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Abstract 

Rare events represent a great analytical challenge. The maximum likelihood-based (ML) binary logit model 

as the workhorse model in the social sciences can generate heavily biased parameter estimates if events are 

rare. In detail, the finite sample bias in ML estimates may be substantially larger than that observed in cases 

with balanced data of the same sample size. Furthermore, the ML estimator is prone to overfitting rare event 

data even in low-dimensional models and not identified in cases of perfectly separated data. Starting with a 

brief introduction to the standard binary logit as a reference model, this entry discusses several design issues 

(e.g., selection on the dependent variable) and analytical approaches (e.g., first-order bias correction, exact 

conditional inference, penalized ML estimation, specification of cloglog models) to overcome these threats to 

valid inferences. Finally, the potential of Bayesian rare event modeling, which addresses some limitations of 

the frequentist probability perspective, is briefly introduced. 

Introduction 

Studying events is at the heart of research in various disciplines. The occurrence of an event is a situational 

concept, defined as change in an object’s characteristic from one state or level to another (Blossfeld & 

Rohwer, 1997). Events cover a broad range of phenomena that differ substantially in their probability of 

occurrence. While some events are prevalent and occur on a regular basis, others occur very seldom. 

Numerous intensively investigated issues in contemporary societies belong to the latter type, including severe 

crimes, epidemiological infections, economic shocks, political upheavals, and natural disasters, denoted as 

rare events. As data on these events are highly imbalanced, “with dozens to thousands of times fewer ones 

(events […]) than zeros (“nonevents”)” (King & Zeng, 2001, p. 137), several design and analytical issues 

must be considered to obtain valid inferences. Otherwise, nonconvergence, substantial bias and uncertainty 

in parameter estimates, misinterpretation of results, and high prediction error are likely. 

Starting with a brief introduction of the binary logit as a reference model for analyzing the occurrence of events 

in the social sciences, this entry subsequently addresses core analytical problems associated with data on 

rare events, provides solutions that avoid defective modeling results, and finally discusses some prospects 

for the analysis of rare events. This entry is limited to binary explanatory models of event occurrence from 

a frequentist probability perspective. Some remarks regarding Bayesian inference are outlined in the final 

section. 

Binary Logit Model 

(Non)occurrences of some event of interest can be captured by a binary random variable Y (DY = {0, 1}), 

with Y = 1 indicating that the event did occur and Y = 0 otherwise. Let Y follow a Bernoulli distribution, with 
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parameter πi as individual event probability Pr(Yi = 1) for i = 1, … , n observations under study. Assume 

further that πi is subject to variation because observations differ with respect to a set of k = 1, … , K individual 

characteristics, captured by the 1 × K + 1 vector xi
T = (1, xi1, … , xiK). 

A statistical model that adequately describes the data generating process (DGP) outlined in the previous 

paragraph can be formulated in terms of a generalized linear model (GLM; McCullagh & Nelder, 1989): The 

(i) systematic component in the form of the linear predictor 

(1) 

ηi = xi
Tβ

introduces information about x to the model, with βT = (β0, β1, … , βK) as a vector of effect parameters, 

while the (ii) stochastic (or random) component reflects the probability distribution of Y by specifying some 

density function from the exponential family. In the present case, it is self-evident to choose the Bernoulli 

density f(Y|π) = πY(1 − π)1 − Y. Furthermore, the model comprises a (iii) monotonic and invertible link function 

g,  which serves as a connection between the systematic and stochastic components. Its inverse g − 1

transforms the unbounded linear predictor η(x) into the Bernoulli distribution’s single parameter π(x), now 

representing the event probability conditional on x. To conform to the probability metric, function values 

of g − 1 are expected to lie within the interval [0,1], forcing g to satisfy [0, 1] → ] − ∞, ∞[. Typically, g

is defined by some cumulative distribution function (CDF). The well-known candidates include the logit 

gl = Λ − 1 = ln{π(x) / [1 − π(x)]} and probit gp = Φ − 1[π(x)] function, with Λ as the CDF of the standard logistic 

and Φ of the standard normal distribution. For several reasons (see, e.g., the arguments provided by Paul 

Allison on his blog https://statisticalhorizons.com/whats-so-special-about-logit), the canonical logit is preferred 

over the noncanonical probit link in the social sciences. Thus, the contribution refers to the logit as a reference 

model. However, most of the issues discussed in this entry apply equally to the probit model. 

