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Abstract. Following the seminal publications of Rubin about thirty years ago,
statisticians have become increasingly aware of the inadequacy of “complete-case”
analysis of datasets with missing observations. In medicine, for example, observa-
tions may be missing in a sporadic way for different covariates, and a complete-case
analysis may omit as many as half of the available cases. Hotdeck imputation was
implemented in Stata in 1999 by Mander and Clayton. However, this technique
may perform poorly when many rows of data have at least one missing value. This
article describes an implementation for Stata of the MICE method of multiple
multivariate imputation described by van Buuren, Boshuizen, and Knook (1999).
MICE stands for multivariate imputation by chained equations. The basic idea of
data analysis with multiple imputation is to create a small number (e.g., 5-10)
of copies of the data, each of which has the missing values suitably imputed, and
analyze each complete dataset independently. Estimates of parameters of inter-
est are averaged across the copies to give a single estimate. Standard errors are
computed according to the “Rubin rules”, devised to allow for the between- and
within-imputation components of variation in the parameter estimates. This arti-
cle describes five ado-files. mvis creates multiple multivariate imputations. uvis
imputes missing values for a single variable as a function of several covariates, each
with complete data. micombine fits a wide variety of regression models to a mul-
tiply imputed dataset, combining the estimates using Rubin’s rules, and supports
survival analysis models (stcox and streg), categorical data models, generalized
linear models, and more. Finally, misplit and mijoin are utilities to intercon-
vert datasets created by mvis and by the miset program from John Carlin and
colleagues. The use of the routines is illustrated with an example of prognostic
modeling in breast cancer.
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1 Introduction

Following the seminal work of Rubin (1976, 1987), awareness has grown of the need to
go beyond “complete-case” analysis of datasets with missing observations. In medicine,
for example, it is common for observations to be missing in a sporadic way for dif-
ferent covariates; a complete-case analysis may omit as many as half of the available
cases. Clark and Altman (2003) reported a study of prognosis in ovarian cancer in
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which missing data on ten covariates reduced the complete-case sample size from 1,189
to 518 patients. Imputation of 2,045 missing values, comprising only 17% of the total of
10 x 1,189 = 11,890 slots in the data matrix, more than doubled the available sample
size.

Hotdeck imputation was implemented in Stata by Mander and Clayton (1999) but
may perform poorly when many rows of data have at least one missing value. This
happens quite often and occurred in Clark and Altman’s dataset just mentioned.

This article describes an implementation for Stata of the “switching regression”
method of multiple multivariate imputation described by van Buuren, Boshuizen, and
Knook (1999). See van Buuren’s article for full details of the theory behind the method
and a discussion of how to build the imputation model.

The basic idea of data analysis with multiple imputation is to create a small number,
m, of copies of the data, each of which has the missing values suitably imputed. Tradi-
tionally, m = 3 or 5. Then, each complete dataset is analyzed independently. Estimates
of parameters of interest are averaged across the m copies to give a single estimate.
Standard errors are computed according to the “Rubin rules” (Rubin 1987). Recently
Carlin, Li, Greenwood, and Coffey (2003) have provided a variety of useful tools for
managing such imputed datasets and obtaining combined estimates. However, Carlin’s
routines assume that the imputed datasets have already been created; no algorithms to
create imputations are provided.

Old-fashioned imputation typically replaced missing values with the mean or mode
of the nonmissing values for that variable. That approach is now regarded as inadequate.
For subsequent statistical inference to be valid, it is essential to inject the correct degree
of randomness into the imputations and to incorporate that uncertainty when computing
standard errors and confidence intervals for parameters of interest.

Here I present five ado-files. mvis creates multiple multivariate imputations. uvis
imputes missing values for a single variable as a function of several covariates, each of
the latter having complete data. micombine fits a wide variety of regression models to
a multiply imputed dataset, combining the estimates using Rubin’s rules. micombine
goes further than Carlin’s mifit routine in that it supports survival analysis models
(stcox and streg), categorical data models, generalized linear models, and more. Fi-
nally, misplit and mijoin are utilities to interconvert datasets created by mvis and by
Carlin et al. (2003)’s miset routine. I will give examples of the use of the routines and
furthermore propose a novel method for selecting the number m of imputations to give
acceptable precision for confidence intervals based on the fitted model.

2 Syntax

mvis mainvarlist using filename [if exp} [in mnge} [weight], m(#)
[b_oot[(varlist)] cc(ccvarlist) cmd(cmdlist) gcles(#) d_raw[(varlist)]

genmiss (string) id(string) on(warlist) noconstant replace ged(#)]
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uvis regression_cmd yvar zvarlist [if ewp] [in mnge] [weight], gen(newvar)

[@ot draw noconstant replace ged(#)]

where regression_cmd may be logistic, logit, mlogit, ologit, or regress. All weight
types supported by regression_cmd are allowed.

micombine regression_cmd [yvar] covarlist [if eazp] [in mnge] [weight] [,
noconstant detail eform(siring) genxb(newvar) impid(varname) lrr

regression,cmd,options]

where regression_cmd may be clogit, cnreg, glm, logistic, logit, poisson, probit,
qreg, regress, rreg, xtgee, streg, stcox, ologit, oprobit, or mlogit. All weight
types supported by regression_cmd are allowed.

mijoin, clear [m(#) iﬂid(varname)}

misplit, clear [m(#) iﬂid(vamame)]

3 Description

mvis imputes missing values in mainvarlist m times by using “switching regression”,
an iterative multivariable regression technique. Missing observations are assumed to
be missing at random (MAR) or missing completely at random (MCAR); van Buuren,
Boshuizen, and Knook (1999) explain these concepts in a clear way. Imputed variables
and all other variables not subject to imputation are stored to a new file called file-
name.dta by specifying using filename. Imputed variables are stored in filename.dta
under their original names, overwriting the original variables. The imputed variables
are stored in long format; that is, if the original dataset comprised n observations,
filename.dta will contain m X n observations.

uvis performs univariate imputation of missing values in yvar based on multiple
regression of yvar on zwvarlist combined with random draws from the conditional dis-
tribution of the missing observations, given the observed data and covariates, or by
prediction matching (see Remarks). uvis is called repeatedly by mvis in a cyclical
fashion to perform multivariate imputation. uvis does not create a new dataset but
saves the imputed variable in newwvar, as defined by the gen(newwvar) option.

micombine estimates the parameters of a regression of yvar on covarlist. The type of
model is determined by regression_cmd. Parameter estimates are combined by applying
Rubin’s rules across several imputations obtained previously by mvis.

mijoin converts datasets identified by Carlin’s miset routine to mvis format for
analysis by micombine. The component datasets are stacked (joined vertically). The
data must first be miset.
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misplit converts a dataset prepared by mvis to miset format for analysis by mifit
and other utilities. The dataset must first be read into memory.

4 Options
4.1 Options for mvis

m(#) sets the number of imputations required (the minimum is 1, with no upper limit).

boot [(varlist)} specifies that each member of varlist be imputed with the boot option
of uvis. If (warlist) is omitted, all relevant variables are imputed with the boot
option of uvis.

cc(ccvarlist) prevents imputation in members of mainvarlist for which any member of
ccvarlist has a missing value. cc() signifies “complete case”. This is a convenience
feature only and could be achieved (cumbersomely) by using if ccvarl '=. & ccvar2
'=. .... Note that variables in ccvarlist are used for imputation only if they also
appear in mainvarlist.

cmd (cmdlist) defines the regression commands to be used for each variable in mainvarlist
when it becomes the dependent variable in the switching regression procedure used
by uvis (see Remarks). The first item in cmdlist may be a command, such as
regress, or may have the syntax vars: emd, specifying that command cmd is relevant
to all the variables in vars. Subsequent items in ¢mdlist must follow the latter syntax.
For unordered categorical variables with at least three levels (e.g., blood group), e¢md
should be specified as mlogit to ensure sensible imputations by using multinomial
logistic regression. The default c¢md for a variable is logit when there are two
distinct values, mlogit when there are 3—5 values, and regress otherwise.

cycles(#) determines the number of cycles of regression switching to be carried out.
The default # is 10.

draw[(varlist)} specifies that each member of varlist be imputed with the draw option
of uvis. If (warlist) is omitted, all relevant variables are imputed with the draw
option of uvis.

genmiss (string) creates an indicator variable for the missing data in any variable in
varlist for which at least one value has been imputed. The indicator variable is set
to missing for observations excluded by if, in, etc. The indicator variable for zvar
is named stringzvar.

id(string) creates a variable called string containing the original sort order of the data.
The default string is _i.

on(wvarlist) changes the operation of mvis in a major way. With this option, uvis
imputes each member of mainvarlist univariately on varlist. This provides a conve-
nient way of producing multiple imputations when imputation for each variable in
mainvarlist is to be done univariately on a set of complete predictors.




