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1 Introduction1

The linear regression model (LRM) is the most commonly used statistical method
in the social sciences. A key advantage of the LRM is that the results have a sim-
ple interpretation: for a unit change in a given independent variable, the expected
value of the outcome changes by a �xed amount, holding all other variables con-
stant. Unfortunately, the application of the LRM is limited to cases in which the
dependent variable is continuous and uncensored.2 If the LRM is used when the
dependent variables is categorical, censored, or truncated, the estimates are likely to
be inconsistent, ine¢ cient, or simply nonsensical. When the dependent variable is
continuous and censored or truncated, models for limited dependent variables such
as tobit need to be used. These are discussed in Chapter ___ of the current vol-
ume. Of particular concern for our paper are models for binary, ordinal, or nominal
outcomes.

There is a wide and increasing variety of models that can be used for cate-
gorical outcomes. These include binary logit and probit, ordinal logit and probit,
multinomial and conditional logit, and multinomial probit. Within the last 15 years,
computational problems for estimating these models by maximum likelihood have
been solved and the models can be easily estimated with readily available software.
But, since these models are nonlinear, interpretation is much more di¢ cult than for
the LRM. Proper interpretation involves post-estimation analysis that transforms
the estimated parameters into more substantively useful information.

The focus of our paper is on the most basic models for categorical outcomes.
These models are extremely useful in and of themselves and also serve as the foun-
dation for a vast and increasing number of alternative models that are available for

1This paper draws on the more detailed presentation in Long (1997). Examples of software to es-
timate the models considered in this paper can be found at www.indiana.edu/~jsl650/rm4cldv.htm
We would like to thank Melissa Hardy and an anonymous reviewer for their valuable comments.

2The use of the LRM with a binary dependent variables leads to the linear probability model.
However, nonlinear models for binary outcomes, discussed in this paper, have key advantages over
the linear probability model, as discussed below.
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categorical outcomes. Our review emphasizes the similarities among the models,
noting that models for ordinal and nominal outcomes can be developed as general-
izations of models for binary outcomes. Methods of interpretation are also shared
by these models. Accordingly, we begin with a general discussion of issues of in-
terpretation for nonlinear models. This is followed in Section 3 with a review of
general issues related to estimating, testing and assessing �t of these models. The
remaining sections consider models for binary, ordinal, and nominal outcomes.

2 Nonlinearity and Interpretation

Models for categorical outcomes are nonlinear and understanding the implications
of nonlinearity is fundamental to the proper interpretation of these models. Unfor-
tunately, data analysts often limited their �interpretation�to a table of coe¢ cients
accompanied by a brief description of the signs and signi�cance levels of the coe¢ -
cients. This unnecessary limitation can be avoided if the implications of nonlinearity
are fully understood. Accordingly, in this section we focus heuristically on the idea
of nonlinearity and the implications of nonlinearity for the proper interpretation of
these models. Speci�c details as they apply to particular models are given later in
the chapter.

Figure ?? shows a simple, linear regression model, where y is the dependent
variables, x is a continuous independent variable, and d is a binary independent
variable. The model being estimated is

y = �+ �x+ �d ;

where for simplicity we have assumed that there is no error term. The solid line plots
y as x changes for d = 0: that is, y=�+ �x. The dashed line plots y as x changes
when d = 1, which simply changes the intercept: y = �+ �x+ �1 = (�+ �) + �x.

The e¤ect of x on y can be computed as the partial derivative or slope of the
line relating x to y, often called the marginal change:

@y

@x
=
@ (�+ �x+ �d)

@x
= � :

This equation is the ratio of the change in y to the change in x, where the change
in x is in�nitely small, holding d constant. In a linear model, the marginal change
is the same at all values of x and d. Consequently, when x increases by one unit, y
increases by � units regardless of the current values for x and d. This is shown by
the four small triangles with bases of length 1 and heights of �.