The logit model can be derived in conditional expected probability (CEP) form by formulating πi as a logistic 

function of ηi: 

(2) 

E[Pr(yi = 1|xi)] = πi = Λ(ηi) =
1

1 + exp( − ηi)
Assuming y1, … , yn are independent (yi from individual i is not influenced by yj from individual j) and 

identically distributed (possess the same underlying distribution), the model’s likelihood function relates to 

the product of the n individual probabilities of observing the outcome yi, represented by the Bernoulli density 

determined as a stochastic component: 

(3) 

LML(β) =

n

∏
i = 1

πi
yi(1 − πi)

1 − yi
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Under some regularity conditions, the likelihood function is strictly concave, guaranteeing unique maximum 

likelihood (ML) estimates 
^
β

ML
 that are consistent, asymptotically unbiased, efficient, and normal (Amemiya, 

1985). Monotonicity of the logarithmic function allows identifying 
^
β

ML
 through the more convenient log-

likelihood function: 

(4) 

lML(β) = ln[L(β)] =

n

∑
i = 1

yiln(πi) + (1 − yi)ln(1 − πi)

The first derivative of Equation 4 with respect to β is referred to as the score function U(β), represented by 

the (K + 1)-dimensional vector q: 

(5) 

UML(β) =
∂ lML(β)

∂β
= q

Finally, 
^
β

ML
—the β values that maximize the function value of Equation 4—can be obtained by setting 

q = 0 and solving for β. In most cases, the system of equations has no closed-form solution, necessitating 

numerical approximation methods such as the Newton–Raphson algorithm. 

Modeling Rare Event Binary Data: Problems 

and Promising Solutions 

Analyzing binary rare event data is afflicted with various (partially related) challenges, covering the key issues 

of unbiased parameter estimation, susceptibility to overfitting, handling of separated data, and appropriate 

specification of the link function. 

Finite Sample and Rare Event Bias 

The linear model’s well-known ordinary least squares estimator has—given the Gauss–Markov assumptions 

are satisfied—a set of desirable finite sample properties including unbiasedness, consistency, and efficiency. 

In contrast, the ML estimator is only asymptotically unbiased (e.g., Schaefer, 1983), supposing the 

expectation of some parameter estimate 
^
θ to converge to the underlying population parameter θ as n

converges to infinity: limn → ∞E(^
θn) = θ. Thus, ML estimates are biased in finite samples, and the amount of 

bias may be substantial in small- to moderate-sized samples. 

Generally, bias in ML estimates is induced by small (total) Fisher information (FI; Cordeiro & McCullagh, 

1991). In case of the binary logit model, FI measures the amount of information the random variable Y of 
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size n contains about the set of unknown parameters β and is captured in I(β), the K + 1 × K + 1 expected FI 

matrix: 

(6) 

I(β) = − E[ ∂2 l(β)
∂β∂β ′ ] =

n

∑
i = 1

πi(1 − πi)xixi
'

Equation 6 indicates that FI increases with sample size (summation over n) and individuals close to πi = .5

tend to contribute more to FI than those with rather low/high event probabilities because the term πi(1 − πi)
represents a strictly concave function, having its maximum at πi = .5. By definition, rare events are 

characterized by an event probability πi close to zero for a vast majority of individuals in the population. Thus, 

for some given n, FI is expected to be considerably lower for rare event data than that for data balanced 

in Y, implying that finite sample bias is amplified by rare events (King & Zeng, 2001). It should be noted, 

however, that the same holds true for (very) frequent events because πi(1 − πi) is symmetric in shape and 

converges to zero as πi tends to its upper boundary one. Furthermore, as the inverse of the observed (not the 

expected) FI matrix 
^
I (^
β)

− 1
 represents the covariance matrix for 

^
β

ML
, with the square roots of the elements 

from the main diagonal as respective standard errors, the obviously negative relationship between FI and the 

uncertainty in parameter estimates becomes visible. 

Generally, asymptotic bias in some arbitrary ML estimate 
^
θ, given sample size n, can be expressed as a 

Taylor series expansion: 

(7) 

b(^
θn) =

b1(θ)
n

+
b2(θ)

n2 + …

By definition, b(^
θ) (for notational simplicity, subscript n will be skipped) constitutes the divergence between 

the expectation of 
^
θ and the corresponding population parameter θ: b(^

θ) ≡ E(^
θ) − θ (e.g., McCullagh & 

Nelder, 1989). As the sample size increases, the bias converges to zero because limn → ∞b1(θ)n − 1 = 0. For 

the logit model’s set of ML estimates 
^
β

ML
 (Section Binary Logit Model), the bias equals 

(8) 

b(^
β

ML) ≡ E(^
β

ML) − β

To account for b(^
β

ML), two strategies are commonly applied: correction and prevention. 

Correction 

Correction approaches have in common the generation of ML estimates in the first step and removal of first-
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order bias O(n − 1) = b1(β)n − 1 (the first term on the right-hand side of Equation 7) in the second step. Two 

standard procedures are discussed in the literature: The (i) analytical or Taylor series approach and the (ii) 

simulation approach. 

