Most major population surveys used by social scientists are based on complex sampling
designs where sampling units have different probabilities of being selected. Although
sampling weights must generally be used to derive unbiased estimates of univariate
population characteristics, the decision about their use in regression analysis is more
complicated. Where sampling weights are solely a function of independent variables
included in the model, unweighted OLS estimates are preferred because they are
unbiased, consistent, and have smaller standard errors than weighted OLS estimates.
Where sampling weights are a function of the dependent variable (and thus of the error
term), we recommend first attempting to respecify the model so that they are solely a
function of the independent variables. If this can be accomplished, then unweighted OLS
is again preferred. If the model cannot be respecified, then estimation of the model using
sampling weights may be appropriate. In this case, however, the formula used by most
computer programs for calculating standard errors will be incorrect. We recommend
using the White heteroskedastic consistent estimator for the standard errors.
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INTRODUCTION

Most of the major population surveys used by social scientists are
not created using the simple random samples discussed in statistics
texts. Instead, they are based on complex sample designs where
sampling units (e.g., individuals) frequently have different proba-
bilities of being selected. In order to use data of this type to produce
descriptive (univariate) estimates of the population, sampling weights

AUTHORS’ NOTE: The authors have benefited greatly from comments provided by
Christopher Jencks, lan Domowitz, Bruce Spencer, Scott Long, and anonymous review-
ers. Of course, any remaining mistakes in the article are alone our responsibility. The
views expressed in this article are those of the authors. They do not necessarily represent
the views of the Joint Economic Committee or any of its members.

SOCIOLOGICAL METHODS & RESEARCH, Vol. 23 No. 2, November 1994 230-257
© 1994 Sage Publizations, Inc.

230

Winship, Radbill / SAMPLING WEIGHTS 231

(sometimes also called population weights) must be used. It is less
obvious, however, whether these sampling weights should be used
when estimating regression equations.

This article is aimed at the empirical practitioner who has a good
understanding of basic regression analysis. We hope to provide some
practical guidance for dealing with sampling weights in regression
analysis that will apply in a wide variety of situations." We do not
discuss the use of sampling weights in other contexts or the use of
other types of weights in regression analysis. In the interest of acces-
sibility, we have attempted to minimize notational complexity by
avoiding matrix notation. All the results in the article can be readily
generalized to situations where there are any number of independent
variables. The appendix provides formulas using matrix notation.

We argue that there are pitfalls to the common practice of estimating
ordinary least squares (OLS) models with weighted data. The most
troublesome problem is that almost all computer packages use the
incorrect formula to estimate coefficient standard errors when sam-
pling weights are used. This has potentially important implications for
decisions about model specification and formal hypothesis testing that
may be based on miscalculated numbers.

In deciding whether to use weighted data in a regression analysis,
we distinguish between two situations: where the weights are solely a
function of observed independent variables included in the model and
where the weights are also a function of the dependent variable and
thus the error term. In the first situation, use of the sampling weights
(weighted ordinary least squares, or WOLS) yields unbiased and
consistent parameter estimates, but OLS also provides unbiased and
consistent estimates with smaller standard errors. (See appendix for
formulas.) Here unweighted OLS is the preferred approach. In the
second case, we recommend first attempting to respecify the model so
that the weights are solely a function of the independent variables. If
this can be accomplished, then unweighted OLS will yield unbiased,
consistent, and-efficient parameter estimates. Weighted estimates will
also be unbiased and consistent, but not efficient. If the model cannot
be respecified, then estimation of the model using WOLS may be
appropriate. However, if WOLS is used, the formula used by most
computer programs for calculating standard errors of the estimates
will be incorrect and should not be used. When WOLS is used, we
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recommend using the White (1980) heteroskedastic consistent estima-
tor for the standard errors.

We begin the next section by discussing the basic assumptions
underlying OLS. In particular, we focus on the relationship between
these assumptions and the way in which complex samples are drawn.
We then digress and discuss the construction of the Monte Carlo
experiments presented in this article. We use the results of these
experiments to illustrate the implications of using the different strate-
gies presented here. Next, we turn to the core of the article and examine
the appropriateness of using OLS or OLS with WOLS in different
situations. We conclude by providing a simple set of guidelines for
how and when to use sampling weights in regression.

ASSUMPTIONS BEHIND REGRESSION

The standard regression model as estimated by OLS can be devel-
oped from a number of different perspectives (e.g., see White 1984,
Goldberger 1991). Because sociologists are typically interested in
estimating the causal effects of a set of independent variables on a
dependent variable, we assume that a regression equation represents
a behavioral model, albeit possibly a very crude one, that generates
the observed data. Our objective then is to estimate the causal effects
of different independent variables in our regression model.?

Without loss of generality, we assume that there is a dependent
variable Y and two independent variables X, and X,. For the purposes
of this article, we will assume that our data consist of a cross section
of N individuals. The critical assumptions needed for OLS are

1. Y =8, + B*X, + B,*X, + e is the true model for all members of the
population,

the X, and X, are fixed and have positive variance,

X, and X, are not linearly dependent,

X, and X, are uncorrelated with e, and

the ejs are independently distributed with mean 0 and variance ol

bl el

If these assumptions hold, then the OLS estimator for 3, and 3, exists,
is unbiased, consistent, asymptotically normally distributed, and effi-
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cient among the class of linear unbiased estimators (the OLS estimator
is said to be BLUE).?

The assumptions that we present are sufficient to derive the OLS
estimator 3, and some of the properties of the distribution of .
Although additional assumptions would allow us to make stronger
statements about B, they have little consequence for the discussion
here. For example, if we make the stronger assumption that the e;s are
normally distributed, then the OLS estimator will be normally distrib-
uted even for small samples, and it will be efficient with respect to the
class of all estimators, not just linear unbiased estimators.

None of these assumptions makes any direct mention of how the
data are sampled. However, different sampling schemes may well
affect the validity of the last four assumptions.