P. Royston 231

noconstant suppresses the regression constant in all regressions.
replace permits filename to be overwritten with new data.

seed(#) sets the random number seed to #. To reproduce a set of imputations, the
same random number seed should be used. The default # is 0, meaning no seed is
set by the program.

4.2 Options for uvis

gen (newvar) creates newvar to hold the original (nonmissing) and imputed (originally
missing) values of yvar.

boot invokes a bootstrap method for creating imputed values (see Remarks).

draw draws imputations at random from the posterior distribution of the missing values
of yvar, conditional on the observed values and the members of zvarlist. The default
method of imputation is prediction matching (see Remarks).

noconstant suppresses the regression constant in all regressions.
replace permits newvar (see gen(newvar)) to be overwritten with new data.

seed(#) sets the random number seed to #. See Remarks for comments on how
to ensure reproducible imputations using the seed() option. The default # is 0,
meaning that no seed is set by the program.

4.3 Options for micombine

noconstant suppresses the regression constant in all regressions.
detail gives details of the regression model for each imputation.

eform(string) specifies that the exponentiated form of the coefficients be output and
that the constant not be reported; string is used to label the exponentiated coeffi-
cients.

genxb (newvar) creates newvar to hold the linear predictor from each regression model,
averaged over all the imputations.

impid (varname) specifies that varname is the variable identifying the imputations. The
number of imputations is determined as the number of unique values of varname.
The default varname is _j.

lrr specifies that the Li-Raghunathan—Rubin (LRR) robust estimate of the variance—
covariance matrix of the regression coefficients be used.

regression_cmd_options may be any of the options appropriate to regression_cmd.
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4.4 Options for mijoin and misplit

clear is not optional and confirms that you are willing to replace the data in memory.

impid (varname) specifies that varname is the variable identifying the imputations. The
number of imputations is determined as the number of unique values of varname.
The default varname is _j.

m(#) sets the number of imputed datasets to #.

5 Remarks

5.1 Univariate imputation

uvis (univariate imputation sampling) imputes missing values of the variable yvar from
complete cases in zvarlist. The algorithm used is exactly as described by van Buuren,
Boshuizen, and Knook (1999, section 3.2). The use of prediction matching ensures that
values are imputed only within the observed distribution of yvar.

With the boot option of uvis, the parameter 3* is estimated by regression of yvar
on zvarlist within a bootstrap sample. The bootstrap method has the advantage of
robustness since it is not necessary to assume that 3 is normally distributed.

Some comments are required about prediction matching when yvar is a categoric
variable. When yvar is binary and logistic regression is used, no issue arises. Prediction
matching may be done on the logistic or the probability scale, almost always with iden-
tical results (uvis uses the logistic scale). With multicategory predictors, either ordinal
(ologit) or multinomial (mlogit) logistic regression may be used to model yvar, as ap-
propriate. In such cases, for a given missing value of yvar, one finds the observed value
of yvar that minimizes the mean absolute difference between the logits of the predicted
class probabilities. Specifically, let Tobs;i;; and Tmis;; denote the predicted probability
that the 7th nonmissing observation and the target missing observation of yvar, respec-
tively, will fall into class j (j = 1,...,K). These predictions are obtained from an
ologit or mlogit fit of yvar on zvarlist. The imputation for the target observation is
observation number

K
arg min E |10git (%obs;i;j) — logit (%mis;j”
O
j_

among the nonmissing values of yvar.

5.2 Multivariate imputation

mvis carries out multivariate imputation on mainvarlist by using “regression switching”
(van Buuren, Boshuizen, and Knook [1999]). The algorithm is a type of Gibbs sampler
in which the distribution of missing values of a covariate is sampled conditional on the
distribution of the remaining covariates. Each variable in mainvarlist becomes in turn
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the response variable; uvis is used to impute its missing values univariately on the
remaining variables. Let the variables in mainvarlist be x1,xo,...,z. The procedure
is as follows:

1. Ignore observations for which every member of x1,xs,..., 2, or any member of
cevarlist (if there are any) has a missing value.

2. For each variable with any missing data in z1,xs,..., 2, randomly order that
variable and replicate its observed values across the missing cases. This step
initializes the iterative procedure by filling in missing data at random.

3. For each of x1,xs,..., 2k, in turn, impute missing values by applying uvis with
the remaining variables as covariates.

4. Repeat step 3 # times, where # is specified by the cycles(#) option. At each
cycle, replace previous imputations with updated ones obtained from the latest
application of uvis. This creates a single imputation sample.

5. To obtain m imputations, repeat the procedure m times independently. The
number of imputations is controlled by the m(#) option of mvis.

At step 4, van Buuren, Boshuizen, and Knook (1999) recommend 20 cycles but go
on to say that 10 or even 5 are probably sufficient. I chose to use a default of 10.

6 Example

We will again work with the breast cancer dataset which was analyzed in detail by
Sauerbrei and Royston (1999). The data are provided in brcancer.dta and relate to
a set of 686 patients with node-positive breast cancer. The outcome of interest is the
recurrence-free survival time (RFS), that is, the duration in years from entry into the
study (typically, the time of diagnosis of primary breast cancer) until either death or
disease recurrence, whichever occurred first. There were 299 events for this outcome
and the median follow-up time was about 5 years.

Sauerbrei and Royston (1999) derived a Cox proportional-hazards model for RFS
that included five covariates: age (x1) with a fractional polynomial transformation
with powers —2 and —0.5, tumor grade 2/3 (x4a), number of positive lymph nodes (x5)
with the exponential transformation x5e = exp (—0.12 * x5), progesterone receptors (x6)
with a fractional polynomial transformation with power 0.5, and hormonal therapy with
tamoxifen (hormon). This model may be fit in Stata as follows:

(Continued on next page)
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. webuse brcancer
(German breast cancer data)
stset rectime, fail(censrec)

failure event: censrec != 0 & censrec < .
obs. time interval: (0, rectime]
exit on or before: failure

686 total obs.
0 exclusions

686 obs. remaining, representing
299 failures in single record/single failure data

771400 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 2659

. fracgen x1 -2 -0.5

-> gen double x1_1 = X"-2

-> gen double x1_2 = X"-0.5
(where: X = x1/10)

. fracgen x6 0.5
-> gen double x6_1 = X70.5
(where: X = (x6+1)/1000)

stcox x1_1 x1_2 x4a xbe x6_1 hormon, nohr

failure _d: censrec

analysis time _t: rectime

Iteration O: log likelihood = -1788.1731
(Iteration log omitted)

Cox regression -- Breslow method for ties
No. of subjects = 686 Number of obs = 686
No. of failures = 299
Time at risk = 771400
LR chi2(6) = 1563.11
Log likelihood = -1711.6186 Prob > chi2 = 0.0000
_t Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
x1_1 43.55382  8.253433 5.28 0.000 27.37738 59.73025
x1_2 -17.48136  3.911882 -4.47  0.000 -25.14851  -9.814212
x4a .5174351 .2493739 2.07 0.038 .0286713 1.006199
x5e -1.981213 .2268903 -8.73  0.000 -2.425909 -1.536516
x6_1 -1.84008 .3508432 -5.24  0.000 -2.52772 -1.15244
hormon -.3944998 .128097 -3.08 0.002 -.6455654 -.1434342

Note the use of fracgen to transform the covariates and stcox to fit the Cox model.
(In fact, this model could have been fitted in one step by fracpoly, but such usage
does not generalize to multiple imputation with micombine.)