(i) The analytical approach is based on the idea of substituting 
^
β

ML
 for β in b1(β) and calculating the first-order 

corrected ML estimates 
^
β

cML
 by 

(9) 

^
β

cML
=

^
β

ML
−

b1(^
β

ML)
n

This presupposes the existence of finite 
^
β

ML
 and a derivation of b1(^

β
ML), which is provided by Peter 

McCullagh and John A. Nelder (1989) as 

(10) 

b1(^
β

ML) = (X ′WX)
− 1
X ′Wξ

where X ′WX is the observed FI matrix (the right-hand side of Equation 6 in matrix notation when πi is 

replaced by its estimate 
^
πi), (X ′WX)

− 1
 is the estimated covariance matrix of 

^
β

ML
, W = diag{mi

^
πi(1 −

^
πi)} is a 

diagonal matrix of weights with mi as the number of observations that share a common covariate vector xi
T, 

and ξi = Qii(^
πi − 1 / 2) indicates the elements of ξ with Q = X(X ′WX)

− 1
X ′  as an asymptotic covariance matrix 

of 
^
η (for further details, see Cordeiro & McCullagh, 1991). Again, Equation 10 reveals the inverse relation 

between FI and bias. Regarding corrections for higher order terms (b2(β)n − 2, … ), although there may be 

some additional adjustment effect if n is small, they remain unconsidered due to computational impracticability 

(Schaefer, 1983). 

Owing to the seminal contributions of Gary King and Langche Zeng (2001) and their provision of the program 

ReLogit for statistical software packages Gauss, R (as part of the Zelig-package), and Stata, the analytical 

approach gained remarkable popularity in the scientific community, indicated by almost 3,000 citations for 

King and Zeng (2001; source: Google Scholar, December 19, 2018). 

(ii) The computer-intensive simulation approach is based on resampling methods, particularly variants of the 

jackknife and bootstrapping. It does not require the estimation of b1(β) for its implementation (for an overview, 

see Kosmidis, 2014). 

Prevention 

Prevention approaches propose (i) alternative estimation strategies to avoid parameter estimates relying on 

asymptotic properties or a (ii) modified or penalized ML estimator by manipulating the score function instead 
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of correcting ML estimates a posteriori. 

• (i) Exact conditional inference, in the given context also known as exact logistic regression, 

represents an alternative to ML estimation not relying on distributional assumptions. Rather, exact 

estimation procedures are based on the idea of constructing completely determined “permutational 

distributions of the sufficient statistics that correspond to the regression parameters of interest, 

conditional on fixing the sufficient statistics of the remaining parameters at their observed values” 

(Mehta & Patel, 1995, p. 2143). The approach is also known as conditional ML (CML). However, 

despite the development of efficient iterative algorithms that derive these distributions, exact 

inferences require—even for moderate-sized samples—enormous memory resources often not 

feasible with standard RAM. Thus, exact logistic regression can be considered as an alternative only 

if the sample size and the number of covariates are rather small. Furthermore, continuous covariates 

may lead to a loss of effective information due to overconditioning, arising when “the number of points 

of support in the conditional distribution becomes very small” (Barndorff-Nielsen & Cox, 1994, p. 44). 

• (ii) The modified score function approach accounts for the fact that 
^
β

ML
 is biased if the unbiased 

score function U(β) (Equation 5) has some curvature (Firth, 1993), and the direction of bias depends 

on its direction: In case of the logit model, ∂2UML(β) / ∂β2 > 0, and thus, 
^
β

ML
 is systematically 

upward-biased away from zero (for a graphical demonstration, see Firth, 1993). To reduce bias, 

David Firth (1993) proposed the introduction of a small bias via some penalty term into the score 

function that shrinks parameter estimates toward zero. The modified score function UPML(β) is then 

defined as 

(11) 

UPML(β) = UML(β) − I(β)b1(β) = q − I(β)b1(β)
with the penalty term as the product of the FI matrix I(β) from Equation 6 and first-order bias b1(β) from 

Equation 10. Because b1(β) = I(β) − 1X ′Wξ, Equation 11 can be reformulated as UPML(β) = U(β) − X ′Wξ

(Firth, 1993). 

The penalized parameter estimate 
^
βk

PML
 (k = 0, … , K)—free from first-order bias—is obtained by solving 

(12) 

U*(βk) ≡ U(βk) +
1
2

trace[I(β) − 1∂I(β)
∂βk ] = 0

The corresponding penalized ML (PML) functions lPML(β) and LPML(β) are 

(13) 

lPML(β) = l(β) +
1
2

ln|I(β)|

(14) 

SAGE

2019 SAGE Publications, Ltd. All Rights Reserved.

SAGE Research Methods Foundations

Page 7 of 21 Analysis of Rare Events



LPML(β) = L(β)|I(β)|1 / 2

where the penalty function |I(β)|1 / 2
 represents Jeffrey’s invariant prior for the problem, also well known as 

noninformative data-driven prior in Bayesian modeling. As Georg Heinze and Michael Schemper (2002) 

indicate, its influence is asymptotically negligible. Thus, 
^
β

ML
 and 

^
β

PML
 are asymptotically equivalent. 

PML estimation is usually based on solving Equation 12 for all k = 0, … , K by applying an iteratively 

weighted least-squares algorithm. 