The e¤ect of d cannot be computed with a partial derivative since d is discrete.
Instead, we measure the discrete change in y as d changes from 0 to 1, holding x
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constant:
�y

�d
= (�+ �x+ � 1)� (�+ �x+ � 0) = � :

When d changes from 0 to 1, y changes by � units regardless of the level of x. This is
shown by the two arrows marking the distance between the solid and dashed lines.

The distinguishing feature of interpretation in the LRM is that the e¤ect of a
given change in an independent variable is the same regardless of the value of that
variable at the start of its change and regardless of the level of the other variables in
the model. Accordingly, interpretation only needs to specify which variable is chang-
ing, by how much, and that all other variables are being held constant. Another
simpli�cation due to the linearity of the model is that a discrete change of one unit
equals the marginal change. This will not be true, however, for nonlinear models,
as we now show.

Figure ?? plots a logit model where y = 1 if some event occurred, say if a person
is in the labor force, else y = 0: The curves are from the logit equation3

Pr (y = 1) =
exp (�+ �x+ �d)

1 + exp (�+ �x+ �d)
: (1)

Once again, x is continuous and d is binary.
The nonlinearity of the model makes it more di¢ cult to interpret the e¤ects of x

and d on the probability of an event occurring since neither the marginal nor discrete
change with respect to x or d are constant. This is illustrated by the triangles. Since
the solid curve for d = 0 and the dashed curve for d = 1 are not parallel, �1 6= �4.
And, the e¤ect of a unit change in x di¤ers according to the level of both d and
x: �2 6= �3 6= �5 6= �6. In nonlinear models the e¤ect of a change in a variable
depends on the values of all variables in the model and is no longer simply equal to
a parameters in the model.

There are several general approaches for interpreting nonlinear models:

1. Marginal and discrete change coe¢ cients can be computed at a representa-
tive value of the independent variables, such as when all variables equal their
means. Or, the discrete and marginal changes can be computed for all values
in the sample and then averaged.

2. Predicted values can be computed at values of interest and presented in tables
or plots.

3. The nonlinear model can be transformed to a model that is linear or multi-
plicative in some other outcome. For example, the logit model in Equation 1

3The �, �, and � parameters in this equation are unrelated to those in Figure 1.
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can be written as

ln

�
Pr (y = 1)

1� Pr (y = 1)

�
= �+ �x+ �d ;

which can then be interpreted with methods for linear model. Or, the model
can be expressed as a multiplicative model in terms of odds:

Pr (y = 1)

1� Pr (y = 1) = exp (�+ �x+ �d) :

Note, however, that here the di¢ culty is in the meaning of the transformed
dependent variable.

Each of these approaches is discussed in Section 4.

3 Estimation, Testing, and Fit

While the focus of our review is on the form and interpretation of models for cat-
egorical outcomes, it is important to begin with general comments on estimation,
testing, and measuring �t.

3.1 Estimation

Each of the model that we consider can be estimated by maximum likelihood (ML).4

Under the usual assumptions, the ML estimator is consistent, e¢ cient, and asymp-
totically normal. These desirable properties hold as the sample size approaches
in�nity. While ML estimators are not necessarily bad estimators in small samples,
the small sample behavior of ML estimators for the models we consider is largely un-
known. With the exception of the binary logit model, which can be estimated with
exact permutation methods using LogXact (Cytel Software Corporation, 2000), al-
ternative estimators with known small sample properties are not available. Based on
both his experience with these methods and discussion with other researchers, Long
(1997:53-54) proposed the following guidelines for the use of ML in small samples:

It is risky to use ML with samples smaller than 100, while samples over
500 seem adequate. These values should be raised depending on charac-
teristics of the model and the data. First, if there are may parameters,

4A full discussion of ML estimation is beyond the scope of this paper. For further information,
see Long (1997) for a general overview, Eliason (1993) for a more detailed introduction, and Cramer
(1986) for a more advanced discussion.
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more observations are needed. A rule of at least ten observations per
parameter seems reasonable (which does not imply that less than 100
is not needed if you have only two parameters). Second, if the data
are ill-conditioned (e.g., independent variables are highly collinear) or if
there is little variation in the dependent variable (e.g., nearly all of the
outcomes are 1), a larger sample is required. Third, some models seem
to require more observations, such as the ordinal regression model.