To illustrate multiple imputation, I created from brcancer.dta a new dataset
brcaex.dta in which approximately 20% of the observations on the five covariates
x1, x4a, x5e, x6, and hormon were replaced completely at random with missing values,
creating new covariates called mx1, mx4a, mx5e, mx6, and mhormon. Five imputations of
the missing values were created as follows:
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. use brcaex, clear
(German breast cancer data)

. mvis mx1l mx4a mx5e mx6 mhormon lnt _d using brcaeximp, m(5) genmiss(m_) seed(
> 101)
imputing 1..2..3..4..5..file brcaeximp.dta saved

The mvis command saves the imputations to a new file, brcaeximp.dta, with the
original variable names mx1, mx4a, mx5e, mx6, and mhormon intact and with all the
missing values replaced by imputations. This format is suitable for use by micombine.
As recommended by van Buuren, Boshuizen, and Knook (1999), the (log) survival time
1nt and the censoring indicator _d are included in the imputation model.

Here we use micombine to fit Sauerbrei and Royston’s model and obtain appropriate
parameter estimates and standard errors. First, the new dataset is loaded and the
requisite fractional polynomial transformations are applied to mx1 and mx6:

. use brcaeximp, clear
(German breast cancer data)

. fracgen mxl -2 -0.5

-> gen double mx1_1 = X"-2

-> gen double mx1_2 = X"-0.5
(where: X = mx1/10)

. fracgen mx6 0.5
-> gen double mx6_1 = X70.5
(where: X = (mx6+1)/1000)

Finally, the model is fit on each imputation, and combined estimates are obtained:

. micombine stcox mx1_1 mx1_2 mx4a mx5e mx6_1 mhormon

Multiple imputation parameter estimates (5 imputations)

_t Coef. Std. Err. z P>|z| [95% Conf. Intervall
mx1_1 42.35447 14.14086 3.00 0.003 14.63889 70.07004
mx1_2 -16.83557 6.331493 -2.66 0.008 -29.24507 -4.426075

mx4a .695139 .2944367 2.36 0.018 .1180537 1.272224
mx5e -1.862887 .2759056 -6.75 0.000 -2.403652 -1.322122
mx6_1 -1.81862 .4307429 -4.22 0.000 -2.662861 -.9743798
mhormon -.3781116 .1681751 -2.25 0.025 -.7077288 —-.0484944

686 observations.

The results may be compared with those from the original data presented above.
The parameter estimates are similar, but since some information has been lost, the
standard errors are larger with the imputed data.

6.1 A note on prediction

For a given observation, the multiple-imputation estimate of the linear predictor or
index (xb) is the average of the estimated linear predictors over the m imputations.
This may be computed by specifying the genxb (newvar) option of micombine. Out-of-
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sample predictions from the combined model in each imputation may be found by using
the predict command immediately after using micombine. Predictions from fitting the
model separately in each imputation require the use of the forvalues command with
if filtration by the values of the imputation indicator variable (_j). The model is fitted
in each imputation and predict is then used for prediction.

6.2 A note on the imputation model

Inspection of the imputations for the breast cancer example shows that the imputed
observations are only weakly correlated with the original ones. Consider the strongest
factor, the number of positive lymph nodes (x5). The Spearman rank correlations for
the five imputations between the original and imputed values of x5, computed at the
20% of randomly deleted values are only 0.16, 0.15, 0.09, 0.05, and 0.15. As an exper-
iment, five additional imputations of each prognostic factor were made independently
by applying uvis with single, random, uniformly distributed variables as predictors.
The deviance, or minus twice the maximized partial log likelihood from each dataset,
averaged over the five imputations, was 3470.8, compared with 3437.5 for the imputa-
tions based on the prognostic factors and survival time, and 3423.2 for the model fitted
to the data before deletions. To compute the deviances, the linear predictor from the
combined model was calculated in each dataset, and the partial likelihood was calcu-
lated for a Cox model with no covariates and with the linear predictor offset. The loss of
predictive accuracy (measured by the deviance) was 14.3 for the prognostic factor-based
imputations, compared with 47.6 for the random imputations. This simple experiment
demonstrates the importance of preserving the multivariate structure of the original
predictors in the imputations, even when the predictive power of the imputation model
is not large. Use of completely random imputations is likely to give suboptimal results.

7 Choice of m

There is little discussion in the literature as to how large the number m of imputations
should be. Quoting Rubin (1987), van Buuren, Boshuizen, and Knook (1999) say that
“Simulation studies have shown that ... m can be as low as three for data with 20
percent of missing entries. In the following I use m = 5, which is a conservative choice”.
The basis of this statement seems to concern the precision of the vector § of regres-
sion coefficients. However, the variance—covariance matrix of 3 is also important; in
particular, sufficiently accurate confidence intervals for § are desirable. Based on such
considerations, I shall suggest an approach to determining m. This should be seen as
an initial proposal, which I hope will stimulate further research on the topic.

7.1 Rubin’s rules

First, I need to state Rubin’s rules for estimating a scalar quantity @ based on values
from m complete-data imputations. For example, ) could be one of the components
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of B. Let @; and W, denote the point estimate and variance respectively from the jth
(j=1,...,m) complete dataset. The multiple-imputation point estimate Q* of @ is

the arithmetic mean of the m complete-data estimates. The estimated variance T' of @
is obtained by a components-of-variance argument, leading to the following formulas

T:W+(1+l>3
m

where

<
3
=

W= W;

B=—3(Q -

j=1

3 3|~
I

are the within- and between-imputation components of variance, respectively. For con-
fidence intervals, Rubin (1987) gives the approximation

Q £, VT

where the degrees of freedom v are estimated by

W 2
V:(m—l){l‘i‘m}

m

and where t, is the appropriate fractile of the central ¢ distribution on v degree of
freedom. Note that both v and T are estimated from the data and that both depend on
the quantity B. Note also that v depends on (VV/B)27 a quantity that may have a large
variance and a highly skew distribution. B itself is an estimated variance with m — 1
degrees of freedom.

7.2 Unreliable confidence intervals?

I explored the potential instability of the confidence coefficient t,/T within the breast
cancer data. The confidence level chosen was 95%, so for example, for v = 15.8 (note
that v may be fractional here), ¢, = 2.122. Using mvis as described above, I created
a large dataset comprising M = 450 complete-data imputations from the artificially
censored dataset brcaex.dta. For each of m = 3, 5, 10, 20, and 50, I computed
the mean and 95% confidence interval for ¢,v/T. This was done by breaking the M
imputed datasets into blocks of M/m datasets, applying micombine to each block of
m imputations, and finally, summarizing the resulting replicated values of t,v/T. For
example, with m = 3, there were 450/3 = 150 such blocks; therefore, the summary
statistics are based on 150 observations. Figure 1 shows for each covariate, numbered
from 1 to 6, how t,v/T, shown as a 95% empirical confidence interval, depends on m.
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Confidence coefficient and number of imputations
by variable number
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Figure 1: Breast cancer data: dependence of the 95% confidence interval for the confi-
dence coefficient, ¢,/T on the number of imputations, m.

For each of the six covariates, there is a similar pattern of dependence on m. The
gradual reduction of the confidence coefficient with increasing m occurs because both T’
and ¢, are inversely related to m. Confidence intervals for @) are correspondingly wider
for lower m.