Comparing the Performance of Approaches 

Although most systematic comparisons between the introduced approaches do not focus on rareness of 

event occurrence but rather on obtaining unbiased estimates under varying sample size conditions, some 

general conclusions can be drawn that also apply to rare event situations. In an evaluation of correction 

approaches, S. B. Bull and colleagues (1994) contrasted the Taylor series approach with different variants 

of the resampling-based jackknife method (one-step, two-step, fully iterated) through Monte Carlo (MC) 

simulations. While the common one-step jackknife does not effectively reduce bias, the two other approaches 

perform quite well in moderate-sized samples but tend to overcorrect in small samples. However, jackknife 

methods are not recommended when the number of events per covariate (independent variable) is fewer 

than 20. Furthermore, more complex resampling-based approaches are not yet readily available for applied 

studies in statistical standard software packages, such as R or Stata. The Taylor series approach is similar 

in behavior, generating accurate parameter estimates in samples of large to moderate size but also tends 

to overcorrect bias in small samples, particularly when the probability of event occurrence is low (for similar 

evidence, see Leitgöb, 2013). 

Regarding prevention approaches, Elizabeth N. King and Thomas P. Ryan (2002) investigated the small 

sample performance of CML estimation and asserted that, although clearly outperforming ML, the estimation 

error is larger than expected. In combination with severe estimation problems in large data sets with many 

(continuous) covariates—which is the standard case in, for example, sociological, epidemiological, and 

political research—CML does not represent a viable alternative to avoid biased parameter estimates. In 

contrast, Firth-based PML estimation appears to work well in small n and/or rare event conditions (e.g., 

Leitgöb, 2013; Rainey & McCaskey, 2015). Furthermore, it is much more efficient than the ML estimator, “thus, 

researchers do not face a bias-variance tradeoff when choosing between the ML and PML estimators—the 

PML estimator has a smaller bias and a smaller variance” (Rainey & McCaskey, 2015, p. 1). However, Rainer 

Puhr and colleagues (2017) indicated that PML introduces bias toward 1 / 2 in predicted probabilities and 

proposed simple modifications to obtain unbiased estimates (see Heinze and Schemper, 2002, regarding 

adequate statistical inference). 

Finally, Heinz Leitgöb (2013) focused explicitly on the interplay of sample size and rare event bias when 

conducting MC simulations comparing the behavior of the Taylor series correction approach, ML estimation, 

and PML estimation. While even ML produces negligible bias in intercept and effect parameter estimates in 

case of n = 5, 000 and π ≥ .01, the approaches’ performance differs greatly in more unfavorable situations. 
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This indicates that the low variance in Y is not the core problem of rare events bias but the low amount 

of absolute FI. Again, Taylor series correction results in marginally to moderately overcorrected estimates 

for n ≤ 1, 000; π ≤ .01 and n ≤ 100; π ≤ .1. In contrast, the Firth-based PML approach can produce virtually 

unbiased estimates under these extreme data conditions. Thus, its application appears recommendable for 

rare event binary logit modeling. The procedure is available in R (packages logistf and brglm) and Stata 

(command firthlogit). 

Number of Events per Variable 

Additional bias in parameter estimates and respective standard errors arises when specifying ML-based 

logit models with an unfavorably small number of events per independent variable (EPV; e.g., Harrell et al., 

1985). The phenomenon—very likely to occur when analyzing rare event outcomes—is called overfitting (or 

overparameterization). Generally, an overfitted model is more complex (in terms of specified parameters) 

than can be justified by the information available in the applied data and tends to fit idiosyncratic random 

noise besides reflecting the underlying DGP at population level. Furthermore, the ML estimator contributes 

to overfitting because it maximizes the likelihood of observing the data at hand. Although it is technically 

more accurate to consider the number of events per model parameter as relevant for bias rather than EPV 

(Wynants et al., 2015), here EPV is considered for reasons of consistency with pertinent terminology. 

To counteract bias, Frank Harrell and colleagues (1985) were the first to propose a general guideline for 

the minimum number of EPVs. Based on theoretical considerations, they recommended 10–20 EPVs as the 

cutoff range. In contrast, Peter Peduzzi and colleagues (1996) relied on MC simulations of epidemiological 

data to derive a threshold value of 10 EPVs for dichotomous covariates. For fewer than 10 EPVs, they 

identified heavily biased parameter estimates in both directions as well as under- and overestimation of 

sampling variances, accompanied with poor confidence interval coverage. In a subsequent simulation study, 

Eric Vittinghoff and Charles E. McCulloch (2006) utilized a quasi-experimental design as underlying DGP to 

study the causal effect bias arising from the implementation of a large set of covariates necessary to adjust 

for confounding bias. Compared to Peduzzi and colleagues (1996), the simulation design allowed for higher 

generalizability through artificially generated data and the application of dichotomous as well as continuous 

covariates. For most simulation conditions, results indicate that substantial bias is uncommon with 5–9 EPVs 

and widely comparable in size with 10–16 EPVs. Thus, Vittinghoff and McCulloch (2006) concluded that 

