the above points we will examine some data from the 1982
Akron Area Survey, a random-digit-dialed telephone survey of residents of
Summit County, Ohio. The dependent variable Y is a life satisfaction scale
ranging from one to seven, with Y = 1 meaning dissatisfied and Y = 7 meaning
satisfied. The independent variable is race, with X = 1 being the arbitrary code
assigned to blacks and X = 2 being the code assigned to whites by the Akron
Area Survey. Table 5.1 summarizes the values of Y for each race.

b YX

(5.1)

Nonsense Coding. To illustrate the arbitrariness of the coding of the race
variable, nonsense coding will be used instead of the codes provided by the
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TABLE 5.1 Life Satisfaction (Y) by Race (X)

Label n ' Mean St. Dev. Variance

Black 63 . 47619 2.1153 4.4747

White 656 5.5168 1.3546 1.8348
Total 719 54506 - 1.4512 2.1058

Akron Area Survey data set, which were RACE = 1 for blacks and RACE = 2
for whites. The nonsense codes that have been assigned are 74 for blacks and
19 for whites. The SPSS commands for transforming the race variable to the
nonsense codes and using it in a regression run are shown below.

RECODE RACE (1 = 74 (2 = 19)
REGRESSION VARS = SATLIFE RACE/
DEP = SATLIFE/ ENTER RACE

The output of the regression run will give a value for the least-squares slope
that will be equal to the following value computed by Equation 5.1:
Y, -V, 47619 — 55168 —.7549 _
T X, - Xy @ 74-19 55 ik

b YX

The intercept for the equation is computed according to the usual formula. First,

the mean for the nonsense-coded X must be calculated:

nyXy + ngXy  656(19) + 63(74)
n - 719

X = = 23.8192

The intercept can now be computed as follows:
a =Y — bX = 54506 — (—.01373)23.8192 = 5.7776

The least-squares regression equation is thus

Y = 5.7776 — .01373X

This equation has a negative slope, indicating that race has a negative
effect on life satisfaction. The negative slope has meaning only when we re-
member that blacks were arbitrarily given a higher score on X than whites.
Thus, the negative b reflects the fact that the group with the higher score on
RACE (blacks) has lower life satisfaction. If we interpret the slope literally as
the change in Y per unit increase in X, we would say that as race increases by
one unit, satisfaction decreases by .01373 units (on a seven-point scale). This
literal interpretation doesn’'t make any sense in terms of the groups that are
represented by X because a one-unit difference on X doesn't correspond to the
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difference between the scores of blacks and whites on X; the difference between
blacks and whites equals 74 — 19 = 55, not 1. Thus, the nonsense coding leads
to a nonsense interpretation of the slope. Furthermore, the intercept is mean-
ingless because no group has a score of 0 on X.

The equation, however, does lead to meaningul predictions of Y:

Yy = 5.7776 — .01373(19) = 5.5167

A

Yy = 5.7776 — .01373(74) = 4.7616

The predicted score for whites equals the mean for whites, and the predicted
score for blacks equals the mean for blacks (see Table 5.1). These predictions
can be used to compute the coefficient of determination. In order to compute
this statistic we need the sum of squared residuals for the predicted values of
Y. Since the predicted score for each race equals its mean on Y, the variance
ot Y for each race shown in Table 5.1 equals the variance of the residuals for
each race. If we multiply the variance for each race by the number of respon-
dents of each race minus 1, we will get the sum of squared residuals for each
race:

> (Y — Yol = (ny — )3, = 655(1.8348) = 1201.794
S (Vs — Yo = (ny — )3, = 62(4.4747) = 277.4314

Adding the above equations together gives the total sum of squared residuals
for all respondents:

S (Y — T2 = 1201.7940 + 277.4314 = 1479.2254
3

The sum of squares for ¥ can be computed by multiplying n — 1 times the
variance of Y shown in Table 5.1 for all respondents:

(Y - YP=(n— 1)s = 718(2.1058) = 1511.9644
The coefficient of determination, or r?, equals

2O VP -20-¥P 15119644 — 14792254

2 = — = = .02
T S -1y 1511.9644 02165

This indicates that race explains about 2 percent of the variance in life satis-
faction. This isn't a very high proportion, which indicates that there is a lot of
variance in satisfaction within each race. The racial difference, however, is not
trivial; blacks and whites differ by about .75 points on a seven-point scale. This
difference is equivalent to about half of a standard deviation in Y. The reason
r2is low is that blacks comprise less than ten percent of the sample; thus, there
is very little variance in X with which to explain Y. This fact, however, does not
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mean that the racial difference is unimportant. This is a case in which you must
pay attention to factors in addition to measures of the strength of association.

Nonsense coding will also give valid significance tests (t and/or F) for the
effect of the dichotomous X on Y. We can use r? to calculate the F statistic for
the null hypothesis that by, = 0:

riy _ .02165
(1 —r1%9m —2 (1 — .02165)/717

For F = 15.8666, df, = 1, and df, = 718, p < .001. Thus, we would reject the
null hypothesis that blacks and whites are equally satisfied with life and con-
clude that life satisfaction is higher for whites. Since t2 = F for b, t = \/—1-: =
15.8666 = —3.9832. (Note that although the square root of @ number is always
positive, the proper sign of t is negative because the slope is negative.)