Figure 2 shows the coefficient of variation (CV = 100x standard deviation divided
by the mean) of the confidence coefficient, in a format similar to figure 1.
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Unreliable estimation of confidence coefficient
by variable number
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Figure 2: Breast cancer data: Coefficient of variation (100 x S.D. divided by mean) of
the confidence coeflicient.

The graph illustrates that the estimated confidence coefficient may be very variable
for low m, and this translates into unreliable confidence intervals for . For example,
with m = 5, a favorite literature choice, the CV is in the region of 13% in this example.
The ¢V may be doubled to indicate roughly the range of uncertainty in confidence
intervals for @, in this example giving the unacceptably large figure of +26%.

7.3 A rule of thumb for selecting m

Based on the foregoing analysis, I propose the following rule of thumb: choose m to be
large enough such that the CV of the confidence coefficient for the worst-case parameter
is < 5%. An approximately equivalent criterion would be to require the standard
deviation of In(confidence coefficient) to be < 0.05. This is somewhat more convenient
to compute. The worst-case parameter will typically attach to the variable with the
greatest proportion of missing data. The rule implies that the range of uncertainty in
confidence intervals for ) will be roughly < 10%. In the example discussed above, the
rule would require m to be at least 20 and possibly more (see figure 2).

To apply the rule, the CVv should be evaluated for all parameters for which accu-
rate estimates and confidence intervals are of central interest. This might exclude, for
example, confounders (adjustment variables) in the analysis of epidemiological data.
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Parameters for confounders are not normally of interest. The CV may be evaluated
in the way I have indicated, by creating replicate sets of multiple imputations, using
micombine on each and summarizing the results by standard methods. Pointers to a
high cVv for a given variable are a large fraction of missing data or a large value (say,
> 1.2) of the between-imputation inflation factor or BIF, /T/W. The latter quan-
tity reflects the inflation in the standard error of a parameter due to variation between
imputations. The quantities B, W, T, v, and BIF are returned by micombine in the
matrices e(B), e(W), e(V), e(nu), and e(BIF), respectively. Specifically, e(B), e(W),
and e(V) are covariance matrices for the full parameter vector 3, whereas e(nu) and
e(BIF) are column vectors with an entry for each element of 3.

An ado-file called postmi.ado to facilitate these calculations is under development
and will be published separately. A beta version can be obtained from the author
(patrick.royston@ctu.mrc.ac.uk).

8 Further comments

Sometimes it is necessary to investigate possible models, for example, prognostic models,
in which selection of influential variables is required and there are missing data. See
Clark and Altman (2003) for an interesting example. For example, the stability of the
final model across the imputation samples is of interest.

In survival analysis, it is recommended that the log of the survival time and the cen-
soring indicator be used as predictors in the imputation model. van Buuren, Boshuizen,
and Knook (1999) give a detailed discussion of the different types of covariate that can
be included in the imputation model and suggest an approach to dealing with variables
that are missing not at random (MNAR).

In the present implementation of multivariate imputation sampling in mvis, all the
variables in wvarlist are used for imputation of all the others. This restriction could in
principle be lifted, but it is not clear whether the additional complexity would improve
the results much.

See also van Buuren’s web site http://www.multiple-imputation.com for further in-
formation and other software sources.

Finally, a note of caution. If the MAR assumption is valid, the methods imple-
mented here will give correct results—but the assumption is hard to check. Common
sense suggests that, as the proportion of missing observations on a given variable in-
creases, the reliability of estimates (e.g., regression coefficients) relating to that variable
will diminish. It is expected that the variance of estimates will increase, but if the
MAR assumption breaks down, their (unknown) bias will also increase. Although no
reliable rule of thumb is available, in my practice I am not comfortable with imputing
missing values for a variable in which the proportion of missing observations exceeds
approximately 50%.
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Abstract. This article describes a substantial update to mvis, which brings it
more closely in line with the feature set of S. van Buuren and C. G. M. Oudshoorn’s
implementation of the MICE system in R and S-PLUS (for details, see
http://www.multiple-imputation.com). To make a clear distinction from mvis, the
principal program of the new Stata release is called ice. I will give details of how
to use the new features and a practical illustrative example using real data. All
the facilities of mvis are retained by ice. Some improvements to micombine for
computing estimates from multiply imputed datasets are also described.

Keywords: st0067_1, ice, mvis, uvis, micombine, mijoin, misplit, missing data,
missing at random, multiple imputation, multivariate imputation, regression mod-
eling

1 Introduction

Royston (2004) introduced mvis, an implementation for Stata of a method of multiple
multivariate imputation of missing values under missing-at-random (MAR) assumptions.
The method is known as MICE, an acronym for multiple imputation by chained equations
(van Buuren et al. 1999). See van Buuren’s article for details of the theory behind
MICE and his interesting web site http://www.multiple-imputation.com for abundant
literature references, reports, information, and software links. The material will not be
repeated here.

Royston (2004) presented five ado-files: mvis to create multiple multivariate im-
putations; uvis to impute missing values of a single variable as a function of several
covariates, each with complete data; micombine to fit a wide variety of regression mod-
els to a multiply imputed dataset, combining the estimates using Rubin’s rules (1987);
and misplit and mijoin, utilities to inter-convert datasets created by mvis and by
Carlin et al.’s miset routine (2003).

In this article, I will describe a substantial update to mvis, which brings it more
closely in line with the feature set of S. van Buuren and C. G. M. Oudshoorn’s imple-
mentation of MICE in R and S-PLUS (for details, see
http://www.multiple-imputation.com). To avoid confusion with mvis, the principal
program of the new Stata release is called ice. I will give details of how to use the new
features and a practical illustrative example using real data. All the facilities of mvis
are retained by ice. Some improvements to micombine are also described.

© 2005 StataCorp LP st0067_1
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2 Syntax

ice mainvarlist using ﬁlename[.dta} [if exp] [in mnge} [weight] [,
b_oot[(varlz'st)] cc(ecvarlist) cmd(emdlist) cycles(#) d_raw[('uarlist)]
dryrun eq(eqglist) genmiss(string) id(string) m(#) on(varlist) noconstant

noshoweq passive (passivelist) substitute(sublist) replace seed(#) }

uvis regression_cmd yvar zvarlist [if emp} [in mnge] [weight] ,
gen(newvamame) [noconstant boot draw replace ged(#)]
where regression_cmd may be logistic, logit, mlogit, ologit, or regress. All weight

types supported by regression_cmd are allowed.

micombine regression_cmd [yvar} [covarlist} [if exp] [in mnge} [weight] [,
br noconstant detail eform(string) genxb(newvarname) impid(varname)

lrr obsid(warname) regression_cmd_options ]

where regression_cmd may be clogit, cnreg, glm, logistic, logit, poisson, probit,
qreg, regress, rreg, xtgee, streg, stcox, ologit, oprobit, or mlogit. All weight
types supported by regression_cmd are allowed.

mijoin [ﬁlestubname], clear [m(#) iﬂid(vamame)}

misplit, clear [m(#) iﬂid(varname)}

The options are described in the help files. Features new to mvis and now in ice are
discussed in some detail in the next section. New features of micombine are discussed
in the section Changes to micombine.

3 Options

I shall give details here only of options that are new or modified from the previous
release of the suite of programs.