“systematic discounting of results, in particular statistically significant associations, from any model with five 

to nine EPV does not appear to be justified” (p. 717) and advocated relaxing the rule of 10 EPVs to five 

EPVs. However, they also recognized that a low number of EPVs is not an isolated cause of bias but rather 

dependent on or interrelated with other factors such as the model’s dimensionality, scale and variance of 

covariates (particularly low prevalences in dichotomous covariates), and total sample size. More recent MC 

studies have followed this line of argument and focused on the interplay between EPV and further factors: 

Delphine S. Courvoisier and colleagues (2011) demonstrated that even if the number of EPVs exceeds 10, 

bias is very likely to be substantial in case of high absolute values of effect parameters and high correlations 

between covariates. Beyond that, even for 20 or more EPVs, statistical power proved to be quite to extremely 
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low. L. Wynants and colleagues (2015) investigated the impact of a clustered data structure (sample elements 

are nested within contextual units, e.g., pupils are nested within classes) and total sample size on bias 

in parameter estimates and predictive performance for given EPV levels. While the amount of clustering 

appears to have no systematic influence on bias and the logit model’s predictive performance (based on 

discrimination and calibration), simulations suggest that for a given EPV, larger sample sizes provide more 

accurate estimation and prediction results. This last finding is also in line with the simulation-based evidence 

reported by M. Van Smeden and colleagues (2016). 

From the outlined state of research, it can be deduced that no general guideline for the minimum number 

of EPVs can guarantee accurate ML estimates of parameters in logit models. Rather, as Courvoisier and 

colleagues (2011) advocated, thorough a priori consideration of the expected data structure regarding the 

proportion of events under study, the number of covariates necessary for adequate model specification, 

distributions of and correlations between covariates as well as absolute values of effect parameters is 

necessary during the design phase to avoid severe bias. Although some approaches for sample size 

calculations that consider the number of and correlations between covariates exist (e.g., Væth & Skovlund, 

2004), adequate sample size determination from a parameter bias perspective appears accomplishable only 

via MC simulations. The simulation approach allows for theory- and evidence-based generation of artificial 

data that correspond in structure to the expectable data. The objective is to identify the minimum sample 

size n ′  that maintains bias in parameter estimates stable below some defined acceptance threshold (e.g., 

1% or 5% in terms of relative bias). From a frequentist perspective, it can further be investigated whether n ′

provides sufficient power to conduct adequate hypothesis testing. If this is not the case, sample size can be 

increased until both criteria are met. 

From an analytical perspective, changing the estimation method appears effective to attenuate EPV bias 

without introducing confounding bias due to nonconsideration of relevant covariates. Van Smeden and 

colleagues (2016) compare the performance of the ML and Firth-based PML estimators under varying 

EPV conditions in a quasi-experimental simulation setting similar to that done by Vittinghoff and McCulloch 

(2006). Even for fewer than 10 EPVs and high absolute values in the effect parameter of a normally 

distributed covariate, PML yields estimates with relative bias considerably below 5%. With binary lasso 

(least absolute shrinkage and selection operator) and ridge regression, Qingxia Chen and colleagues (2016) 

tested two further penalization methods that shrink effect parameter estimates toward zero. While the lasso 

was originally developed for covariate selection in high-dimensional settings, the primary scope of ridge 

regression is enhancing the stability, and therefore, precision of parameter estimates under multicollinearity. 

Both methods regularize estimates by introducing some constraint on the overall size of effect parameter 

estimates. Thus, maximizing the log-likelihood function from Equation 3 under restriction ∑k = 1

K

|βk| ≤ t (L1 

norm) results in lasso estimates and under ∑k = 1

K

βK
2 ≤ t (L2 norm) in ridge estimates, with k = 1, … , K

labeling the K effect parameters specified in the linear predictor and t ≤ 0 determines the threshold that 

controls the amount of shrinkage via its correspondence with the penalty or tuning parameter λ. From a 
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functional perspective, the two methods differ in the way they shrink parameter estimates. While the lasso 

tends to shrink some of the parameter estimates exactly to zero, the ridge estimator allows only for shrinkage 

to nonzero values. According to the results of simulating a quasi-experimental design with a dichotomous 

exposure variable under case–control sampling reported by Chen and colleagues (2016), both estimators 

perform well regarding relative bias in situations with EPV < 10, particularly when all but the effect parameter 

of the exposure variable are penalized. However, the shrinkage estimator’s unnecessary model overfitting 

is not without consequences but leads to increased uncertainty in parameter estimates, reducing statistical 

power to detect nonzero exposure effects. 