We have seen that nonsense coding can be validly used with a dichotomous
nominal variable; any codes will work. The coding will not affect the measures
of strength of association, such as r, r% and B; this will be illustrated later. The
regression slope will have the correct sign, which is easily interpretéd if you
keep in mind which group is given the highest score on X. You can make sense
of the value for b if you use the difference between the scores of the two groups
on X; it you multiply the slope times the difference in scores you will get the
difference between the means for the two groups, i.e., Yz — Yy = byx(Xz — Xy)
= —.01373(74 — 19) = —.7552. A final important point that will be illustrated
below is that no matter what scores you give to the two groups, your decision
will not affect the values of t and F in the test for the significance of the slope;
t and F are invariant with respect to the scoring of X.

F = = 15.8666

Dummy Coding. Dummy variable coding is often used as a method that
provides more readily interpretable slopes and intercepts for nominal inde-
pendent variables. In dummy coding, one group is given a score of 1 and the
other group is given a score of 0. In this example, blacks will be given a score
of 1 and whites a score of 0.

The regression slope can again be calculated with Equation 5.1, since the
best prediction for each group will still be each group’s mean on Y:

Y, - Y, 47619 — 55168 —.7549
= = = = —.7549
X5 — Xw 1-0 1

As can be seen, the slope for a dummy variable will equal the mean of Y for
the group coded 1 on X minus the mean of Y for the group coded 0 on X. This
results because the difference between their scores on X is unity. The sign of b
indicates whether the group scored 1 has a higher mean (+ slope) or a lower
mean (— slope) than the group scored 0. The slope for race indicates that the
mean life satisfaction for blacks is .7549 less than that for whites. The slope can
also be interpreted in the usual manner; when there is a positive unit difference

byx
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in X (which corresponds to the racial difference in values of X)) there will be a
difference in Y equal to b (i.e., —.7549).

Since the least-squares equation predicts the conditional mean of Y for each
of the two groups represented by a dummy variable X, the line will pass
through the coordinates (0, Yy,) and (1, Yg). The first coordinate corresponds to
X = 0; thus, the predicted value when X = 0 is Y,,, which by definition is the
Y-intercept. The intercept in a dummy variable regression is therefore the mean
of the group coded 0 on the dummy variable (in this case, whites). Thus, the
intercept equals 5.5168. This makes the value of the intercept a meaningful
quantity. Having determined the slope and intercept, we can write the dummy
variable equation for race and life satisfaction as

A

Y = 5.5168 — .7549X

Figure 5.3 shows the least-squares line for life satisfaction regressed on the
dummy race variable. The line crosses the Y-axis at a value equal to the mean
for whites, the group coded 0 on X. The figure also shows that the slope of the
line equals the mean of the group scored 1 (blacks) minus the mean of the
group scored 0 (whites).

FIGURE 5.3 Life Satisfaction (Y) Regressed on Dummy-Coded Race (X)

Life Satisfaction

Race
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We can verify that the intercept equals the mean of the group scored 0 by

using the usual formula for the intercept. First, we need to compute the mean
of X, which is

XY v
22X 1414414040440
n n

X_= =

=75 = .0876 = p
Since the scores on X are either 1's or 0's, the sum of X will equal the number
of cases scored | on X. In this case, that will be the number of blacks. When
the sum is divided by n, it is shown that the mean equals a proportion, i.e., the
proportion of all cases with a score of 1. In the above formula the mean is .0876,
which indicates that .0876 of the respondents are black. In general, the mean
of a dummy variable equals the proportion of cases that are in the group coded
1. Without proof, the standard deviation of @ dummy variable can be computed
with the following formula:

sy = Jp(l — p) = J(.0876)(.9124) = [0799 = .2827

Thus, the standard deviation of the dummy race variable is .2827, and the
variance (the number under the radical) is .0799; the variance equals p(1 — p).
The intercept of the least-squares line can now be computed as

a =Y — bX = 54506 — (—.7549)(.0876) = 5.5167

ng 63
n

This verifies that the intercept equals the mean of the group scored 0. The same
value for the intercept is reported in the SPSS output shown in Table 5.2.

TABLE 5.2 Regression of Life Satisfaction on Dummy-Coded Race

RECODERACE( = 1) (2 = 0)
REGRESSION VARS = SATLIFE RACE/
DEP = SATLIFE/ ENTER RACE

****MULTIPLE REGRESSION****

Multiple R .14718 Analysis of Variance

R Square .02166 DF Sum of Squares Mean Square

Adjusted R Square 02030 Regression 1 32.75310 32.75310

Standard Error 1.43635 Residual 717 1479.24412 2.06310
F = 15.87566 Signif F = .0001

Variables in the Equation

Variable B SEB Beta T Sig T
RACE —.75486 .18945 —.14718 —3.984 .0001
(Constant) 5.51677 .05608 98.373 .0000
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Table 5.2 gives the SPSS statements that may be used to run a dummy
variable regression of life satisfaction on race, along with the output of the SPSS
run. The values for the bivariate slope and the intercept shown in Table 5.2 are
virtually identical to those calculated previously.

To state in a more general form the characteristics of dummy variable
regression that have been covered thus far, let

Y, = Y scores when X = 0

Y, = Y scores when X =1

The least-squares solution for a dummy-coded X always gives the following
values for the slope and intercept:

by =Y, — 7, (5.2)
Ay = Y, (5.3)

As was implied in the discussion of nonsense coding, dummy variable cod-
ing will give the same values of t, F, r, and r? as nonsense coding or any other
coding. This is illustrated in the SPSS regression analysis shown in Table 5.2,
where we can see that F and r? are nearly identical to the values that we
calculated earlier for nonsense coding. The dummy variable solution differs
from the solutions using other coding only with respect to the slope and inter-
cept of the regression equation.