The first assumption embodies the idea that a regression equation
can be thought of as a structural or causal model of behavior that
applies to all individuals in the population of interest. Assumption 1
will not hold if the model is missing terms that belong in the model
and are correlated with included variables. This includes linear, non-
linear, and interaction terms (which are a type of nonlinear term). The
question of whether the model being estimated is correctly specified
is critical to understanding the potential effect of sampling weights on
our regression estimates.

The assumption that the Xs are fixed means that the sample is drawn
knowing beforehand the values of the X vartables for individuals in
the population. In general this is not true, and the Xs are in fact
stochastic. This creates a set of technical issues that are of no interest
or consequence here. All the results stated below are true for stochastic
Xs conditional on the actual sample of Xs drawn.

The second part of assumption 2 is that the sample must be drawn
so that the Xs have some variance: Individuals in the sample must be
observed with different values on the X variables. If every person in
the sample has the same value for a given X variable, that variable will
have zero variance and it will be impossible to estimate the effect of
that X on the outcome variable Y.*

The third assumption means that no one X can be a perfect linear
combination of the other Xs in the model. If some X is a linear
combination of other Xs included in the model (perfect multicollinear-
ity), it will be impossible to distinguish between the effects of those
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Xs on the outcome variable Y, In this case, the ordinary least squares
estimator does not exist.

Assumptions 2 and 3 are directly related to the design of the sample.
As the sample design approaches either extreme case (small variance
of X or high levels of multicollinearity among the Xs), the parameter
estimates yielded by the sample will remain unbiased and consistent,
but they will have larger and larger standard errors. Because assump-
tions 2 and 3 refer to properties of the sample rather than the popula-
tion, they are easily tested with sample data.

The fourth assumption, that e and X are uncorrelated, is the core
assumption in regression. This assumption cannot be directly tested.
If it fails to hold, the OLS estimates will be biased and inconsistent.
Omitted Xs, incorrect functional specification, measurement error in
the Xs, endogenous Xs, and sample selection bias can all cause this
assumption to fail.

Assumption 5 states that the errors in the model are independent of
each other and distributed with equal variances. In general, with
multistage stratified cluster samples these conditions will not hold.
Clustering often leads to a lack of independence among the errors
within clusters. This has two consequences. First, OLS estimates will
be unbiased and consistent, but will no longer be BLUE. Second, OLS
standard errors will be wrong. Unfortunately, space constraints do not
allow us to discuss methods for handling these situations here.’

Assumptions 2 through 5 are directly related to how the data being
studied have been sampled. However, none of these assumptions
requires that the distribution of the X variables in the sample be similar
to that in the population. Figure 1 illustrates the true (population)
relationship between a single X and Y. If, on the one hand, a sample
has been drawn with X values of A and B, the slope and intercept could
be estimated by drawing a line through the average value of Y at these
two points. This is what OLS would do. If, on the other hand,
individuals with X values of C and D had been sampled, the same
analysis would, on average, yield the same parameter estimates. This
example depends critically on the assumption that the relationship
between Y and X is correctly specified.

Now assume that the true relationship between Y and X is curvilin-
ear as depicted in Figure 2. If a linear relationship between Y and X
is mistakenly posited, how individuals are sampled with respect to X
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Figure 1: Effect of Different Sampling Strategies on Estimating a Linear Regression
When the True Relationship Is Linear

can have a large effect on parameter estimates. If individuals are
sampled at points A and B, a steep slope will be estimated. Alterna-
tively, if individuals are sampled at points C and D, the estimated slope
will be quite a bit flatter.

As this example illustrates, if the model being estimated has been
properly specified (whether it be linear or nonlinear), samples with
different distributions of the X variables will yield (on average) the
same OLS estimates. There is therefore no need for the sample
distribution of the X variables to reflect the population distribution.
However, if the model being estimated is misspecified, then different
distributions of the Xs (whether they are produced from different
samples or from a single sample with and without sampling weights)
can produce OLS estimates with different expected values.

Although a correctly specified model will provide consistent and
unbiased parameter estimates regardless of how a sample is drawn
with respect to X, there are other factors to be considered. Central
among these is that the sample yield estimates with standard errors as
small as possible. In general, the smaller the variance of X in the
sample, the larger the standard error of its parameter estimate. Fur-
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Figure 2: Effect of Different Sampling Strategies on Estimating a Linear w»m..mmm_g
When the True Relationship Is Nonlinear

thermore, if the Xs in the model are close to being collinear, at least
some of the regression coefficient estimates will have large standard
eITors.

Thus, although estimated regression coefficients will be unbiased
and consistent regardless of how a sample is drawn with respect to the
Xs, sample design can have an effect on the standard errors of those
estimates. In fact, many specialized studies use sample designs that
attempt to minimize standard errors of parameters of interest by
oversampling groups of particular interest (Blacks, the aged, the very
poor, or the very wealthy, for example). This oversampling increases
the variance and may decrease the level of collinearity of some key
Xs. Oversampling necessarily leads to sample distributions of some
variables being quite unlike their population distributions.

MONTE CARLO EXPERIMENTS

Researchers often recognize that there may be problems with the
models and methods they are using. However, many also assume (a)
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that the problems are of little consequence to their study, (b) that the
use of more appropriate techniques would be difficult to implement,
and (c) that the appropriate methods would lead to similar, if not
identical, conclusions if they were used.

We believe that the methods discussed here can make a substantive
difference in the conclusions that researchers might draw from a set
of data. We also believe that the alternative procedures we propose are
no more difficult to use than standard methods. To support these
arguments, we do two things. In the following sections of this article,
we first offer a mathematical presentation of the methods under
consideration. From these discussions, we provide some formal bases
for the procedures we recommend. We then illustrate differences
between common practice and our proposed alternative by presenting
the results of a series of Monte Carlo experiments.