3.1 New options for ice

dryrun does a “dry run”; that is, ice reports the prediction equations it has constructed
from the various inputs. No imputation is done, and no files are created. It is not
mandatory to specify an output file with using for a dry run. The prediction
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equation setup needs to be carefully checked before running what may be a lengthy
imputation process.

eq(eqlist) allows customization of prediction equations for any subset of variables in
mainvarlist. The eq() option, particularly when used with passive(), allows
great flexibility in the possible imputation schemes. The syntax of eqlist is var-
namel: varlist1 [, varname2: varlist2 ...]where each varname# (or varlist#) is a
member or subset of mainvarlist. It is your responsibility to ensure that each
equation is sensible. ice places no restrictions except to check that all variables
mentioned are indeed in mainvarlist, and that an equation is not defined for a
variable specified to be passively imputed (see the passive() option). Note that
eq() takes precedence over all default definitions and assumptions about the way a
given variable in mainvarlist will be imputed. The default, if the passive() and
substitute () options are not invoked, is that each variable in mainvarlist with any
missing data is imputed from all the other variables in mainvarlist.

noshoweq suppresses the presentation of the prediction equations.

passive (passivelist) allows the use of “passive” imputation of variables that depend on
other variables, some of which are imputed. The syntax of passivelist is varname: exp
[\vamame:ewp } Here ezp denotes a valid Stata expression (see help exp in
Stata). Notice the requirement to use ‘\’ as a separator between items in passivelist,
rather than the usual comma; the reason is that a comma may be a valid part of an
expression. The option is most easily explained by example. Suppose that x1 is a
categorical variable with 3 levels, and that two dummy variables x1a and x1b have
been created by the commands

. generate byte xla=(x1==2)
. generate byte x1b=(x1==3)

Now suppose that x1 is to be imputed by the mlogit command and is to be treated
as the two dummy variables x1a and x1b when predicting other variables. Use of
mlogit is achieved by the option cmd(x1:mlogit). When x1 is imputed, we want
xla and x1b to be updated with new values that depend on the imputed values
of x1. This may be achieved by specifying passive(xla:x1==2\x1b:x1==3). It is
necessary also to remove x1 from the list of predictors when variables other than
x1 are being imputed, and this is done by using the substitute() option; in the
present example, you would specify substitute(xl:xla x1b). In this example,
the generate statements given above will make x1a take the (possibly unintended)
value of 0 when x1 is missing. However, ice is careful to ensure that xla and x1b
inherit the missingness of x1 and are passively imputed following active imputation
of missing values of x1. If this were not done, incorrect results could occur. The
responsibility of the user is to create x1a and x1b before running ice such that their
missing values are identical to those of x1. The values they assume initially are
irrelevant since ice recalculates them anyway.

A second example is multiplicative interactions between variables, say, between x1
and x2 (e.g., x12=x1*x2); this could be implemented through passive (x12:x1%*x2).
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It would cause the interaction term x12 to be omitted when either x1 or x2 was being
imputed since it would make no sense to impute x1 from its interaction with x2.
The substitute() option is not needed here. It should be stressed that variables
to be imputed passively must be included in mainvarlist; otherwise, they will not be
recognized.

substitute (sublist) is typically used with the passive () option to represent multilevel
categorical variables as dummy variables in models for predicting other variables.
See passive() for more details. The syntax of sublist is varname: dummyvarlist
[, varname: dummyvarlist . . .]7 where varname is the name of a variable to be sub-
stituted and dummyvarlist is the list of dummy variables representing it.

3.2 Options for uvis, mijoin, misplit, micombine

None of the options for uvis, mijoin, misplit have been changed. Details of some
changes to micombine are given in the section Changes to micombine.

4 \What is new?

The changes to mvis implemented in ice mainly affect two areas:

1. The flexibility of the prediction equations used in the system of chained equations
and

2. The way the program handles categorical variables, interactions, and transforma-
tions.

4.1 Flexible prediction equations

The earlier program mvis is restricted to imputing missing observations for each variable
in mainvarlist from all the other members of mainvarlist. While this is sensible in many
applications, there are many other cases in which greater flexibility is needed. I will
give a relatively simple example in the section Example: Fetal size. With the eq()
option of ice, an equation (i.e., a list of right-hand-side variables, comprising part of
a model) may be specified in order to impute any variable in mainvarlist from any
subset of mainvarlist. The eq() option overrides all automatic behavior invoked by
the passive () and substitute() options (described in context below), giving the user
ultimate control over the prediction equations.

4.2 Categorical variables

mvis does not handle categorical variables in an ideal fashion. For example, suppose
that x1 is continuous and x2 is a three-level unordered categorical variable taking the
values 0, 1, 2, both variables having missing data. It would be preferable to impute
x1 by linear regression on dummy variables x21 and x22 indicating values of 1 and 2,
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respectively, of x2. A natural way to impute x2 is by multinomial logistic regression
(mlogit command) of x2 on x1. A possible way to achieve this with mvis may be
thought to be

. generate byte x21=(x2==1) if x2<.
. generate byte x22=(x2==2) if x2<.
. mvis x1 x2 using temp, m(5) cmd(x2:mlogit)

However, although appropriate for predicting x2, this approach predicts x1 from x2 but
not from the dummy variables x21 and x22, which are not used. An alternative scheme
with dummy variables for x2,

. mvis x1 x21 x22 using temp, m(5) cmd(x21 x22:logit)

does not allow constrained imputation of x2 (as would be achieved by using mlogit).
The result could be inconsistent estimates of the missing values of x2 when the latter is
reconstucted from the original and imputed values of x21 and x22. For example, suppose
that x2 = 2 in a particular observation. Then x21 = 0 and x22 = 1. Suppose that x2
were missing for this observation and that x21 and x22 were imputed independently, as
in the command above. It could happen by chance that x21 = 1 and x22 = 1, which
do not encode a possible value of x2. An appropriate solution with ice is

. ice x1 x2 x12 x22 using temp, m(5) cmd(x2:mlogit)
passive(x21:x2==1\x22:x2==2) substitute(x2:x21 x22)

The logic here is worth spelling out. mainvarlist must include all variables that are
involved in the imputation; hence x2 and both its dummy variables are listed. However,
we do not wish to predict x1 from x2 x12 x22, but only from x12 x22. This is achieved
by the option substitute(x2:x21 x22), which replaces x2 with x21 x22 whenever x2
is a predictor and removes redundant mentions of variables already included. Finally,
it is necessary to construct imputed values of x21 and x22 from imputed values of x2,
the latter being obtained internally via the model mlogit x2 x1. This is done by the
option passive (x21:x2==1\x22:x2==2), which recalculates the dummy variables from
the newly imputed values of x2.

Although it may at first sight appear complicated, the approach is consistent. The
options passive(), substitute(), and eq() together cover all practical possibilities
with categorical variables in a unified syntax. More generally, passive imputation (a term
coined, I believe, by Steff van Buuren) is an important feature of the MICE system for
dealing flexibly with categorical covariates, interactions, transformations and the like.
The substitute() option is mainly a convenience feature, since substitution could be
achieved explicitly by use of the eq() option, for example, eq(x1:x21 x22) instead of
substitute(x2:x21 x22).

4.3 Interactions

Correct imputation involving multiplicative interactions requires the passive () option.
Suppose that we plan to impute continuous variables x1 and x2 and a binary variable
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z. Suppose also that there are good reasons for imputing x2 from the main effects and
interaction of x1 with z, that is from x1, z, and a new variable x1z = x1*z. How do
we impute x1 and z in this situation? If we were to specify

. generate xlz=xlx*z
. ice x1 x2 z x1z using temp, m(5)

we would get x2 imputed from x1, z, and x1z (as required); x1 from x2, z, and x1z;
and z from x1, x2, and x1z. However, it makes no sense to impute a variable from its
interaction with another variable. We wish to eliminate the interaction term x1z from
the prediction equations for x1 and z. Even if the problem were tackled by using the
eq() option, because of the danger of inconsistency we do not want the imputation of
x1z to be treated independently of the imputation of its components, x1 and z. The way
to solve the problem is to use the passive() option. Note also the dryrun option that
allows us to see and check the prediction equations but not yet to run the imputations:

. ice x1 x2 z x1z using temp, m(5) passive(xlz:x1*z) dryrun

Variable Command | Prediction equation
x1 [No missing data in estimation sample]
X2 | regress x1 z x1z
z | mlogit x1 x2
x1z [Passively imputed from x1x*z]

End of dry run. No imputations were done, no files were created.