It should also be noted that the t test for b when X is dummy-coded is equiv-
alent to a t test for the difference of means. This is because the slope for a
dummy X equals the difference between the two groups’ means on Y (as shown
above). Thus, the following hypotheses apply for a bivariate regression with a
dummy X:

Hyb=0o0rY, =7,
H:b#0orY, # Y,

The equivalence between dummy regression for a dichotomous X and the t
test for a difference of two group means is illustrated in Appendix SA, where
the output of the SPSS procedure T-TEST is discussed.

Polychotomous Nominal Variables

When a nominal variable has more than two categories, we can no longer use
a single dummy variable to represent all of the categories. We cannot use a
single variable coded with three or more scores, either, because a regression
program would treat the numeric codes as if they represented an interval vari-
able. The data in Table 5.3 will be used to illustrate the analysis of nominal
variables with three or more categories; these data are also from the 1982 Akron
Area Survey. The dependent variable is again life satisfaction, and the nominal
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TABLE 5.3 Life Satisfaction by Marital Status

Code Status n Mean
1 Married 411 5.6837

2 Divorced/Separated 106 4.9057

3 Widowed 69 5.4348

4 Never-Married 150 5.1600
Total 736 5.4410

independent variable is marital status (MARITAL). In Table 5.3, the separated
and divorced categories in the original data have been merged because of the
small number of separated respondents.

If we were to use a single variable coded as in Table 5.3, regression analysis
would assume that never-married are one unit higher than widowed, that wid-
owed are one unit higher than divorced, and that divorced are one unit higher
than married. This would be an inappropriate scoring since the variable is
nominal. The solution to the scoring problem is to use dummy variables. It is
not possible, however, to represent the marital variable with just one dummy
variable. But how many dummy variables will be needed? There are g = 4
dummy variables that could be created, where g equals the number of cate-
gories in a nominal variable. One dummy could be created for each marital
status category, where each category would have a score of 1 on its dummy
variable and all the other categories would have a 0 score on that variable.
The coding would look like this:

The g = 4 Possible Dummy Variables for Marital Status

X, X, X, X,
Marital Status DIVORCED WIDOWED NEVER MARRIED
Divorced/Separated 1 0 0 0
Widowed 0 1 0 0
Never-Married 0 0 1 0
Married 0 0 0 1

Each person that is divorced would have a score of 1 on a dummy variable
called DIVORCED; all other persons would have a score of 0 on DIVORCED.
Thus, this variable would represent two groups, divorced and not divorced.
The DIVORCED variable would make no distinction between the various cat-
egories that are not divorced, i.e., the widowed, never-married, and married.
The widowed persons would have a score of 1 on WIDOWED, and all of the
other groups would have a score of 0. Thus, WIDOWED would represent two



S5/Nominal Independent Variables 209

groups, widowed and not widowed. The dummy variables NEVER and MAR-
RIED would be interpreted in an analogous fashion.

Although there are g distinct dummy variables that could be created, all
we need for the regression equation is g — 1 dummy variables. In fact, the
regression coefficients cannot be computed for an equation that includes all of
the g dummy variables because there will be perfect multicollinearity among
the dummy variables in that case. This is because of the following identity:

DIVORCED + WIDOWED + NEVER + MARRIED = 1

Since each person has a score of 1 on one and only one of the dummies,
and a score of 0 on all of the other dummies, the sum of the four dummies will
equal | for each person. If we rearrange the above equation by leaving the
MARRIED variable, for example, to the left of the equal sign and moving all of
the other variables to the right, we have

MARRIED = 1 — DIVORCED — WIDOWED — NEVER

where
0=1-1-0-0
0=1-0-1-0

(for divorced persons)
(
0=1-0-0-1 (for never-married)
(

for widowed persons)

l1=1-0-0-0

The above shows that the MARRIED dummy variable is a perfectly linear func-
tion of the other three dummy variables. Thus, R? = 1 for MARRIED as the
dependent variable and the other three dummies as predictors. There would
be perfect multicollinearity among the four variables, and thus it would not be
possible to estimate their separate effects on Y.!

The above discussion leads to the conclusion that one of the g dummies
must be left out of the equation. In general, only g — 1 dummy variables can
be used. The group represented by the dummy that will be omitted will not,
however, be left out of the analysis. It will serve as a reference group, as we
shall see. The dummy variable to be omitted depends on which group should
theoretically serve as a reference group. In the following analysis the married
respondents have been chosen to be the reference group, and thus the MAR-
RIED dummy will not be included in the equation. This decision is based on
the premise that the married status has the greatest normative support, and
thus it would be of interest to compare each of the deviant marital statuses with
the married group.