Hidden in the language of the last section is the idea that the s are
estimated from a sample of data. That sample is only one of infinitely
many different samples that could be drawn from the larger popula-
tion, and each sample would yield different estimates of the s. When
we say that the OLS estimate of § is unbiased, we mean that the
average estimated mo_m across infinitely many samples equals the true
B. The standard error of _w% is an estimate of the standard deviation
of all of the infinitely many mc_m estimated from those samples. The
properties of the estimators that we have discussed are based on
mathematical properties that are derived from a set of assumptions.
The question remains open whether the assumptions are reasonable
and, consequently, whether the derived properties apply in any given
case. Although time, space, and budget constraints prevent us from
drawing infinitely many samples, we can conduct experiments that
mimic that process.

Our Monte Carlo experiments involve the following steps:

1. We create a set of data. We do this by constructing a set of 2,000
individuals with a variety of X values and predicted Ys.

2. We then generate a separate random error for each of 2,000 obser-
vations in our data set and this error is added to each person’s
predicted Y.

3. Using these data, we estimate the model parameters. The estimation
procedure will depend on the specific experiment being conducted.

4. We record those estimates.
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5. 'We then go back to step 2 and repeat the process until we have created
750 data sets and 750 associated sets of parameter estimates.

By virtue of the fact that we have designed the experiments our-
selves, we know what the true relationships in the data are before we
begin estimating any models. We can therefore compare the average
estimate of B (B.,) to the true  and assess whether ma, appears to be an
unbiased omc_dma of . We can also measure the observed standard
deviation of waa (which is a direct measure of its standard error) and
compare this either to its theoretical standard error or to the standard
error of some other estimate of . The former comparison tells us
whether the theoretical standard error is an unbiased estimate of the
true standard error, whereas the latter comparison tells us which
estimate is more efficient (i.e., has a smaller standard error). Taken
together, this information allows us to assess how often various
estimation practices lead us to correct and incorrect conclusions.

One common objection to the use of evidence from Monte Carlo
experiments by practicing data analysts is that because we are able to
design our samples in any way we choose it is possible for us touse a
sample design that makes the differences between the techniques we
are criticizing and those we are advocating appear to be more extreme
than they might with data from an actual survey. We are sensitive to
these concerns and have gone to some lengths in order to work with
data similar to the data commonly used by sociologists.

The original data for our models are taken directly from the General
Social Survey (GSS) 1974-84 cumulative file. We are interested in
estimating a simple wage model of the following form:

Ln(Wage) = B, + B,*Educ + 8,*Black + B;*(Educ*Black) + p,*Ability + e.

The GSS does not contain a variable that directly measures a respon-
dent’s wages. It does, however, have variables that assess whether or
not a respondent was employed full-time and what the respondent’s
income was for the previous year. We worked with all men between
the ages of 25 and 55 who were employed full-time in the year
preceding the survey. The wage variable in our model is actual annual
income for these men.® The GSS also includes a 10-word vocabulary
test that suffices (for our purposes, at least) as a general ability
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measure. Using listwise deletion of missing cases, we arrived at the
following OLS estimates (standard errors are given in parentheses):

LN(Wage) = 8529 + .0461*Educ - .165*Black

(.065)  (.00488) (.0369)
+ .023*(Educ*Black) + .024*Ability + .017*Age + .0609*Time
(.0120) (.00638) (.00135) (.0609)
=.316 N=1,601 Var(e) = .2235.

Using these estimates, we constructed a sample with 1,000 Black
men and 1,000 White men, all age 30, earning 1980 dollars, with
between 8 and 16 years of education. Within these variable ranges, we
imposed the multivariate distribution of Xs found in the GSS on
constructed data. We then created the following “true” model:

Ln(Wages) = 9.49 + .046*Educ ~ .165*Black + .023*(Educ*Black) +
.024*Ability + e.

Using this equation and individuals’ X values, we calculated predicted
wages for all 2,000 individuals. We then created 750 independent
samples of these individuals by drawing 2,000 separate errors for each
sample (normally distributed with a variance of 0.25) and adding the
errors to the predicted Ys. These samples are the data for the experi-
ments we report below.

Although we would not want to use this wage model as the basis
for further substantive research or policy recommendations, we be-
lieve that it is quite sufficient for our purposes. The coefficients and
their standard errors are all of a similar magnitude to those that
commonly appear in the regression models estimated by sociologists.
Furthermore, the covariance matrix of the X variables in the models
is taken directly from a commonly used data source.

THE CONSTRUCTION AND USE OF SAMPLING WEIGHTS

Before discussing the wisdom of using sampling weights in regres-
sion analysis, it is important to understand their intended purpose and
how they are constructed. The purpose of sampling weights is to make
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the distribution of some set of variables in the data approximate the
distribution of those variables in the population from which the sample
was drawn.

The distribution of variables in an unweighted sample can differ
from that in the population from which it was drawn for two reasons.
First, individuals may be sampled with unequal probabilities. For
example, a sample with a greater proportion of Blacks than are present
in the population as a whole will generally be more efficient for
drawing conclusions about racial differences than a representative
sample.’

A sample may also differ from the population from which it was
drawn because of random chance. For example, although a population
might be 50% female, drawing a sample of individuals with equal
probability could produce a sample that is only 47% female. Sampling
individuals with equal probability does not insure that the resulting
data will be representative of the population.