Problem of Separation 

Researchers analyzing rare event data with small to moderate sample size may also be confronted with a 

phenomenon called the problem of complete separation (Albert & Anderson, 1984) or monotone likelihood 

(Bryson & Johnson, 1981). It arises in case of highly predictive covariates that perfectly separate occurrences 

and nonoccurrences of the event under study or some nontrivial linear combination of covariates and 

affects parameter estimation (Heinze & Schemper, 2002). In these situations, the likelihood function given in 

Equation 2 is no longer concave but rather a monotonically increasing function of (at least) one parameter 

that approaches its maximum as the respective parameter converges to infinity (Allison, 2008). Depending 

on whether the convergence threshold will be reached within the determined number of iterations, the 

maximization algorithm (e.g., Newton-Raphson) may even terminate but provide some arbitrary parameter 

estimate of finite size. Thus, the problem of separation can be considered as the inability of identifying 

finite population parameters under specific data conditions because of the nonexistence of the ML estimate 

(Heinze & Schemper, 2002). 

Let the problem of separation be demonstrated by a simple numerical example. Assume the following 2 × 2

contingency table between some rare event outcome variable Y and an unbalanced covariate X, which may 

be interpreted as risk factor, indicating that an increase in X is associated with an increase in P(Y = 1|X) (when 

changing columns, one can think of X as a protective factor): 

Table 1. 2×2 Contingency table with perfect separation. 

X 

1 0 ∑  

Y 

1 5 0 5 

0 15 80 95 

∑  20 80 100 
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The absolute frequency in cell c12 (X = 0∧ Y = 1) equals zero. Thus, no individuals without exposure to risk 

factor X experience the event of interest. In contrast, all five individuals who experience the event are also 

exposed to X (located in cell c11 with X = 1∧ Y = 1). In case of a 2 × 2 contingency table, the logit model is 

saturated and the ML estimates 
^
β0

ML
 and 

^
β1

ML
 possess a closed-form solution: 

(15) 

ln[Pr(Y = 1|X)
Pr(Y = 0|X) ] = ln[Pr(Y = 1|X = 0)

Pr(Y = 0|X = 0) ]
?

^
β0

ML

+ ln[Pr(Y = 1|X = 1)
Pr(Y = 0|X = 1) / Pr(Y = 1|X = 0)

Pr(Y = 0|X = 0) ]
?

^
β1

ML

X

Inserting the values from Table 1 into 
^
β1 from Equation 15 leads to 

^
β1 = ln( 5 / 20

15 / 20 / 0 / 80
80 / 80 ) = ln(80

0 ). Because a 

division by zero is not defined, 
^
β1

ML
 does not exist. 

However, whether perfectly separated data actually constitute an estimation problem depends on the nature 

of X. It is the case if β1 is finite in size because individuals with X = 0∧ Y = 1, although not included in the 

sample, do exist in the population. In such a situation, the rationale behind separated data is that this group 

must inevitably be very small because rare event occurrence without being exposed to X —given that X

indeed constitutes a relevant causal factor of Y —is extremely unlikely. Then, the sample inclusion probability 

of at least one of these individuals is close to zero and (random) sampling of separated data becomes very 

likely. Nonexistence of an ML-based solution for 
^
β1 is therefore sampling induced and gathering (much) more 

data from the population can resolve the problem. 

Now assume that X satisfies the INUS condition proposed by J. L. Mackie (1965) and represents a cause 

defined as insufficient but necessary part of an unnecessary but sufficient condition. Let Y, the rare event 

under study, for example, be adolescent pregnancy. Then, any kind of sexual intercourse hypothetically 

possible to result in fertilization is in itself insufficient but necessary for pregnancy. Thus, adolescent 

pregnancy already in the population will be separated along sexual intercourse status because young females 

without such experiences belong deterministically to the nonpregnant group (given that artificial insemination 

is legally not permissible for adolescents). In other words, their probability of being pregnant is equal to zero. 

Thus, they do not contribute any variance to Y. Referring to count data modeling terminology, these young 

females have structural zeros in Y. Compared to the situation described previously, the population parameter 

β1 is now actually infinite (or undefined) and so is its ML estimate. 

Differentiating between situations with (i) sampling induced and (ii) structural causes of separated data allows 

a tailored analytical response to the phenomenon. Simply omitting the relevant covariate is in neither case 

a solution because leaving an obviously relevant part of the DGP unconsidered will introduce nothing but 

specification bias to the model (Zorn, 2005). 

(i) In case of sampling-induced separation, gathering more data raises the probability of having only nonzero 

cells in the 2 × 2 contingency table. However, increasing the sample size under random sampling does 
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not guarantee nonseparated data. To overcome the problem, sampling designs based on selecting on 

the dependent variable (known as choice-based or endogenous stratified designs in econometrics and 

case–control designs in epidemiology) appear as a viable alternative (King & Zeng, 2001). The strategy 

implies stratifying the population with respect to Y and drawing random samples from the cases (Y = 1) as 

well as from the controls (Y = 0). As cases are more informative than controls in rare event data (for details, 

see King & Zeng, 2001), it may appear plausible to collect all cases available for gaining maximum efficiency. 