The omission of the MARRIED dummy leaves the following three dummies
for entry into the regression equation:

for married persons)

1. The cross-product matrix x'x used in the matrix solution for the multiple regression equation
would be singular and thus could not be inverted.
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The g — 1 = 3 Dummy Variables Selected for the Regression Equation

X, X, X,
Marital Status DIVORCED WIDOWED NEVER
Divorced/Separated 1 0 0
Widowed 0 1 0
Never-Married 0 0 1
Married 0 0 0

Notice that married respondents will have a 0 on each of the three dummy
variables. The regression equation to be estimated is

Y = a + b,DIVORCED + b, WIDOWED + b,NEVER

Analogously to bivariate dummy regression, the solution that minimizes the
sum of squared residuals of Y will be to select coefficients such that no matter
which marital status a person is in, including the currently married group, the
equation will predict the mean of Y for the group to which the person belongs.
The following symbols will be used for these conditional means of Y:

=

v = Mean for Married Group

=i

b = Mean for Divorced Group

=i

w = Mean for Widowed Group

Yy = Mean for Never-Married Group

If the least-squares solution predicts the conditional mean of Y for the group
to which each person belongs, then we can interpret each of the regression
coefficients by substituting the scores for each group into the equation and
simplifying as follows:

Yy = a+ b0 + by(0) + by0) = a = ¥,
a + b(1) + b,0) + by0) = a + b, = Yp

oS
I

Yo = a + by0) + by(l) + by0) = a + b, = Yy

Yy =a + b(0) + b0) + bl) = a + b, = Yy

Since the married group has a 0 score for each dummy variable, the above
results show that when 0 is substituted for each variable, the predicted score
for the married group is a, the intercept. Since the best prediction for the mar-
ried group is the mean of Y for all married persons, we can see that the intercept
equals the mean of the married group, which is the reference group. With
respect to the divorced group, that has a score of 1 on the first dummy variable
and 0 on the others, the predicted score is the intercept plus the slope for the
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DIVORCE dummy variable; thus, @ + b, is equal to the mean for the divorced
group. The predicted scores for widowed and never-married are derived in
analogous fashion.

We can use the above predicted scores and the means from Table 5.3 to
specity the meaning of each regression coefficient, and their numeric values,
as follows:

Yy = a = 5.6837 (5.4)
Y, - Yu=(a+b)—a=hb, =49057 — 56837 = —.778 (5.5)
Yo — Yy =(a+b) —a=bhb, =54348 — 56837 = —.2489 (5.6)
Yy = Yy =(a+by) —a=hb, =51600 — 56837 = —.5237 (5.7)

Equation 5.5 shows that the slope for the DIVORCE variable (b,) equals the
difference between the mean for the divorced group and the mean for the
married group. The value of the slope indicates that divorced persons are .778
less satisfied with their lives than married persons. Equation 5.6 indicates that
the slope for WIDOWED (b,) equals the widowed mean minus the married
mean and indicates that widowed persons are .2489 less satisfied than married
persons. Finally, according to Equation 5.7, the slope for NEVER (b,) equals the
never-married mean minus the married mean and indicates that never-mar-
ried persons are .5237 less satisfied than married persons.

The least-squares regression equation has thus been shown to be equal to

Y = 5.6837 — .778-DIVORCED - .2489-WIDOWED - .5237-NEVER

Although each dummy variable represents the group coded 1 versus all other
groups that are coded 0, the slope for the dummy doesn’t represent the mean
difference between the group coded 1 and all persons coded 0 as it does in the
bivariate case. These slopes are partial slopes, so they indicate the change in
Y per unit change in the dummy variable, holding all other dummy variables
constant. Thus, for example, when DIVORCE scores change by one unit but
WIDOWED and NEVER are held constant, the unit change in DIVORCE rep-
resents the difference between married persons and divorced persons. When
WIDOWED changes by one unit and DIVORCED and NEVER are held constant,
the change in WIDOWED represents the difference between widowed and
married persons. Thus, each partial slope equals the mean of Y for the group
coded 1 on that dummy variable minus the mean of Y for the group coded 0
on all of the dummies; the latter group is referred to as the reference group,
which in this case is the married group. The intercept a equals the mean of Y
for the reference group.

In generdl, if the regression equation for a set of g — 1 dummy variables is
Y=a+3 bX, i =1,..,g — 1), where X, is the dummy variable for the ith
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TABLE 5.4 Life Satisfaction Regressed on the Dummy-Coded Marital-Status
Variables

****MULTIPLE REGRESSION****

Multiple R 20640 Analysis of Variance

R Square .04260 DF Sum of Squares Mean Square

Adjusted R Square .03868 Regression 3 66.43387 22.14462

Standard Error 1.42818 Residual 732 1493.05390 2.03969
F = 10.85685 Signif F = .0000

Variables in the Equation

Variable B SEB Beta T Sig T
NEVER —.52370 .13624 —.14493 —3.844 .0001
WIDOWED —.24892 .18581 —.04984 —1.340 .1808
DIVORCED —.77804 .15558 —.18767 —5.001 .0000
(Constant) 5.68370 .07040 80.681 .0000

group (i.e., the code of the ith group equals unity on X)), then the intercept and
slopes for the dummy variable regression equation are

a=Y, (5.8)

b=Y -7, (5.9)

where Y, equals the mean of the reference group (i.e., the group coded 0 on
each X)).

The following SPSS commands may be used to transform the marital-status

nominal variable, which has four categories, into the three dummy variables
that have been chosen for entry into the regression equation.