Sampling weights are typically constructed in two stages. Prelimi-
nary weights are first constructed using information about the design
of the sample and response rates. These preliminary weights are
approximately equal to the Y, where p; is a first estimate of the
probability of being in the final sample. In the second stage, these
preliminary weights are adjusted through a process of poststratifica-
tion. This adjustment is necessary because the information used in the
first stage is imperfect and, thus, there is no guarantee that the sample
will be representative of the population along important dimensions
even after using the first stage weights. Poststratification is a relatively
simple adjustment procedure that uses population-based information
(typically census data adjusted using vital statistics) to force the
sample to be representative of the population along certain key dimen-
sions (typically, age, race, and sex). The first stage weights are adjusted
so that each type of individual (e.g., White women between the ages
of 25 and 30) represents the same proportion of the final weighted
sample as of the population. )

As constructed, sampling weights are useful (often essential) for
obtaining unbiased estimates of univariate population characteristics
from sample data. Discussion of the use of sampling weights in this
context can be found in any good sampling textbook (e.g., Kish 1965;
Cochran 1963).
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Many individuals’ intuition would probably suggest that weighted
data should also be used for the estimation of regression models. After
all, using the weighted data will give covariance and variance esti-
mates that are unbiased and consistent estimates of quantities in the
population. Thus the regression estimates for the weighted sample
should also be unbiased and consistent estimates of the regression
model for the entire population. (We refer to this procedure as
weighted ordinary least squares or WOLS in order to differentiate it
from weighted least squares or WLS. Formulas for these estimators
and their standard errors can be found in the appendix. In WLS the
sample is also reweighted, but the weights are the inverse of each
individual’s error variance, W, = 1/o?. This is done when there is
heteroskedasticity in order to get efficient estimates.)

The above logic as to why one should use WOLS has appeal, but
fails to take account of a number of issues. First, if the errors in the
unweighted sample were homoskedastic (with variance ¢ , consistent
with Assumption 5 above), using sampling weights will induce het-
eroskedasticity. This is because weighting is equivalent to multiplying
each observation by W,. If an individual’s error term was originally e;,
after weighting it will be W, and the variance of their error term will
be o = W?o? .

A different type of situation arises when researchers, in the interest
of compressing large data sets, create weights to indicate the number
of individuals with each observed combination of values on the
variables of interest. For instance, if there are three Black women, all
age 25, with high school diplomas and annual earnings of $20,000 in
a data set, only one such case will be stored in the data set, but it will
be given a weight of 3. (Some packages refer to these as frequency
weights.) In this case, most statistical packages will calculate the
standard errors correctly. This is not what is being done with sampling
weights. With sampling weights there is a single individual in the
sample. The statistical package calculates the wrong standard errors
because it assumes that there are W; individuals in the sample. Equiva-
lently statistical packages produce the wrong standard errors because
the formulas they use assume that in the weighted sample all individu-
als have the same error variances where in fact (assuming there is no
heteroskedasticity) the error variances are W7 a? . This is perhaps the
greatest danger in using WOLS.
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We show in our Monte Carlo experiments that the standard errors
reported by statistics packages when WOLS is used can be biased in
either direction, resulting in erroneous hypothesis tests (both false
positives and false negatives) and confidence intervals of incorrect
width.* If sampling weights are to be used, a formula for the coefficient
standard errors that takes account of the heteroskedasticity is needed.
We will show how White’s (1980) heteroskedastic consistent estima-
tor can be used to do this.

Assuming that standard errors for WOLS can be correctly calcu-
lated, there is the further question of whether to use OLS or WOLS.
There are two cases to consider. The first is where the weights, W,, are
a function of Xs that are included in the regression model. The other
situation is where the weights are a function of not only the Xs in the
model but also the dependent variable.

WHEN SAMPLING WEIGHTS ARE
A FUNCTION OF INDEPENDENT VARIABLES

When sampling weights are only a function of independent vari-
ables included in the model being estimated, unweighted OLS will be
the appropriate course to take. In this case, using or not using weights
is analogous to drawing samples with different distributions of the
independent variables. We have already illustrated how when the
model being estimated is cortectly specified parameter estimates will
be unbiased and consistent regardless of the distribution of the inde-
pendent variables in the sample (as long as the variables have positive
variance and are linearly independent). This means that both OLS and
WOLS will yield unbiased and consistent estimates. The Gauss-
Markov theorem, however, guarantees that OLS will be more efficient,
yielding smaller standard errors. As a result, OLS is to be preferred
over WOLS.

Table 1 presents the results of using OLS and WOLS to estimate
our model predicting log wages. Because our sample was constructed
to be composed of 50% White and 50% Black respondents, sampling
weights were calculated to produce a weighted sample composition
of 10% Black and 90% White respondents (weight for Whites = 1.8,
weight for Blacks = 0.2), reflecting their approximate proportions in
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TABLE 1: Monte Carlo Results for Properly Specified Model

Race*
Intercept Education Race  Education Ability

Expected value 94900 0.0460 -0.1650 0.0230  0.0240
Theoretical OLS standard error 0.0501 0.0081 0.0232 00112 0.0083
Average OLS estimate 9.4920  0.0458 -0.1660  0.0229  0.0235
Observed standard error 0.0498 0.0079 0.0237 0.0108  0.0084
Average package standard error 0.0498 0.0080 0.0230  0.0111 0.0083
Average WOLS estimate 94900 0.0458 -0.1660 0.0229  0.0237
Observed standard error 0.0650  0.0081 0.0240 0.0108 0.0112
Average correct standard error 0.0639  0.0083 00234 0.0111 0.0109
Average package standard error 0.0512 0.0063 0.0385 00192 0.0087

NOTE: 750 samples were generated using the following equation:
Ln(Wages) = 9.49 + (0.046 * Educ) —
(0.165 * Black) + (0.023 * Educ * Black) + (0.024 * Ability) +e.
¢ is a normal random variate with a variance of 0.25.

Expected values of the parameters are the coefficients. Theoretical standard errors are based on
the standard OLS formula AQNOGCLV. Average estimate is the mean parameter estimate across
750 generated samples. Observed standard error is the standard deviation of the parameter
estimate across 750 generated samples. Average correct standard error is the mean standard error,
using the theoretically correct formula discussed in the text, across 750 generated samples.
Average package standard error is the mean standard error, using the default package formula,
across 750 generated samples. Education is recoded so that high school (12 years) is centered
at 0. Race is coded 1 for Blacks, 0 for all others. Ability is a 10-point scale from the General
Social Survey 10-item vocabulary test (WORDSUM).

the national population of the United States. The expected values for
the correctly specified model (the true model) are presented at the top
of the table.