Numerical methods are used to compute the ML estimates. These methods work
extremely well when the data are clean, variables are properly constructed, and the
model is correctly speci�ed. In some cases, problems with convergence occur if the
ratio of the largest standard deviation to the smallest standard deviation among
independent variables is large. For example, if income is measured in units of $1,
recoding income to units of $1; 000 may resolve problems with convergence. Overall,
numerical methods for ML estimation work well when your model is appropriate for
your data. In using these models, Cramer�s (1986:10) advice should be taken very
seriously: �Check the data, check their transfer into the computer, check the actual
computations (preferably by repeating at least a sample by a rival program), and
always remain suspicious of the results, regardless of the appeal.�

3.2 Statistical Tests

Coe¢ cients estimated by ML can be easily tested with standard Wald and likelihood
ratio (LR) tests. Even though the LR and Wald tests are asymptotically equivalent,
in �nite samples they give di¤erent answers, particularly for small samples. In gen-
eral, it is unclear which test is to be preferred. In practice, the choice of which test
to use is often determined by convenience, although many statisticians (including
us) prefer the LR test. While the LR test requires the estimation of two models,
the computation of the test only involves subtraction. The Wald test only requires
estimation of a single model, but the computation of the test involves matrix ma-
nipulations. Which test is more convenient depends on the software being used.
Regarding signi�cance levels for tests based on small samples, Allison (1995:80)
suggests that, contrary to standard advice of using larger p-values in small samples,
given that the degree to which ML estimates are normally distributed is unknown
in small samples, it is reasonable to require smaller p-values in small samples.

3.3 Measures of Fit

Residuals and Outliers When assessing a model it is useful to consider how
well the model �ts each case and how much in�uence each case has on the estimates
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of the parameters. Pregibon (1981) extended methods of residual and outlier analy-
sis from the LRM to the case of binary logit and probit. See also Cook and Weisberg
(1999: Part IV). Similar methods for ordinal and nominal outcomes are not avail-
able. However, models for ordinal and nominal outcomes can often be expressed as
a series of binary models (as shown below). Methods developed for binary models
can be applied to each of these models, providing potentiality useful information
about the �t of the model.

Scalar Measures of Fit In addition to assessing the �t of each observation,
a single number to summarize the overall goodness of �t of a model would be useful
in comparing competing models and ultimately in selecting a �nal model. While the
desirability of a scalar measure of �t is clear, in practice their use is problematic.
Selecting a model that maximizes the value of a given measure of �t does not nec-
essarily lead to a model that is optimal in any sense other than the model having
a larger value of that measure. While measures of �t provide some information, it
is partial information that must be assessed within the context of the theory moti-
vating the analysis, past research, and the estimated parameters of the model being
considered. For details on the many measures that have been proposed, see Long
(1997: Chapter 4).

4 Models for Binary Outcomes

The binary logit and probit models, referred to jointly as the binary regression model
(BRM), can be derived in three ways. First, an unobserved or latent variable can
be hypothesized along with a measurement model relating the latent variable to the
observed, binary outcome. Second, the model can be constructed as a probability
model. And �nally, the model can be generated as a random utility or discrete
choice model. While we focus on the �rst two approaches, the third approach is
used to explain the multinomial probit model.