IF MARITAL EQ 1 MARRIED = 1
IF MARITAL NE 1 MARRIED = 0

IF MARITAL EQ 2 DIVORCED = 1
IF MARITAL NE 2 DIVORCED = 0O
IF MARITAL EQ 3 WIDOWED = 1
IF MARITAL NE 3 WIDOWED = 0

IF MARITAL EQ 4 NEVER = 1

IF MARITAL NE 4 NEVER = O

REGRESSION VARS = SATLIFE DIVORCED WIDOWED NEVER/
DEP = SATLIFE/ ENTER DIVORCED WIDOWED NEVER

The output from the SPSS regression run is given in Table 5.4. Notice that
the partial slopes and the intercept given in Table 5.4 are exactly equal to those
values computed from the group means using Equations 5.1 to 5.4.
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The hypotheses that are tested by the t and F statistics in Table 5.4 are
FforR? Hyb,=b,=by,=00rYy= Yy = Yy = Yy
t for b, Hyb, =0orY, =Y,

The F value and associated level of significance for the test that all slopes are
equal to 0 or that the means are equal for all groups is rejected at p = .0000.
Therefore, at least one of the marital statuses has a different mean satisfaction
level than the others. The squared multiple correlation indicates that we can
account for about 4.3% of the variance in life satistaction simply by knowing
whether a person is married, divorced/separated, widowed, or never-married.
The t tests for the individual slopes indicates that the never-married and the
divorced are significantly less satisfied with their lives than the married group,
but there is not a significant difference between the widowed and married
persons.

When dummy variables are used to represent a nominal independent vari-
able with three or more categories, the F test for R? in the regression equation
is equivalent to the F test for group differences in means performed by a one-
way analysis of variance (ANOVA). See Appendix 5B for a description of an
equivalent analysis of variance.

Inclusion of Another X with the
Dummy Variables

If we add another X to the equation containing the dummy variables, the inter-
pretation changes somewhat from that given above. For purposes of this dis-
cussion, the new X might be an ordinal, interval, or ratio variable, or it might
even be a dummy variable representing an additional nominal variable. In
the new equation, the intercept equals the predicted value of Y when all the
variables are equal to zero, including the new X that has been added. The
value of a no longer equals the mean for the reference group; instead, it is the
predicted value for members of the reference group who have a score of zero
on the new X. The slopes no longer equal the difference between the mean of
the group coded 1 and the mean of the reference group, since the new X is
now being held constant when the groups are contrasted; the partial slope now
equals the predicted difference between the group coded 1 and the reference
group for persons who do not differ on the new X.

Table 5.5 shows the output of an SPSS run that adds the variable AGE to
the dummy variables already in the equation. The intercept is not @ meaningful
value in this equation because it represents the predicted score for married
persons who are zero years of age. The partial slopes for each dummy variable
now represent the difference between a particular marital status and the mar-
ried group, holding age constant. The partial slopes, however, still represent a
comparison between the group coded 1 on the dummy variable and the ref-
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TABLE 5.5 Life Satisfaction Regressed on the Dummy-Coded Marital Status
Variables and Age

****MULTIPLE REGRESSION****

Multiple R 23153 Analysis of Variance
R Square .05361 DF Sum of Squares  Mean Square
Adjusted R Square .04831 Regression 4 81.91767 20.47942
Standard Error 1.42319 Residual 714 1446.17691 2.02546
F = 10.11101 Signif F = .0000

Variables in the Equation
Variable B SE B Beta T Sig T
NEVER —.35075 .15074 —.09728 —2.327 .0203
WIDOWED —.47926 .21054 —.09556 —2.276 .0231
DIVORCED ~.75238 15611 -~.18226 —4.820 .0000
AGE .01197 .00406 .13499 2.949 .0033
(Constant) 5.18099 .18729 27.663 .0000

erence group. Thus, the slope for DIVORCED indicates that when any age
difference between divorced/separated persons and married persons is held
constant, divorce or separation reduces life satisfaction by about .75 points.
Although the DIVORCED and NEVER dummy variables are still significant after
age is controlled, the negative effect of having never been married is reduced
from —.52 to —.35. Apparently part of the original difference between never-
married persons and married persons was due to the fact that people who have
never been married are younger, on the average, than married individuals.
We also see that after controlling for age, WIDOWED now also has a significant
negative effect on life satisfaction; the fact that the average age of widowed
persons is greater than the age of married persons had been suppressing the
true negative effect of widowhood on life satisfaction. In sum, after controlling
for age we can now infer that if the three nonmarried groups did not differ in
age from the married group, being divorced, widowed, or never-married
would each reduce satisfaction with life.

It was noted above when a single nominal variable is converted to dummy
variables for inclusion in a regression equation, the F test for the regression
equation is equal to the F test in a one-way analysis of variance for the same
nominal variable. We now note that the equivalence between regression anal-
ysis and analysis of variance continues when an interval X (or X 's) is added to
the regression equation containing the dummy variables; the F tests in the
regression analysis are now equal to the F tests in an analysis of covariance
(ANCOVA). An interval variable such as age is called a covariate in analysis
of variance. The equivalence of regression analysis and analysis of covariance
is shown in Appendix 5B.
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Effects Coding

Dummy variable coding requires that one category of the nominal variable be
specified as a reference group against which each of the other categories are
tested. This is often a very satisfactory procedure for testing differences between
groups. There may be times, however, when it is difficult to choose one group
with which to compare each of the others. There might be two or more cate-
gories that would serve equally well from a theoretical standpoint as reference
groups, or there may not be any theoretical reasons for specifying any of the
groups as a reference group, as in an exploratory study, for example. In both
of these cases the analyst may want to consider effects coding.