The first thing to notice is that when the correctly specified model
is estimated, OLS parameter estimates match their expected values.
Additionally, the observed standard errors of those parameters are
quite close to the theoretical standard errors.

When weights are applied to the data, the mean value of the
regression parameters is also close to their true values. There are,
however, three important changes. First, the standard errors produced
by the regression program are wrong on average. This can be seen by
comparing the average package standard errors to the observed stan-
dard errors of the parameter estimates. If we could predict the direction
and the approximate magnitude of these mistakes, things might not
seem so bad. However, our results show that the bias can be either
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positive or negative. For example, the education coefficient’s standard
error is too small (.00634 instead of .00827), but the race coefficient’s
standard error is too large (.0192 instead of .0111). In general, it will
not be possible to predict the direction of this bias. Furthermore, in
this case the biased standard errors could lead an analyst to incorrectly
exclude the race-education interaction from the model.

When the correct standard errors for the weighted regression model
are used, it is clear from Table 1 that use of sampling weights will
generally yield less efficient parameter estimates than use of the
unweighted sample. For example, the true OLS standard error for
Ability is .00833, whereas the true WOLS standard error is .0109 (an
increase of 31%). A loss in efficiency of this magnitude could easily
lead to the incorrect rejection of variables from a model being esti-
mated, even using the correct standard errors. About the only thing to
be said for the use of sampling weights in this correctly specified
model is that the slope estimates themselves are unbiased.

If the parameter estimates from the weighted and unweighted
samples differ (that is, if the parameter estimates are sensitive to how
the sample is drawn with respect to X), this is an indication that the
model being estimated is not correctly specified or that the weights
are a function of the dependent variable. We discuss this second
possibility later in the article.

There are several ways to understand why sensitivity of parameter
estimates to the use of sampling weights can be an indication of model
misspecification. One way to view the situation is as a problem of
pooling two separate samples: one sample of White respondents and
a separate sample of Black respondents. The outcomes for each group
(wages) are the result of different underlying processes that can be
described by the following two models:

White Model
Ln(Wages) = 9.490 + .046*Educ + .024*Ability + e.

Black Model
Ln(Wages) = 9.325 + .069*Educ + .024*Ability + e.

We are interested in combining these two samples in order to estimate
a single model. The correctly specified model would be
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Ln(Wages) = 9.49 + .046*Educ - .165*Black + .023*(Educ*Black)
+.024*Ability + e.

Because the Educ*Black interaction is correlated with the other X
variables in the model, omitting it from the model would yield esti-
mates for the remaining parameters that would be biased and incon-
sistent (see Hanushek and Jackson 1977, pp. 79-86). Leamer (1978,
p. 76) shows that the estimates obtained using the pooled sample will
be a weighted average of the estimates for the two separate samples.
The weight referred to by Leamer is a function of the sample covari-
ance matrices of the Xs for each group and the size of each sample.
By implying different relative sizes for the two groups, regression
estimates that do and do not use sampling weights may give very
different results.

This analysis can also be applied when a nonlinear relationship has
been misspecified. When this is the case (as in Figure 2), there are
some individuals for whom the effect of the independent variable is
large and others for whom the effect is smaller. The size of the OLS
estimate will depend critically on how many individuals of each type
are in the sample.

Sensitivity of parameter estimates to the use of sampling weights
can also be an indication that a variable has been omitted from the
model. Suppose that the correctly specified model is given by

<" “WO + a—x~ + uwxn + €.
Instead, a model is estimated that omits X,:
Y =By + B, X, +e.

The expected value of the coefficient for X in this misspecified model,
B,, will be

E®B,) =8, +s,B:

where s, is the regression slope for X, regressed on X,. Note that s,,
is solely a function of the Xs as it is equal to

cov(Xy,Xy)
var(X,)

Sy =
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Thus the size of the bias in B, will depend on s,,. This, in turn, depends
on the variance of X, and the covariance of X, and X,. These last two
quantities, and therefore the value of s,,, will generally be sensitive to
sampling weights. This can be seen from the formulas for the weighted
and unweighted quantities:

MAN: - lvm_xxn - vlm.nv = Cov(X,X;)

n
WX, wﬂw Xo~X3) _ Weighted Cov(X,X,)
TRy
Mszz vﬂuv - <NHAN—V
v
!Miwmww,\ X)) = Weighted Var(X,)

The weighted values will generally only equal the unweighted values
when all persons have the same weight. This means that typically the
only time that the WOLS estimate of B, equals the (unweighted) OLS
estimate of B, is when s,, is zero, that is, when there is no omitted
variable bias. All other times, the size of s,, (the size of the bias) will
be influenced by the presence or absence of sampling weights.

Thus evidence that the WOLS estimate of B, and the (unweighted)
OLS estimate of 3, are different suggests that the model being esti-
mated suffers from omitted variable bias. The omitted variables may
be nonlinear (including interaction) terms or other Xs that need to be
included in the model.’

Table 2 summarizes the results of our second round of Monte Carlo
experiments illustrating the effects of sampling weights in a misspe-
cified regression model. When our incorrectly specified model (we
have omitted the Race-Education interaction effect) is estimated with
OLS, the results are as we would expect: Because the variables
included in our model are correlated with the omitted variable, their
estimated coefficients are biased. The estimated education effect is
about midway between the true White and Black education effects
(reflecting the fact that Blacks and Whites make up equal moao:m. of
our sample). Because the correlation between the omitted interaction
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TABLE 2: Monte Carlo Results for Misspecified Model®

Race*
Intercept Education Race  Education Ability

Correctly specified model
Expected value 94900  0.0460 -0.1650  0.0230  0.0240
Theoretical OLS standard error 00501 00081 0.0232 00112 0.0083
Misspecified model
Average OLS estimate 9.48380  0.0569 -—0.1580 0.0232
Observed standard error 0.0499  0.0061 0.0234 0.0084
Average package standard error 0.0503  0.0060 0.0230 0.0084
Average WOLS estimate 94900 0.0479 -0.1600 0.0236
Observed standard error 0.0650  0.0075 0.0237 0.0112
Average correct standard error 0.0652  0.0078  0.0236 0.0111
Average package standard error 0.0513  0.0061  0.0383 0.0088

NOTE: Averages are across 750 samples. See notes to Table 1 for definitions.
a. Missing Race x Education interaction,

variable and the Ability measure is relatively small, the bias in the
estimated Ability coefficient is not large.