4.1 A Latent Variable Model

Assume a latent variable y� ranging from �1 to 1 that is related to the observed
independent variables by the structural equation

y�i = xi� + "i ;

where i indicates the observation and " is a random error. The form of this equation
is identical to that of the LRM with the important di¤erence that the dependent
variable is unobserved.
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The observed binary variable y is related to y� by a simple measurement equa-
tion:

yi =

�
1 if y�i > 0
0 if y�i � 0

:

Cases with positive values of y� are observed as y=1; while cases with negative or
zero values of y� are observed as y = 0. For example, let y = 1 if a women is in
the labor force and y = 0 if she is not. The independent variables might include
number of children, education, and expected wages. Not all women in the labor force
are there with the same certainty. One woman might be close to leaving the labor
force, while another woman could be �rm in her decision to work. In both cases,
we observe y=1. The idea of a latent y� is that an underlying propensity to work
generates the observed state. While we cannot directly observe the propensity, at
some point a change in y� results in a change in what we observe, namely, whether
a woman is in the labor force.

The latent variable model for binary outcomes is illustrated in Figure ?? for a
single independent variable, where we use the simpler notation y� = �+�x+". For
a given value of x, illustrated in the �gure for x = 5:

Pr(y = 1 j x) = Pr(y� > 0 j x) :

Substituting the structural model and rearranging terms:

Pr(y = 1 j x) = Pr (�+ �x+ " > 0 j x) (2)

= Pr(" > � [�+ �x] j x)
= Pr(" � �+ �x j x) .

This equation shows that the probability depends on the distribution of the error.
Two distributions are commonly assumed. First, " is distributed normally with
E (") = 0 and Var(") = 1, which leads to the binary probit model. Speci�cally,
Equation 2 becomes

Pr(y = 1 j x) =
Z �+�x

�1

1p
2�
exp

�
� t

2

2

�
dt :

Alternatively, " is assumed to have a logistic distribution with E (") = 0 and
Var(") = �2

3 , leading to the binary logit model:

Pr(y = 1 j x) = exp (�+ �x)

1 + exp (�+ �x)
: (3)

The peculiar value assumed for Var(") in the logit model illustrates a basic point
regarding the identi�cation of models with latent outcomes. In the LRM, Var(") can
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be estimated since y is observed. For the BRM, Var(") must be assumed since the
dependent variable is unobserved. The model is unidenti�ed unless an assumption
is made about the variance of the errors. For probit, we assume Var(") = 1 since
this leads to a simple equation for the model. In the logit model, the variance is
set to �2=3 since this leads to the simple form of Equation 3. While the value
assumed for Var(") is arbitrary, the value does not a¤ect the computed value of
the probability (see Long 1997:49-50 for a simple proof). In e¤ect, changing the
assumed variance a¤ects the spread of the distribution, but not the proportion of
the distribution above or below the threshold. If a di¤erent value is assumed, the
values of the structural coe¢ cients are changed in a uniform way. This is illustrated
in Figure ??.

Overall, the probability of the event occurring is the cumulative density function
of the error term evaluated at given values of the independent variables:

Pr(y = 1 j x) = F (x�) ; (4)

where F is the normal cdf � for the probit model and the logistic cdf � for the
logit model. The relationship between the linear latent variable model and the
resulting S-shaped probability model is shown in Figure ?? for a model with a
single independent variable. Panel A shows the error distribution for nine values of
x. The area where y�>0 corresponds to Pr(y=1 jx) and has been shaded. Panel B
plots Pr (y=1 jx) corresponding to the shaded regions in Panel A. As we move from
x = 1 to 2 only a portion of the thin tail crosses the threshold in Panel A, resulting
in a small change in Pr(y= 1 j x) in Panel B. As we move from x = 2 to 3 to 4,
thicker regions of the error distribution slide over the threshold and the increase in
Pr(y=1 jx) becomes larger. The resulting curve is the well known S-curve associated
with the BRM.