As seen above, ice automatically removes the composite passive variable x1z from the
relevant prediction equations. When it discerns that x1z is computed from x1 and z, it
knows to exclude x1z from the prediction equations for imputing x1 and z. This would
happen with any variable that is a combination of others.

4.4 Transformations

Simple or complex transformations may be handled by combining the passive() and
eq() options. Here is a fairly complicated but realistic example, which prefigures the
example presented in detail in the section Example: Fetal size. Suppose that we have
three continuous variables y1, y2, and x, all with missing values. Preliminary analysis
indicates that the following prediction equations are appropriate:

E () = iz~ + foz?
E (y2) = mz + 722”
E (z) = 01y1 + 0212

In other words, in expectation, y1 is a fractional polynomial function of x with powers
(—2,—1), y2 is a quadratic function of x, and x is a linear function of y1 and y2. You
may imagine y1 and y2 to be two response variables linked to a common covariate, x.
With this imputation scheme, missing values may be imputed in ice as follows:

. generate xa=x"-2

. generate xb=x"-1
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. generate xc=x"2

. ice y1 y2 x xa xb xc using temp, m(5) passive(xa:x"-2\xb:x"-1\xc:x"2)
> eq(yl:xa xb, y2:x xc, x:yl y2)

Variable | Command Prediction equation
yi regress xa xb
y2 | regress X XC
X | regress yl y2
xa [Passively imputed from x~-2]
xb [Passively imputed from x~-1]
xC [Passively imputed from x~2]

Here the equation for each variable must be defined explicitly, and this is easily done
by using the eq() option.

4.5 More on passively imputed variables

Passive (passively imputed) variables in general are computed directly as a function of
one or more active (actively imputed) variables. They inherit their missing values from
their component active variables. An active variable is a member of mainvarlist that is
not defined as passive and that has at least one missing value in the estimation sample.
Finally, there is a third class of fully observed variables that have no missing values
within the estimation sample defined by if, in, and weights.

It is sometimes convenient to create passive variables as a function of other passive
(and perhaps also of active and fully observed) variables. This will work fine provided
that the chain of computation of passive variables is correctly reflected in the order of
the variables presented in mainvarlist. For example, the command

. ice y x z xa xaz using temp, m(5) passive(xa:x"-2\xaz:xa*z)
eq(y:xa z xaz, x:y z, z:y xa)

will compute xa=x"-2 followed by xaz=xa*z, which is appropriate since x and z precede
xa and xa precedes xaz in mainvarlist. On the other hand, on reversing xa and xaz in
mainvarlist, namely

. ice y x z xaz xa using temp, m(5) passive(xa:x"-2\xaz:xa*z)
eq(y:xa z xaz, x:y z, z:y xa)

will cause ice to recalculate xaz before xa has been updated from x. This will give
incorrect results. The rule is simple: structure mainvarlist such that primary passive
variables (that is, variables that are derived only from active variables) precede sec-
ondary passive variables (which depend on primary passive variables) and the latter
precede tertiary passive variables (which involve secondary passive variables), and so
on. The order of definition of passive variables in the passive() option is immaterial.

Note that secondary and higher-order passive variables are not traced back to their
original active variables and are therefore not automatically removed from the prediction
equations of the relevant active variables. Consider the example
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. ice x1 x2 z zl1 z2 x2z1 x22z2 using temp, replace m(5) substitute(z:zl z2)
> passive(zl:z==1\22:z==2\x2z1:x2*21\x222:x2*22)

Variable | Command Prediction equation
x1 regress x2 zl1 z2 x2z1 x2z2
x2 | regress x1 z1 z2
z | mlogit x1 x2 x2z1 x2z2
z1 [Passively imputed from z==1]
z2 [Passively imputed from z==2]
x2z1 [Passively imputed from x2%z1]
x2z2 [Passively imputed from x2*z2]

We see that z is inappropriately going to be predicted from x1, x2, and z’s interaction
with x2, expressed indirectly through the interaction between x2 and z1, z2. Here, x2z1
and x2z2 are defined as secondary passive variables. To correct the problem, you could
either specify the equation for z directly, e.g., eq(z:x1 x2) or define only primary pas-
sive variables, as in passive(zl:z==1\2z2:2==2\x2z1:x2*(2z==1)\x222:x2*(2z==2)).
The second solution is perhaps cleaner, though more laborious.

5 Example: Fetal size
5.1 Data

I will present an example that is rather different from the usual sort of imputation
problem encountered in clinical biostatistics and epidemiology. Some 15 years ago,
Altman and Chitty (1993) designed and performed an influential study of the growth of
the fetus. The aim was to establish gestational age-specific reference intervals (“normal
ranges” ) for each of a large number of in-utero “parameters” (anthropometric measure-
ments) of fetal size. In each of 649 singleton pregnancies, ultrasound scanning of the
abdomen was carried out once on each mother according to a predefined study sched-
ule. The intention was adequately to cover the important gestational period between
12 and 42 weeks, and this was largely achieved. The dataset is therefore cross-sectional
in character. A longitudinal study of growth was also performed, but I will not consider
that here.

In this example, I will consider a subset of the study dataset comprising just 4 vari-
ables: gestational age (ga) in weeks (measured to the nearest day), and three fetal-size
measurements: abdominal circumference (ac), head circumference (hc), and mandible
(jawbone) length (ml). The pairwise rank correlations and relative sample sizes are
shown in table 1.

The data for ac and hc are > 90% complete, whereas only about a quarter of
fetuses had mandible measurements. The clinical reason is that it is difficult to make
accurate measurements of this structure. Values taken after 28 weeks’ gestation are
regarded by ultrasonographers as unreliable and have been discarded. Note the high
rank correlations among all four variables.
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Table 1: Rank correlations among variables in the fetal-size dataset (n = 649), based
on available pairs of nonmissing observations. Values in parentheses are the percentage
of complete observations for the variable or pair of variables in question. Only ga had
complete data

Variable | ac hc ml ga

ac 1.000 (94%)

hc 0.991 (86%) | 1.000 (92%)

ml 0.948 (25%) | 0.951 (25%) | 1.000 (26%)

ga 0.988 (94%) | 0.989 (92%) | 0.947 (26%) | 1.000 (100%)

5.2 Developing the imputation model

I will use the data to illustrate certain aspects of multiple imputation and the use of
ice. Imagine that we wished to get some idea of what mandible length looks like after
28 weeks. Such a result would clearly be an extrapolation beyond observed data and
should not be regarded as reliable. However, the strong relationships among the body-
structure measurements indicated by table 1 makes it appealing to investigate what (if
anything) can be done with m1.

All three fetal-size variables show variance increasing with ga, the trend being largely
removed by log transformation of fetal size. I will therefore work with the logarithmic
transformations 1nac, 1nhc, and 1nml. Investigation of the relationships between each
log fetal-size variable and the others and ga was done with Stata’s mfp command for
multivariable fractional polynomial (MFP) modeling. To avoid instability, the log trans-
formed variables were not further transformed in the model-building phase, whereas ga
was allowed up to a second degree FP transformation. Further, due to the large propor-
tion (74%) of missing data in m1, it seemed sensible to exclude 1nml from the prediction
of 1nac and 1lnhc. Model selection was performed at the a = 0.05 significance level.
For 1nac, for example, the command was

. mfp lnac lhhc ga, select(0.05) df(1, ga:4)

FP2 functions of ga were selected, with powers of (—2, 3) for 1nac and (0, 2) for 1nhc. For
predicting 1nm1, only 1nac and 1nhc were needed, ga being eliminated as not significant
at the 0.05 level, conditional on 1nac and 1nhc. Variance explained by the model was
99% for 1nac and 1nhc and 94% for 1nml. Gestational age was complete and therefore
required no imputation model.