As in the case with OLS, our misspecified model has produced a
biased estimate of the education effect. With WOLS, however, the bias
has a somewhat more appealing quality: If we were interested in
describing the average monetary return to education for people in the
United States, this estimate would reflect the average payoff in a
population that is 90% White and 10% Black. However, if the interest
15 in a structural (causal) interpretation of the parameter estimates, this
coefficient would have little meaning,*°

Estimating the incorrectly specified regression model with sam-
pling weights shows that the regression package produces incorrect
standard errors. As before, some of these errors are too small and some
are too large. Furthermore, the estimated parameters have larger
(correct) standard errors than the OLS estimates for the misspecified
model, again demonstrating that WOLS is less efficient.

MODEL RESPECIFICATION

The above analyses suggest that if OLS and WOLS yield similar
results, the OLS estimates are preferable because they have smaller
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standard errors. DuMouchel and Duncan (1983) suggest a simple
' procedure to determine whether estimates from the weighted and
unweighted models are significantly different and why. They propose
estimating the following model:

M\ = —WG + %Wme + HWNNN + mO€ + m~A€*x~v + mw%*xwv + &,

where X, and X, are independent variables and W is the weight
variable. (The model of interest can have any number of independent
variables.)

If the original model is properly specified, then the weight variable
and the interaction of it with the X variables should explain no
additional variance in Y, and 8, =8, = 8, = 0. Astandard F test is carried
out for the difference in explanatory power between the two models.
.H,rm procedure advocated by DuMouchel and Duncan (1983) thus

nsists of testing for the significance of a variable W that is presumed
to va a function of possibly omitted Xs and the interaction of W with
the included Xs. If the F test is not significant, then the weighted and
unweighted estimates are not significantly different and the analyst
can proceed by using unweighted OLS. Weighted and unweighted
estimates are significantly different if the F test is significant.

If the OLS and WOLS estimates are indeed different, the specific
coefficients from the augmented model can be examined relative to
their standard errors for possible sources of misspecification. There
are two outcomes of interest. First, coefficients involving the terms
with the weight variables may be large and significant, suggesting the
possible need for additional variables and/or interactions and non-
linear terms involving these Xs. Second, a coefficient may be smali,
but significant, typically as the result of a very large sample. Here
respecification may only be appropriate if additional variables, non-
linear terms, or interactions added to improve the model’s specifica-
tion are of substantive interest."

In the example presented in Table.2 (where the Race*Education
interaction has been dropped), the DuMouchel and Duncan (1983)
procedure would involve estimating the following model:

log wage = B, + B race + B,education + Bjability + ?i&m.i
+ Bs(weight*race) + B¢(weight*education) + B,(weight*ability).
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There are two reasons that the WX terms might have a large or
significant effect. First, the weight variable itself might have an effect
(here measured by B,). This would happen if the weights were a
function of Xs that had been omitted from the equation. Second, there
may be important interaction terms missing from the model involvin g
the X variables for which the interactions between the weight variable
and the other Xs are a proxy.

In our proposed analysis, error messages from our statistical soft-
ware would quickly alert us to the fact that it is not possible to estimate
the coefficient for the weight variable (8,) and for the Weight*Race
interaction because they are both perfectly collinear with race. Omit-
ting these two terms and fitting a model with the remaining variables
would produce a significant coefficient for the interaction of the
weight variable with education. This would suggest the possible need
to include some type of interaction involving -education. Because
sampling weights are most often functions of age, race, and sex, we
might want to experiment by including age and race (although not sex,
because this sample contains only men), and their interactions with
education. We might also want to try an interaction between education
and ability if we thought the weight variable was related to ability,
although in most surveys this would be unlikely. A third possibility
would be to consider omitted variables that the Weight-Education
variable might be acting as proxy for. In our model in the end, we
would decide to respecify the model 3\ adding an interaction between
race and education.

WHEN SAMPLING WEIGHTS ARE A
FUNCTION OF THE DEPENDENT VARIABLE

There will be situations where OLS and WOLS parameter estimates
differ, where the DuMouchel and Duncan F test is significant, but
attempts to respecify the model by including additional independent
variables (short of the sampling weights themselves) fail to solve the
problem. These are likely to be instances where the probability of an
individual being sampled, and thus the sampling weights, are a func-
tion of the dependent variable. These cases generally arise directly
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from the design of the sample being used. To cite just three specific
examples, the University of Michigan’s Panel Study of Income Dy-
namics (PSID) has an over-sample of people who lived in poor
families in the mid-1960s, the Federal Reserve Board’s Survey of
Consumer Finances has an over-sample of families with very high
incomes, and current plans for the 1995 redesign of the Census
Bureau’s Survey of Income and Program Participation (SIPP) involve
over-sampling households located in areas that had high poverty
concentrations at the time of the 1990 decennial census. In each of
these examples, the sampling weights are (or will be) a function of
income, a common dependent variable.'

To illustrate how sampling weights can affect parameter estimates
when they are a function of the dependent variable, consider the
problem of estimating the effect of education on income where the
only individuals in the sample are those with incomes below $15,000.
(Hausman and Wise 1977 provide a similar example.) Figure 3 illus-
trates the situation.