The oversampling of cases will result in a sampling distribution of Y that is systematically deviating from the 

underlying population distribution. Nonetheless, given that the sampling process for cases and controls is 

based on random or complete selection, which generates representative samples for the two subpopulations 

of the well-defined total population, selection on Y does not introduce selection bias in covariates X and the 

estimates of the logit model’s effect parameters are still consistent (e.g., Breslow, 1996). Rather, this is not 

the case for 
^
β0, the estimate of the intercept parameter. Thus, if researchers are interested not only in 

^
βk or 

the respective odds ratio exp(^
βk) but also in estimated event probabilities Pr(Y = 1 | ^

β) or in marginal effects 

∂Pr(Y = 1|
^
β) / ∂Xk, bias correction for 

^
β0 becomes indispensable. King and Zeng (2001) proposed applying 

^
β0

c
,  a corrected estimate of 

^
β0,  which is consistent for β0, based on a priori information about τ, the fraction 

of events in the population 

(16) 

^
β0

c
=

^
β0 − ln[(1 − τ

τ )(
¯
y

1 −
¯
y )]

with 
¯
y as the observed fraction of ones in the sample. If information about τ is available, 

^
β0

c
 can be easily 

computed according to Equation 16 after having obtained 
^
β0; otherwise, King and Zeng (2002) developed 

methods that allow valid inferences when the respective information is partially or completely absent. Note 

finally that ignorability of stratified sampling with respect to Y for 
^
βk under the stated conditions is a unique 

property of the logit model and does not hold for other binary dependent variable models such as the probit 

or the cloglog. 

As outlined, the strategy of selecting on the dependent variable requires strong a priori information. However, 

this information is often not accessible. For example, if the focus of research is on explaining sexual 

victimization as a dramatic life event, a considerable and highly selective number of offenses remain 

undetected because the victims refrain from reporting the incidents to the police for various reasons. Then, 

victimization status is not accessible for this specific subgroup of victims and selection based solely on 

accessible police records will introduce selection bias. In such a situation, generating large random samples 

from the total population of interest appears without alternatives. If sampling-induced separation still occurs, 

Heinze and Schemper (2002) proposed applying the Firth-based PML estimator as an analytical solution 

because it guarantees finite estimates in any case and, thus, eliminates the problem of separation. Although 
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exact methods based on CML estimation also provide finite parameter estimates in case of separated data, 

Heinze (2006) demonstrated the superiority of the PML estimator with respect to applicability, precision, and 

statistical inference. 

(ii) For structurally separated data, sample homogenization by eliminating all structural zeros in Y (

Y = 0 | X = 0 for INUS-based risk and Y = 0 | X = 1 for protective factors) appears as the method of choice. 

These cases are uninformative (Equation 6), as they do not contribute to variance in Y and exclusion rules 

out potential confounding bias in effect parameter estimates of other covariates in the model. The strategy 

appears particularly credible if the causal mechanism responsible for separation is well understood, such as 

the physiological processes in the adolescence pregnancy example provided earlier. 

Model Specification 

The logit model holds the symmetry property 

(17) 

g[π(x)] = − g[1 − π(x)]
Thus, it has a symmetric sigmoid response curve for π(xi), approaching the lower and upper limits at the 

same rate from the inflection point at π = .5 (Figure 1). However, several authors (e.g., Calabrese & Osmetti, 

2013; Wang & Dey, 2010) have argued that the symmetry property, which implies that cases with zeros and 

ones contribute the same amount of information to the explanation of Y, may not be appropriate in case of 

highly imbalanced data. If the event under study is rare, the observed ones are more informative than the 

zeros. To optimize model fit and predictive accuracy, this fact should be considered explicitly in the estimation 

of the model (see Calabrese & Osmetti, 2013). This may be achieved by changing the link function from 

the logit to some noncanonical asymmetric function, such as the complementary log-log (cloglog) function 

with gcll = ln{ − ln[1 − π(x)]}. In CEP form, the cloglog model can be expressed in terms of the CDF of the 

standardized minimum extreme value (EV) Type I distribution (also referred to as Gumbel or log-Weibull 

distribution): 

(18) 

E[Pr(yi = 1|xi)] = πi = 1 − exp[ − exp(ηi)]
The response curve is specific in the sense that π(x) asymptotically converges toward zero at a rather 

slow rate, while it approaches one quite sharply (Figure 1). With increasing absolute effect size β, it 

closely approximates the logit model’s response curve in the lower tail. Hence, the cloglog model is more 

discriminatory particularly in the upper tail than the logit model and tends to produce higher probability 

estimates for given x (or η, respectively). For estimation purposes, Equation 18 can be inserted for πi in 

Equation 3 instead of Equation 2. 