5.3 Imputation

The prediction-equation matrix for lnac, 1nhc, and 1nml obtained by MFP modeling is
shown in table 2.
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Table 2: Prediction equations for the fetal-size dataset

Variable Predictor

Inac Inhc Inml ga
lnac Linear - FP2(—2,3)
1nhc Linear - - FP2(0,2)
1nml Linear | Linear - -
ga - - -

The transformations FP2(—2,3) and FP2(0,2) were applied to x = ga denoting, respec-
tively, the models By + Bi1z~2 + Bo2® and By + B1Inz + o2, The implementation in
ice is as follows: first, the FP transformations are computed and then the imputation
itself. For present purposes, we will create just one imputation and store the data in a
new file called fetalimp.dta. The following commands are required:

. generate ga_l=ga”-2
. generate ga_2=ga”3

. generate ga_3=1n(ga)
. generate ga_4=ga”2

. ice lnac lnhc 1lnml ga_1 ga_2 ga_3 ga_4 using fetalimp, m(1) genmiss(m_)
> eq(lnac:1nhc ga_1 ga_2, lnhc:lnac ga_3 ga_4, lnml:lnac lnhc)

Variable | Command Prediction equation

lnac | regress Inhc ga_1 ga_2

lnhc | regress lnac ga_3 ga_4

1nml | regress Inac 1lnhc

ga_1 [No missing data in estimation sample]
ga_2 [No missing data in estimation sample]
ga_3 [No missing data in estimation sample]
ga_4 [No missing data in estimation sample]

Imputing 1..file fetalimp.dta saved

The results for 1nml are shown as a graph of 1nml against ga in figure 1.

(Continued on next page)
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Imputation of log mandible length
Prediction matching
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Figure 1: Original and imputed values of log mandible length using prediction matching

Although all missing values of 1nml have been replaced, the results are unsatisfactory
since a constant has been imputed for ga > 30 weeks. The reason is that, by default,
ice has used prediction matching to obtain imputed values. Since the distribution of
Inml is not represented in the data beyond 28 weeks’ gestation, ice has been forced to
match according to the predictions at the highest available ga values for which 1nml is

not missing.

To make the imputation more realistic and useful, prediction matching may be
replaced by random draws from the posterior distribution of the log fetal-size variables.
This is achieved by adding the option draw(lnac lnhc 1nml) to the ice command.
The plot equivalent to figure 1 is shown in figure 2.

(Continued on next page)
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Imputation of log mandible length
Random draws from posterior
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Figure 2: Original and imputed values of log mandible length using random draws from
the posterior distribution of the three log fetal-size variables

The results are visually much more satisfactory. Mean log mandible length continues to
increase smoothly right to the end of pregnancy, flattening off as the birth size of the
fetus is approached. It should of course be stressed once again that the behavior seen
in figure 2 is an extrapolation based on the assumption that the relationship between
the four variables is similar in the extrapolation region to that in the region where data
are observed. This is a strong assumption and, in the present example, is essentially
uncheckable. However, the example does show the ability of ice to produce what seem
to be reasonable estimates of unobserved quantities, with a plausible amount of random
variation injected.

If ga had missing values, the ice command would need to include the option
passive(ga_l:ga"-2\ga_2:ga"3\ga_3:1n(ga)\ga_4:ga~2). The revised command
would create the prediction equation lnac lnhc 1lnml for ga.

6 Changes to micombine

6.1 New options

There are two new options for micombine: impid(varname) and br. Both have been
added in response to user requests. The first of these options allows data created
outside of ice to be analyzed by using micombine. varname is the name of a variable
identifying the imputations. The number of imputations is determined as the number
of unique values of varname. The default varname is _j, the name used by ice when
creating a dataset of imputations. The second new option, br, defines more precise
degrees of freedom (d.f.) and confidence interval for each estimated regression coefficient.
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The method is due to Barnard and Rubin (1999), hence the acronym br. Note that
br is implemented for all models fit by micombine, not just linear regression, even
though the methodology was developed in a linear regression context. Whether this
is an improvement over the default inference and confidence intervals in the nonlinear-
regression case remains to be investigated.

6.2 Postestimation aspects

Stata’s ereturn local, ereturn scalar, and ereturn matrix commands set e()
macros, scalars, and matrices returned by estimation commands. micombine respects
this convention. It stores the sample size for one imputation (i.e., of the original data);
mean regression coefficients; and estimated variance—covariance matrix, calculated ac-
cording to the Rubin rules for multiple imputation, in e(N), e(b), and e(V), respec-
tively. The test and testparm commands work as expected following use of micombine,
giving Wald tests of the desired parameters. Furthermore, micombine stores in e (m_df)
the model d.f. and in e(11) and e(chi2) the mean log likelihood and the mean model
x? statistic, each averaged over the m imputations.

The predict command evaluates predictions for all observations in the estimation
sample using the parameters stored in e(b) and e (V). Since the data vary across impu-
tations, the predictions will vary correspondingly. The same principle applies to other
postestimation commands that work at the level of the individual observations.

7 Conclusion

The methodology originally developed by Donald Rubin (1976) and others in the late
1970s and brilliantly implemented as the MICE system for more general use by Stef van
Buuren and colleagues in the late 1990s is finally coming of age for the practitioner. I
believe that this latest development will prove useful to Stata users. I hope also that it
will provide a platform on which further numerical experiments in multiple imputation
may be carried out. There are many outstanding questions to be tackled in the practical
use of multiple imputation, including, for example, how to select an appropriate model
and how to do regression diagnostics.
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1 Introduction

Royston (2004) introduced mvis, an implementation for Stata of MICE, a method of
multiple multivariate imputation of missing values under missing-at-random (MAR) as-
sumptions. In a second article, Royston (2005) described ice, an upgrade incorporating
various improvements and changes to the software based on personal experience, dis-
cussion with colleagues, and user requests. This article describes an update to ice.
The changes are less substantial but nevertheless important enough to warrant a brief
explanation. The major modification is that the default method of imputing missing
values in ice is now by sampling from the posterior predictive distribution rather than
by predicted mean matching.

The ice system comprises five ado-files: ice, micombine, mijoin, misplit, and
uvis. The last three programs have not been changed and are included in the present
release for the sake of completeness.

2 Syntax

ice mainvarlist using filename [zf] [m] [weight} [, mot[(varlist)]
cc(ccvarlist) cmd(cemdlist) cycles(#) dryrun eq(eqlist) genmiss(siring)

id(string) m(#) m_atch[(varlz’st)] on(varlist) noconstant noshoweq

passive(passivelist) replace seed(#) substitute(sublist) trace(filename) ]

uvis regression_cmd yvar xvarlist [zf] [m] [weight], gen (newvarname)

[noconstant boot match replace &ed(#)]

where regression_cmd may be logistic, logit, mlogit, ologit, or regress. All weight
types supported by regression_cmd are allowed.

© 2005 StataCorp LP st0067_2
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micombine regression_cmd [yvar} [covarlist} [zf] [m] [weight] [, br
noconstant detail eform(string) genxb(newvamame) imipid(vamame) lrr

obsid(varname) regression_cmd_options ]

where regression_cmd may be clogit, cnreg, glm, logistic, logit, mlogit, nbreg,
ologit, oprobit, poisson, probit, qreg, regress, rreg, stcox, streg, or xtgee.
All weight types supported by regression_cmd are allowed.

mijoin, clear [m(#) Eid(vamame)}

misplit, clear [m(#) impid(varname) |

3 Options

Only the changes to options are described.

3.1 Options for ice

draw[ (varlist) ] has been replaced with match[ (varlist) ] match[ (varlist) ] instructs
that each member of varlist be imputed with the match option of uvis. This option
provides prediction matching for each member of varlist. If (varlist) is omitted,
all relevant variables are imputed with the match option of uvis. The default, if
match() is not specified, is to draw from the posterior predictive distribution of each
variable requiring imputation.

trace (filename) allows one to monitor the convergence of the MICE algorithm. For each
original variable with missing values, the mean of the imputed values is stored as a
variable in filename, together with the cycle number at which that mean was calcu-
lated. The results are stored only for the final imputation. For diagnostic purposes,
it is sensible to run trace() with m(1) and many cycles, such as cycles(100).
When the run is complete, it is helpful to load filename into memory and plot the
mean for each imputed variable against the cycle number. If necessary, smoothing
may be applied to clarify any apparent pattern. Convergence is judged to have oc-
curred when the pattern of the imputed means is random. The number of cycles
needed for convergence is usually obvious from the appearance of the plot.