An example of effects coding for the marital status variable is given below.

Effects Coding

X, X, X,
Marital Status DIVORCED WIDOWED NEVER
Divorced/Separated 1 0
Widowed 0 1 0
Never-Married 0 0
Married -1 -1 -1

As can be seen above, the only difference between effects coding and dummy
variable coding is that one of the groups is coded — 1 on each variable instead
of 0. Just as with dummy coding, there will be g — 1 effects-coded variables.

Effects coding, however, changes the meaning of the regression coefficients.
In effects coding the intercept will equal the mean of the group means on the
dependent variable,

+ [N +
_ Y, +7Y, Y, (5.10)

g
If there are g groups, the intercept will equal the mean of the g group means.
This mean of means is indicated by Y and is often called the unweighted grand
mean. In the case of marital status and life satisfaction, the grand mean of the
g = 4 group means given in Table 5.3 is

Y, + Y+ Yy + Yy 5.6837 + 4.9057 + 5.4348 + 5.1589

a=Y= . - y = 5.2958

=l

a =

Notice that the grand mean is smaller than the mean given in Table 5.3, which
is the regular mean of Y computed as the arithmetic average of all 737 obser-
vations. The arithmetic mean of Y is influenced greatly by the higher mean of
the married persons who comprise the majority of the respondents. The married
persons, however, do not carry any more weight than the unmarried persons
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in the computation of the grand mean. Thus, the grand mean is lower because
the smaller unmarried groups all have lower life satisfaction than the married
group.

In effects coding, the unstandardized regression slope for an effect-coded
variable equals the difference between the mean of the group coded 1 on the
variable and the grand mean of all groups. Thus, the unstandardized slope for
group I equals

b=Y -7 (5.11)

Instead of comparing each group to a single reference group, effects-coded
variables compare each group to the mean of all groups. In the case of marital
status and satisfaction, we have '

by =Y, — Y = 49057 — 52958 = —.3901 [divorced and separated]

by = Yy — Y = 54348 — 52958 = .1390  [widowed]
by =Yy — Y = 51589 — 52958 = —.1369 [never-married]

In sum, the regression equation with effects-coded variables for each unmar-
ried group is

Y = 52958 — .3901DIVORCED + .1390WIDOWED — .1369NEVER

If an effects-coded variable had been included for married respondents in
place of one of the unmarried groups, the slope would be

by =Yy — Y = 56837 — 52958 = .3879 [married]

But just as with dummy-coded variables, only g — 1 variables can be included
in the equation to represent the g categories of the nominal variable. The fact
that one group is not coded 1 on any of the variables (and is coded —1 on all
of the variables) does not mean it is not influencing the regression equation
coefficients. The married group, for example, influences the grand mean and
consequently influences the intercept and each of the unstandardized slopes.

The null hypothesis to be tested by either t or F for each effects-coded vari-
able is

Hy:b, =0; or?Y, =Y

However, since the mean of group i is included in the grand mean, the only
way that the null hypothesis can be true is for the mean of group i to be equal
to the mean of all the other groups, excluding group i. Thus, the null hypothesis
can also be stated as

HO: ?i = §(——i)

The subscript (—1) means that it is the mean of the means of all groups except
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TABLE 5.6 Life Satisfaction Regressed on the Effects-Coded Marital Status
Variables

****MULTIPLE REGRESSION****

Multiple R .20640 Analysis of Variance

R Square .04260 DF Sum of Squares Mean Square

Adjusted R Square .03868 Regression 3 66.43387 22.14462

Standard Error 1.42818 Residual 732 1493.05390 2.03967
F = 10.85685 Signif F = .0000

-------------------- Variables in the Equation

Variable B SEB Beta T Sig T
NEVER —.13604 .10493 —.07456 -1.297 .1952
WIDOWED .13875 13781 .06296 1.007 3144
DIVORCED —.39038 11761 —.19537 -3.319 .0009
(Constant) 5.29604 .06489 81.620 .0000

group I. Thus, for each effects-coded variable, we are testing whether the mean
of one of the groups differs from the mean of the means of all other groups.

SPSS statements that may be used to create the effects-coded variables are
shown below.

IF MARITAL EQ 2 DIVORCED = 1
IF MARITAL NE 2 DIVORCED = 0
IF MARITAL EQ 3 WIDOWED = 1
IF MARITAL NE 3 WIDOWED = 0O

IF MARITAL EQ 4 NEVER = 1

IF MARITAL NE 4 NEVER = O

IF MARITAL EQ 1 DIVORCED = -1
IF MARITAL EQ 1 WIDOWED = -1
IF MARITAL EQ 1 NEVER = -1

The output from the SPSS regression program is shown in Table 5.6. The
results for the multiple correlation statistics, the standard error of estimate, and
the analysis of variance for the entire equation are the same as for the dummy
variable regression in Table 5.4. Whether dummy coding or effects coding is
used, the predicted values of the dependent variable will be identical because
in each case three variables are being used to represent the conditional means
of the four marital status groups. Thus, the F test for the entire equation indicates
that the null hypothesis that all of the conditional means are equal should be
rejected.