Figure 1. Logit and cloglog model comparison (η = βx). 
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As the EV Type I distribution is a special case of the generalized EV (GEV) distribution when ξ = 0— ξ∈ R

represents the GEV distribution’s shape parameter that governs its tail behavior—Xia Wang and Dipak Dey 

(2010) proposed the application of the inverse of the standardized minimum GEV distribution’s CDF with 

gGEVmin = − ln[1 − π(x)] − ξ
− 1 / ξ (for ξ ≠ 0) as link function to introduce more flexibility to the response 

function’s skewness to improve the model fit (see also Calabrese & Osmetti, 2013). The model has the 

following CEP specification: 

(19) 

E[Pr(yi = 1|xi)] = πi = 1 − exp[ − (1 − ξηi)
−

1
ξ ]

The way variations in the shape parameter ξ affect the GEV model’s response curve is demonstrated in 

Figure 2. Compared to the cloglog with ξ = 0 as reference model, its slope is steeper in the lower tail and 

flatter in the upper tail if ξ < 0, while the opposite is the case if ξ > 0. 

Although it is—under strong regularity conditions—possible to obtain an ML estimator for ξ with asymptotic 

properties, Raffaella Calabrese and Silvia Angela Osmetti (2013) treated ξ as fixed. They proposed fitting 

various models with different prespecified values of ξ and selected the model with the highest predictive 

accuracy. In contrast, Wang and Day (2010) relied on the Bayesian approach to estimate 
^
β and 

^
ξ . 

Figure 2. GEV model for different combinations of β and ξ (η = βx). 
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Whether specifying some asymmetric response curve leads to a model that actually performs better than the 

logit model regarding model fit and predictive accuracy is finally an empirical question that has to be resolved 

through model comparison. Nonetheless, changing the link from logit to some asymmetric function has 

substantial interpretative implications. The term exp(βk) then no longer represents an odds ratio, but in case of 

the cloglog model, a rate ratio (ratio between two incidence rates). However, because πi = 1 − exp[ − exp(ηi)]
and 1 − πi = exp[ − exp(ηi)], the cloglog model also allows for a computation of odds ratios. 

Prospects 

Substantial gains in the trustability of conclusions drawn from rare events analysis can be achieved by 

thorough research design considerations. Under given financial and time constraints, the primary design 

objective is to maximize the amount of FI in collected data to obtain parameter estimates as precise as 

possible. Respective measures include accurate sample size determination taking into account the number 

of EPVs to avoid overfitting and—if possible—the systematic reduction of imbalance in Y by oversampling 

events through the implementation of some case–control design and sample homogenization. 

In addition, several analytical strategies support (or at least compensate design limitations when) drawing 

inferences from rare event data. As worked out, particularly the PML approach proposed by Firth (1993) 

appears promising as it (i) tends to adequately remove first-order finite sample bias even under rather 
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extreme sample size and rare event conditions, (ii) significantly reduces problems associated with an 

unfavorably small number of EPV, and (iii) fully eliminates the problem of (sampling-induced) separation. 

However, Ioannis Kosmidis and Firth (2009) indicated that PML functions do not exist for all GLMs with 

noncanonical links, for example, the probit and cloglog models. Furthermore, Andrew Gelman and colleagues 

(2008), Sander Greenland and Mohammad Ali Mansournia (2015), and Carlisle Rainey (2016) demonstrated 

that Jeffrey’s data-driven prior may not represent the optimal choice because it contains too little or too 

much prior information, finally resulting in defective inferences from the binary logit model. From a frequentist 

perspective, Jeffrey’s prior in PLM serves as a stabilization device to improve the repeated-sampling 

performance of an estimator (Cole et al., 2014). As formally derived by Rainey (2016), however, PML is 

equivalent to a Bayesian estimation approach with Jeffrey’s prior as specified noninformative prior. Switching 

from frequentist to Bayesian probability theory allows for higher flexibility in prior specification to overcome the 

limitations associated with Jeffrey’s prior in the PML approach. This matters particularly in case of separated 

data because for some large β, the posterior distribution—from which inferences are drawn—is dominated 

not by the data at hand but by the chosen prior distribution (Rainey, 2016). Despite the proposition of weakly 

informed priors based on the Cauchy (Gelman et al., 2008) or log-F distribution (Greenland & Mansournia, 

2015) or empirical Bayes (objective) priors as superior alternatives to Jeffrey’s prior (e.g., Rainey, 2016), it 

appears fruitful to learn more about the specification of appropriate priors in rare event situations—and about 

the potential of Bayesian rare event modeling in general. Notably, in the extreme case of having observed no 

(potentially occurring) events at all, a phenomenon discussed as the zero-numerator problem in the literature 

(e.g., Winkler et al., 2002), there is no alternative to the application of the Bayesian probability theory. Given 

^
π = 0, the estimator of the frequentist standard error 

^
σ ^

π = √^
π(1 −

^
π) / n = 0 and fails to reflect the uncertainty 

that the parameter estimate 
^
π is afflicted with. On the basis of the frequentist statistical inference, one would 

then assume with certainty that the true probability of event occurrence in the population equals zero. 

Finally, the potential of modern computer-intensive methods, such as machine learning techniques including 

random forests, boosting, and support-vector machines, for analyzing rare events must be evaluated 

thoroughly. 
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