If the model is given by

Income = B, + B, Education + e,

then individuals can have incomes over $15,000 because they have
high education or because they have a large . By restricting the sample
to those with observed incomes under $15,000, individuals with large
positive error terms have been eliminated from the sample. This has,
in turn, induced a negative correlation between education and the error
term (e): For those who remain in the sample, the more education a
person has, the less likely it is that they have a positive e and,
equivalently, the more likely it is that they have a (large) negative e.
This is an example of a truncated sample that is an extreme version of
sample selection bias (Berk 1983; Winship and Mare 1992), and it
results in parameter estimates that are biased (generally toward zero)
and inconsistent. (For a general discussion of the relation between
truncation, censoring, and sample selection bias, see Greene 1990,
chap. 21.)

If instead of observing no individuals with incomes over $15,000,
individuals with incomes over $15,000 were half as likely to be
sampled as individuals with incomes below that amount, education
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Figure 3: Estimating the Effect of Education on Income From a Sample of Persons With
Incomes Below $15,000

would still be negatively correlated with the error term, although not
as severely. In this case, however, use of weights that reflect the
differential sampling based on income would help to reduce that
negative correlation between education and the error term. More
generally, in the situation where sampling weights are a function of Y,
WOLS provides consistent estimates of the true regression slopes.

As in the general case, the use of WOLS will induce heteroskedas-
ticity in the error terms. The structure of the variances of the error
terms will typically depend on the nature of the sampling scheme.
Rather than trying to explicitly model the variance structure, a simpler
approach is to use the White heteroskedastic consistent estimator for
the standard errors (White 1980). White shows that, although gener-
ally one cannot consistently estimate the variance of each individual’s
error, it is possible to estimate the true standard errors using the
estimated residuals. Several programs including SAS, STATA, and
LIMDERP have routines that provide White heteroskedastic consistent
standard errors."*

We demonstrate this use of weights in Table 3, where we have
assumed that the probability that individuals are selected into the
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TABLE 3: Monte Carlo Results Hlustrating the Use of Sampling Weights in the Presence

of Sample Truncation®
Race*
Intercept Education Race  Education Ability
Expected value 9.4900 0.0460 -0.1650 0.0230  0.0240
Theoretical OLS standard error 0.0501 0.0081 00232 00112  0.0083
Full sample

Average OLS estimate 94934  0.0460 -0.1663  0.0230  0.0234
Observed standard error 0.0505 00076 00230 00110  0.0083
Average package standard error 0.0498 0.0080  0.0231 0.0111 0.0083

Truncated sample
Average OLS estimate 93059 0.0385 -0.1303 0.0151  0.0188
Observed standard error 0.0523 0.0092 0.0244 00126 0.0086
Average package standard error 0.0537 0.0090 0.0249 00122 0.0090
" Average WOLS estimate 04933  0.0457 -0.1659 00236  0.0232
Observed standard error 0.0736 00118 00334 00169 00119
Average package standard error 0.0603 0.0097 00280 00135 0.0100
Average White standard error 0.0727 00117 00337 00161 00121

NOTE: Averags are across 750 samples. See notes to Table 1 for definitions.
a. Of cases with annual wages over $15,000, 70% are missing from the sample.

sample is a function of their income. Specifically, we assume that
persons with annual wages over $15,000 are only 30% as likely to be
sampled as those with annual wages under $15,000. Such a situation
could arise in practice in a survey that attempted to oversample those
with low wages or in a survey with low participation rates among those
with higher wages.

The results clearly show that attempting to estimate the model
without correcting for sample selection yields biased estimates of the
Bs. The average OLS estimates from the truncated sample are all
biased toward zero, with the average estimated Race*Education coef-
ficient being only 66% as large as the true effect. Using WOLS
drastically improves the coefficient estimates: The average WOLS
estimates of B are all within 2% of their true values. However, the
average estimated standard errors produced by the statistical software
are all only about 80% of the observed standard errors of the coeffi-
cients. In general these miscalculated standard errors could also be
larger than their true values. What should be clear from this example
is that the standard errors generated for weighted data by most statis-
tics packages can be off by enough to affect formal hypothesis tests
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as well as decisions about model specification. Table 3 also provides
the White heteroskedastic consistent standard errors. These are quite
close to the observed standard errors.

CONCLUSION

When a researcher is going to perform a regression analysis with
data that have sampling weights, what should be done? First, the
analyst should estimate two models: one with unweighted data (OLS)
and one using the sampling weights (WOLS). If the parameter esti-
mates are substantively similar, then the OLS estimates are preferable
because they are more efficient and the estimated standard errors will
be correct. If in doubt about whether the OLS and WOLS estimates
are different, the F test proposed by DuMouchel and Duncan (1983)
can be easily performed. As we stated before, if the data come from a
clustered sample and nothing is done to correct for this, caution should
be used in interpreting the F test. In addition, caution is needed if the
researcher carries out multiple significance tests.

When OLS and WOLS produce different parameter estimates, the
researcher needs to carefully consider the possible reasons. One
possibility is that the model may be missing linear, nonlinear, or
interaction terms. Estimating DuMouchel and Duncan’s augmented
equation and examining the effects of the weight variable or interac-
tions of it with other variables provides a way of diagnosing misspe-
cification.

If respecifying the model does not make weighted and unweighted
estimates similar, the other possibility is that the weights are correcting
for sample selection bias. In this case, use of the weights (WOLS) will
yield consistent parameter estimates, but incorrect standard errors.
Consistent estimates of the standard errors can be gotten using White’s
estimator.
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APPENDIX
The OLS Estimator in Matrix Notation

Given that Y and e are (n x 1) column vectors, X is an (n X k) matrix, and B and
A
Bois are (k x 1) column vectors. Assume

1. Y=XB + ¢ s the true model for all members of the population;
2. X is fixed;

3. (XX)! exists;

4. X’e=0;and

5. E(ee’) = oI, and Ee;) = 0.

Then the OLS estimators for B and for Cov(B) are given by
A — ’
Bais = (X'X) " (X'Y)

and

Cov(fos) = 02(X'X)™",

STATISTICAL PACKAGES AND THE FORMULAS THEY USE

If W is an (n x n) diagonal matrix of sampling weights, then the general mon.BEmm
used by SPSS, SAS, m%m\mmr STATA, mma other standard packages for the Weighted
OLS (WOLS) estimator, Bwois and Cov{Bwais) are the standard Weighted Least Squares
(WLS) formulas given by

Bus = (X'WX) (X'WY)
and
Cov(Bu) = CAX'WX)™.