3.2 Options for uvis

draw has been replaced with match. match creates imputations by prediction matching.
The default is to draw imputations at random from the posterior distribution of
the missing values of ywvar, conditional on the observed values and the members of
avarlist.




P. Royston 529

4 What is new?

The principal changes to ice are as follows:

1. The default method of imputation involves drawing from the posterior predictive
distribution.

2. With prediction matching in uvis, imputation is made at random among candi-
date values of yvar if more than one observation satisfies the matching criterion.
Previously, it was likely that just one value of yvar would be selected in this
situation, giving inappropriately restricted imputations.

3. When arranging the system of chained equations that is the heart of the MICE
algorithm, variables are imputed in order of increasing missingness. The variable
with the least missingness is imputed first, followed by that with the second, lowest
amount, and so on. This approach may speed up convergence to the conditional
distribution for each variable. Previously the order was arbitrary (it was base on
the order of variables in mainvarlist).

4. ice reports the number of observations containing 0, 1, 2, ... missing values before
proceeding with the imputation. Use of the dryrun option also gives this report.

5 Example

I will compare in a simple example with artificial data the use of match with drawing
from the posterior. The dataset test2.dta contains n = 120 observations on two
variables, x and y, related by the equation

yi =6z +e;

where the errors e; are normally distributed with mean 0 and variance 1. y and x
are strongly correlated (Pearson r = .985). Forty values each of x and y are deleted
completely at random, leaving a dataset in which 40 pairs of values of x and y are
observed and 80 pairs have a missing value of either x or y.

Figure 1 shows the relationship between y and x in one imputation using prediction
matching with 1, 2, 3, 5, 7, or 10 cycles of the MICE algorithm.

(Continued on next page)
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Prediction matching
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Figure 1: Artificial data. Imputation of x and y using prediction matching after different
numbers of cycles of the MICE algorithm. Open circles, y missing; filled circles, x missing.

The Stata command used was
. ice x y using filenamel, match(x y) seed(11) trace(filename2) cycles(100) m(1)

The open circles show values for which y has been imputed, and the filled circles,
values for which x has been imputed. The 40 pairs in which both x and y were ob-
served are omitted. The algorithm appears to converge after about 10 cycles. Note the
occurrence of “wild” points for small numbers of cycles that are far away from the line
y = 6.

Figure 2 shows a trace of the means of x and y for the first 100 cycles of the MICE
algorithm, stored in filename2.
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Trace: Prediction matching
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Figure 2: Artificial data. Trace of the first 100 cycles of the MICE algorithm using
prediction matching. Horizontal lines, mean of original observations before being set to
missing.

The means are initially wild and appear to stabilize after about 20 cycles. The
horizontal lines show the mean of the original observations before being set to missing.
Most of the imputed means of x are below or substantially below the correct value,
suggesting the possibility of bias in the imputation of x in this example. Furthermore,
there may be a tendency for the means to form a pattern of oscillation rather than the
completely random appearance we would wish for.

Figure 3 repeats figure 1 but using draws from the posterior predictive distributions
of x and y instead of prediction matching.

(Continued on next page)
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Draw from predictive distribution
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Figure 3: Artificial data. Imputation of x and y using draws from the posterior predic-
tive distribution after different numbers of cycles of the MICE algorithm. Open circles,
y missing; filled circles, x missing.

The Stata command is the same as before, except that match(x y) has been omit-
ted to activate the default drawing algorithm. Two features are apparent. First, the
algorithm settles down rapidly and smoothly, with no wild values appearing; the scatter
about the line y = 6x is progressively reduced as the number of cycles increases. About
five cycles seems enough for convergence. Second, richer sets of imputations are created,
since the algorithm is no longer restricted to imputing only observed values of x and y.

Finally, figure 4 repeats figure 2 for the draw method.
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Trace: Draw from predictive distribution
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Figure 4: Artificial data. Trace of the first 100 cycles of the MICE algorithm using draws
from the posterior predictive distributions.

The rapid convergence is clear. The imputed means of x now include the correct
value. There is no tendency to oscillation.

The example clearly points to the advantages of the draw method when the normality
assumptions for continuous variables are fulfilled, as here. The draw method is many
times faster than prediction matching.

I now consider in general terms what may be done using data from imputing con-
tinuous variables when the normality assumptions fail.

6 Imputing continuous variables

When a continuous variable X has missing values, there are essentially four options for
imputing it with ice:

1. Assume normality for X and draw from the posterior predictive distribution (the
default). Example of ice command with test2.dta:

. ice x y using filename, m(20)

2. Transform X toward (approximate) normality and draw from the posterior pre-
dictive distribution. Retransform back to the original scale. For example,

. gen logx=log(x)

. gen logy=log(y)

. ice logx logy using filename, m(20)
. use filename, clear
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. replace x=exp(logx)
. replace y=exp(logy)

3. Use prediction matching. For example,
. ice x y using filename, m(20) match(x y)
4. Use ordinal logistic regression (ologit). For example,

. ice x y using filename, m(20) cmd(ologit)

Option 1 is optimal if the normality assumption is (reasonably) appropriate, as
in the above example. However, both normality and a continuous distribution for X
are assumed. An observed distribution that is heavily grouped or rounded may not
give sensible imputed values, since imputations will fall between the observed values.
Furthermore, because of the effect of grouping the standard deviation may be incorrect.
A possibility is to round the imputed values to resemble the pattern in the observed
distribution.

Option 2 should be considered for positively skewed variables; the distribution may
often resemble a lognormal. Again, if the original data are grouped, rounding may be
considered after transformation back to the original scale. A related possibility is to use
the more general Box—Cox transformation to normality (Stata’s boxcox command).

Option 3 is a reasonable general choice, though concerns exist that prediction match-
ing may give biased imputations, convergence may be slow, and computation may be
lengthy (compounded by the need for more MICE cycles).

Option 4 is particularly useful with ordinal variables that either are intrinsically
categorical or take a restricted set of values because rounding has been applied. In Stata,
the ologit command is restricted to response variables with 50 or fewer categories, so
variables with more than 50 distinct values will need to be grouped or rounded before
imputation is performed.

6.1 Example

As an example of the problems of option 1, imputation with an inappropriate assumption
of normality, figure 5 shows the distribution of the variable x5 (number of positive lymph
nodes) in the breast cancer dataset brcaex.dta analyzed by Royston (2004).
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Draw from predictive distribution
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Figure 5: Breast cancer data. Imputation of x5 by drawing from the posterior predictive
distribution, assuming normality. Left panel: distribution of observed x5. Right panel:
distribution of imputed x5.

The distribution of x5 takes the integers 1, 2, ..., and is highly positively skewed,
with more than 25% of the values being 1. The imputed values are symmetrically
distributed about the mean of 5, and many are negative. As an alternative (option 4),
figure 6 shows the results of using drawing and ologit.

Draw, ordered logistic prediction
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Figure 6: Breast cancer data. Imputation of x5 by drawing from the posterior pre-
dictive distribution, using ordinal logistic regression (ologit command). Left panel:
distribution of observed x5. Right panel: distribution of imputed x5.
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The distribution of imputed values of x5 is similar to that of the nonmissing
observations—as it should be, given that the missing values were assigned completely
at random. The results from prediction matching are much the same as this. The log
transformation performs rather less well, although much better than not transforming;
the distributional shape does not come out quite right.

7 Conclusion

This paper further develops the MICE software for Stata. It should be seen as work in
progress. As experience and knowledge increase, I expect to issue further updates of
ice.
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