The t tests for the three effects-coded independent variables are not identical
to those for the dummy-coded variables. The test for NEVER in Table 5.4 indi-
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cated that the never-married respondents had significantly lower life satisfac-
tion than the married respondents. But the effects-coded NEVER is not signifi-
cant at p < .05; the mean for never-married respondents is not less than the
mean of the means for the other three groups (the “ever” married respondents).
Table 5.4 showed that the widowed respondents did not differ significantly from
the married respondents in satisfaction with their lives, and the effects coding
indicates that the widowed do not differ significantly from the mean of the
means of the never-married, divorced, and married respondents. Both dummy
and effects coding indicate that the slope for the DIVORCED variable is signif-
icantly different from zero; the divorced group has the lowest life satisfaction.
If we had chosen to include an effects-coded variable for married respondents
in place of any of the other effects-coded variables, it would probably be sig-
nificant at the .05 level since the married respondents have the highest life
satisfaction. This indicates that the number of variables for which the null hy-
pothesis is rejected may depend on which group is used as the reference group.
If the mean of the group coded -1 on each of the g —1 variables is near the
middle of the group means, there may be more significant variables than if the
group coded —1 has one of the highest or lowest means. The number of sig-
nificant results, of course, may also depend on which category is selected as
the reference group in dummy variable coding.

Contrast Coding

Effects coding is atheoretical in that the investigator does not specify which
groups are to be tested for differences of means but instead simply compares
each group with all of the others together. Dummy coding gives the investigator
more control over which groups are to be compared, but all tests for differences
of means are between a single reference group and each of the other groups.
The final coding scheme to be considered—contrast coding—provides the re-
searcher with the most control and flexibility in specifying the group compar-
isons or contrasts that are to be tested.

As with effects coding and dummy coding, contrast coding involves creating
g — 1 variables to represent the g categories of the nominal variable. For each
of these variables the investigator specifies one subset of groups that is to be
contrasted with a second subset of groups. Each subset may consist of only one
group. Each of these variables is referred to as a contrast. Thus, for example,
three contrasts would be specified or created for the four categories of marital
status.

For each of the g — 1 contrast variables a set of codes ¢, (i = 1,2, ..., 9)
must be selected for the g groups. There are two sets of restrictions on the c;.
First, the codes for each contrast variable must sum to zero:

>, =0

i=1
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This means, of course, that some of the groups must have positive codes and
some must have negative codes. Some may also be zero. Furthermore, the
codes for the subset of groups with positive codes must all be equal, and the
codes for the subset of groups with negative codes must all be equal.? The
consequence of these restrictions, in combination with the second type of re-
striction to be specified below, is that contrast coding implements a contrast
between the subset of groups with positive codes and the subset of groups with
negative codes.
The second restriction is that

g
2 CiiCik = 0, j#k
i=1

This restriction means that the sum of products of the ¢, for each pair of contrast-
coded variables must equal zero. If the sum of products of the codes equals
zero, the codes are said to be orthogonal, or uncorrelated. This does not mean
that the coded variables themselves will be orthogonal; that is, when the cor-
relation between the variables is calculated across all n observations, it need
not be zero. Only when each group has an equal number of cases will orthog-
onal coding produce orthogonal variables.
An example of contrast coding for the marital status variable follows.

Contrast Coding

X, X, X

Marital Status LOSS WIDOWED NEVER
o1 1 1
Divorced/Separated 3 2 4
1 1 1
— + - T
Widowed *3 2 1
+ §-
Never-Married 0 0 4
_2 _1
Married 3 0 4
Sum 0 0 0

As indicated above, the sum of the ¢, for each variable equals zero. There
are three pairs of variables, and the sums of cross-products of the codes for
these variables are

2. This restriction applies only when contrasts are being specified for a purely nominal variable.
When contrasts are specified for ordinal/interval categorical variables, sometimes referred to as
orthogonal polynomial contrasts, only the restriction that the ¢'s must sum to zero holds.
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gci,cjz - @(-%) +<%> (%) + OO0 + (—%)(0)

—l+l+0+0=0

I

6 6
Seen (3)(-3) + (G)(-5) + 08) + (9)(-3)
1 1 2
SRR t0r =0
gecs= () Q) o) o
= —;5 —é +0+0=0

Each sum of cross-products equals zero, and thus the codes are orthogonal.
Since the restrictions for contrast coding are satisfied, these variables are con-
trasts.

The first variable contrasts divorced and widowed persons (+ codes) with
married persons. The variables have been named after the groups with positive
codes. Since the two groups with positive codes on the first variable have both
lost spouses, this variable has been named LOSS. Thus, this contrast is speci-
fied in order to estimate the effect of having lost a spouse. The second variable
is WIDOWED, and it contrasts widowed persons (+ codes) with divorced per-
sons (— codes) to examine the effect of the two different ways of losing a spouse.
The third variable (NEVER) contrasts never-married persons ( + code) with mar-
ried, widowed, and divorced persons (— codes) in order to estimate the effect
of never having been married.