There are small differences in the ways standard statistical packages modify these
formulas for wé and Ooiws_mv when weights are used. Systat, for example, uses only
the integer portion of weight value. If an individual has a weight of 3.75, SYSTAT
truncates the value and uses a value of 3. Although the correct number of observations
for computation of standard errors and hypothesis testing is n, SPSS and SYSTAT use
the sum of the weights. Where weights sum to the total U.S. population (roughly 250
million), this can clearly lead to problematic results from this error alone. STATA and
SAS correctly compute the sample size when weights are used with their simplest
regression routines. ;
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If the unweighted data are homoskedastic (the first part of assumption 5 above),
use ow sampling weights actually creates heteroskedasticity. The correct formula for

Cov(Buwas) is therefore
A _ s =ly -1
Cov(Buois) = (X'X)7'X QX(X'X)

where, in this case, Q) = Qw<<4_. This is clearly different from the formula above
A
for Cov(B,,,).

NOTES

1. Although our discussion focuses entirely on least-squares models, all of our conclusions
also apply to probit, logit, and other types of generalizedlinear models. See Manski and Lerman
(1977) or Amemiya (1985) for a discussion of the estimation of conditional logit models from
choice-based samples.

2. An alternative approach wonld be to interpret the regression model as describing differ-
ences in the conditional mean of Y across values of the specific set of Xs included in the model
(Goldberger 1991). This kind of regression model is sometimes referred to as a descriptive model
(and more formally known as the conditional expectation function). In this case, we would
analyze the problem of estimating a regression model with and without weights from a
population-based perspective. We would reach similar conclusions, but the motivation for the
analysis would be less clear.

3. Asymptotic properties apply to large samples. How large the sample needs to be depends
on the specific context. Most of the sample surveys sociclogists work with are sufficiently large
for this property to apply.

4. This would be equivalent to running an experiment that contained either no control group
or no treatment group: In either case it would be impossible to determine the effect of the
treatment on the outcome.

5. A number of different approaches can be used to handle this problem, including random
effect (GLS), fixed effect estimators (Maddala 1977), jackknife methods (Efron and Tibshirani
1993), and linearized standard error formulas (Holt, Smith, and Winter 1980).

6. We assumed that all of the income received by men in this age group who were employed
full-time year-round was from earnings. We could have used an hourly wage variable. This would
have amounted to dividing annual income for these men by 2000. This would shift our intercept
down by 7.6 (which is In[20001), but all other coefficients would be unchanged.

7. Nonresponse in cross-sectional surveys, and its longitudinal analogue, attrition bias, also
contribute to samples diverging from their populations along key dimensions. Because survey
organizations often know something (however little) about nonrespondents of both types, both
are considered to be akin to sample design when weights are estimated.

8. Below, when we claim that OLS standard errors will be less than or equal to WOLS
standard errors, we are referring to the correctly computed standard errors, not those that are
automatically produced by standard software routines.

9. Kott (1991) argues that in each of these cases sample weights should be used so that the
parameter estimates are at least consistent estimates of the regression function for the population.



256 SOCIOLOGICAL METHODS & RESEARCH

Where the regression model u&.ﬁ:n&ﬁ are being used for purposes of description, this can be

a useful tack. However, there seems little advantage to this approach when the interest is in-

estimating the causal effects of a set of independent variables on 2 dependent variable.
10. If the goal is to knowingly obtain consistent estimates for a descriptive model (which
may not be a correctly specified causal model) as applied to the population, then there is a

rationale for weighting the data (see note 9). In general, however, the weights that would give -

nmm.nmoa estimates of the parameters in the misspecified model will differ from standard sampling
weights. For further discussion of the estimation of misspecified models, see White (1982).

11. Both the F test and formulas for the standard errors used here assume that error terms
are uncorrelated across individuals. Because most commonly used survey data use cluster
samples, there is potential correlation of errors across individuals S the same cluster. If this is
not explicitly dealt with (by using GLS, a difference estimator, cooanwu methods, or linearized
standard error formulas), the F test and standard errors should be interpreted cautiously.

In addition, if the researcher carries out a sequence of tests, say by examining the ¢ values
of a number of different variables, he or she needs to be additionally cautious in interpreting
_mS&m of mmmamow:on. Leamer (1978) provides an extensive discussion of the problem of using
significance tests in specification searches. : ‘

12. When income is an independent variable predicting other outcomes, models using data
from these sources may well be amenable to the techniques described earlier.

. 13. In this case, WOLS can be interpreted as an instrumental variable estimator where WX
is used as an instrument for X. Consistency of WOLS follows from the fact that WX is
uncorrelated with the error term. If the errors are homoskedastic, the instrumental variable
%oBEF for the standard errors for the coefficients can be used. Typically, however, selection
induces heteroskedasticity in the errors. The formula for the true standard errors will then depend
on the distribution of the error term. It is useful to note that White’s (1980) formula does not
depend on the distribution of the error term.,

. 14. The correct formula for the covariance matrix for the estimated coefficients when there
is heteroskedasticity is cov(B) = XX XQ X QGOL. In the past, it was thought that it was
not mommwc_n to consistently estimate this unless one could specify the structure of Q and
no.nmaazaw estimate Q. White (1980) showed that it is possible to consistently estimate X’QX
without knowing the structure of Q. As a result, one can consistently estimate ooiwv under
general forms of heteroskedasticity.
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