Let g,,, be the number of groups in the positive subset for a contrast variable,
and let g,_, be the number of groups in the negative subset. The values of the
positive codes ¢ * and the negative codes ¢ - were chosen as follows:

ot = + gdi-)
g+ 9o

c- = — [E5)
9t 9

For example, for the NEVER variable the codes are

3 3
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1 1

1+3° 1

cCT =

These rules satisfy the restriction that the sum of the ¢,'s must equal zero. They
also provide for the following interpretation of the unstandardized regression
coefficients:

b =Y. - Y., (5.12)

Equation 5.12 indicates that the regression slope for each contrast-coded vari-
able will equal the mean of the means for the groups in the positive subset
minus the mean of the means for the groups in the negative subset:

Y, + Y - X )
b, = Dg—YW -7, = w 56887 = 5.1703 — 56887 = — 5185
(+)
b, = Ty — 7, = 54348 — 49057 = 5291
b o7, Tut ;zD + Ty o ey 5687 + 4.9357 + 5.4348
(=)

= 5.1589 — 5.3414 = —.1825

This interpretation of the slopes comes from the fact that the difference between
the positive code and the negative code for each variable is unity. Thus, an
increase of one unit on the independent variable is equivalent to changing
from a level represented by the code of the negative subset to a level repre-
sented by the code of the positive subset. It is not necessary to assign codes in
this manner (as long as the sum of the codes equals zero and the sum of cross-
products of codes equals zero), but it provides an easy and meaningful inter-
pretation of the slopes.

The regression intercept for a contrast-coded set of variables is equal to the
unweighted mean of means, i.e., the grand mean, just as it was in effects cod-

ing:

Me

7,
= =l (5.13)

it

=il

a =

°|

Thus, a = 5.2958, just as in effects coding. The regression equation for the above
contrast-coded version of the marital status variable is

¥ = 5.2958 — .5185LOSS + .5291WIDOWED - .1825NEVER
The null hypothesis to be tested by the t or F test for the slope is
Hyeb; =0; or —?m = :—'17(_)

The output from the SPSS regression program is shown in Table 5.7. The
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TABLE 5.7 Life Satisfaction Regressed on Contrast-Coded Marital Status Variables

Multiple R

R Square
Adjusted R Square
Standard Error

Variable
NEVER
WIDOWED
LOSS
(Constant)

****MULTIPLE REGRESSION****
.20640 Analysis of Variance

.04260

.03868 Regression
1.42818 Residual

F = 10.85685

Variables in the Equation

B
—.18138
.52912
—.51348
5.29604

DF Sum of Squares

Mean Square

3 66.43387 22.14462
732 1493.05390 2.03967
Signif F = .0000

SE B Beta T Sig T
13990 -.05019 -1.297 .1952
.22091 .08815 2.395 .0169
.13101 —.158325 —3.919 .0000
.06489 81.620 .0000

multiple correlation statistics, the standard error of estimate, and the analysis
of variance results for the entire equation are identical to those for dummy
coding and effects coding. The tests for the individual contrasts show that the
never-married persons are not significantly less satisfied with their lives than
the ever-married persons (married, divorced, and widowed). Widowed respon-
dents, however, are significantly more satisfied than divorced respondents,
and those who have lost their spouses (divorced and widowed) are less satis-

tied with their lives than currently married individuals.

An example of an alternate set of contrast codes for marital status is given

below.

Contrast Coding

Xl XZ XG
Marital Status MARRIED NEVER WIDOWED
_1 _1 _1
Divorced/Separated 4 3 2
1 1 1
—— — - + p—
Widowed 4 3 2
Never-Married 4 3 0
+ —3_
Married 4 0 0
Sum 0 0 0
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Verify that the sum of cross-products of the codes for each pair of variables
equals zero. The first variable (MARRIED) contrasts currently married persons
with those who are not currently married (divorced, widowed, and never-mar-
ried). The second variable (NEVER) contrasts those who have never been mar-
ried with those who have lost a spouse (divorced and widowed). Finally, the
third variable (WIDOWED) contrasts widowed respondents with divorced re-
spondents, just as in the first set of contrast codes. Compute the slopes for the
three variables in the above contrast coding of marital status.

Summary

In general, nominal variables cannot be entered directly into regression equa-
tions. New variables must be created, with appropriate coding, to represent
the nominal variable in an regression equation. If the nominal variable has g
categories, then g — 1 specially coded variables must be used to represent
fully the nominal variable. Dummy variable coding, effects coding, and con-
trast coding are three useful ways of scoring the new variables.

In dummy coding the investigator must specify one category of the nominal
variable as a reference group and create a dummy variable for each of the
other groups. The slope for each dummy variable equals the mean for the
group coded 1 on that dummy variable minus the mean of the reference group.
The consequence of this coding is that the reference group is compared to each
of the other groups. Thus, it is important to pick a reference group that provides
the most interesting or important theoretical comparisons.

Effects coding appears more important for exploratory studies or for other
situations where it is not desirable to single out one category as a reference
group. In effects coding, g — 1 variables are created, just as in dummy coding.
Thus, there will be an effects-coded variable for each group except one. The
slope for each effects-coded variable represents the mean of the group repre-
sented by that variable minus the grand mean for all of the other groups (the
unweighted mean of means).

Contrast coding is the most flexible type of coding, and thus it gives the
investigator the most control over the various types of group comparisons that
may be investigated. In contrast coding, each variable contrasts the mean of
means of one subset of groups with the mean of means of another subset of
groups. Each subset, however, may consist of only one group. Just as in dummy
coding and effects coding, only g — 1 contrast variables can be used.

Finally, it is important to remember that each method of coding leads to the
same predicted scores; that is, for each method, the predicted score for each
group is the mean of that group on the dependent variable. The consequence
is that the squared multiple correlation is the same for each type of coding;
dummy, effects, and contrast coding all explain the same proportion of vari-
ance in the dependent variable. Thus, if the objective is to determine how much
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variance is explained by a nominal variable, or simply to control for the nom-
inal variable while focusing on the effects of other variables, then one coding
method is as good as another.
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