4.2 A Nonlinear Probability Model

The BRM can also be derived without appealing to a latent variable. This is done
by specifying a nonlinear model relating the x�s to the probability of an event.
Following Thiel (1970) the logit model can be derived by constructing a model in
which Pr (y = 1 j x) is forced to be within the range 0 to 1. For example, in the
linear probability model Pr (y = 1 j x) = x� + ", the probabilities can be greater
than 1 and less than 0. To constrain the range of possible values, �rst transform
the probability into the odds:


 (x) =
Pr (y = 1 j x)
Pr (y = 0 j x) =

Pr (y = 1 j x)
1� Pr (y = 1 j x) :

The odds indicate how often something happens (e.g., y = 1) relative to how often
it does not happen (e.g., y = 0). The odds vary from 0 when Pr (y = 1 j x) = 0 to
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Table 1: Descriptive Statistics for the Labor Frce Participation Example.

Std
Name Mean Dev Min Max Description

K5 0.24 0.52 0.00 3.00 # of children ages 5 and younger.
K618 1.35 1.32 0.00 8.00 # of children ages 6 to 18.
Age 42.54 8.07 30.00 60.00 Wife�s age in years.
WC 0.28 0.45 0.00 1.00 1 if wife attended college; else 0.
HC 0.39 0.49 0.00 1.00 1 if husband attended college; else 0.
Lwg 1.10 0.59 -2.05 3.22 Log of wife�s estimated wage rate.

Income 20.13 11.63 0.00 96.00 Family income excluding wife�s wages.

Note : N=753.

1 when Pr (y = 1 j x) = 1. The log of the odds, or logit, ranges from �1 to 1.
This suggests a model that is linear in the logit:

ln
 (x) = x� :

This equation is equivalent to our earlier de�nition of the logit model in Equation
3.

Other binary regression models are created by choosing functions of x� that
range from 0 to 1. Cumulative distribution functions have this property and read-
ily provide a number of examples. For example, the cdf for the standard normal
distribution results in the probit model.

4.3 Interpretation

To make our discussion concrete, we use an example from Mroz (1987) on the
labor force participation of women using data from the 1976 Panel Study of Income
Dynamics.5 The sample is 753 white, married women between the ages of 30 and
60. The dependent variable LFP=1 if a woman is employed (57%) and else 0. The
independent variables are listed in Table 1.

Based on the speci�cation

Pr (LFP = 1) = F (�0 + �1K5 + �2K618 + �3Age

+�4WC + �5HC + �6Lwg + �7Income) ;

a binary logit and probit were estimated, with results given in Table 2. The column
�Ratio� shows that the logit coe¢ cients are about 1.7 times larger than those for

5These data were generously made available by Thomas Mroz.
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Table 2: Logit and Probit Analyses of Labor Force Participation.

Logit Probit Ratio

Variable � z � z � z

Constant 3.182 4.94 1.918 5.04 1.66 0.98

K5 -1.463 -7.43 -0.875 -7.70 1.67 0.96

K618 -0.065 -0.95 -0.039 -0.95 1.67 1.00

Age -0.063 -4.92 -0.038 -4.97 1.66 0.99

WC 0.807 3.51 0.488 3.60 1.65 0.98

HC 0.112 0.54 0.057 0.46 1.95 1.17

Lwg 0.605 4.01 0.366 4.17 1.65 0.96

Income -0.034 -4.20 -0.021 -4.30 1.68 0.98

�2 lnL 905.27 905.39 1.00

Note : N=753. � is an unstandardized coe¢ cient; z is the z-test
for �. �Ratio� is the ratio of a logit to a probit coe¢ cient.

probit, with the exception of the coe¢ cient for HC which is the least statistically
signi�cant parameter. This illustrates how the magnitudes of the coe¢ cients are
a¤ected by the assumed Var("). The signi�cance tests are quite similar since they
are not a¤ected by Var(").

4.3.1 Predicted Probabilities

In general, the estimated parameters from the BRM provide only information about
the sign and statistical signi�cance of the relationship between an independent vari-
able and the outcome. More substantively meaningful interpretations are based
on the predicted probabilities and functions of those probabilities (e.g., ratios, dif-
ferences). For example, Figure ?? plots the probit model with two independent
variables:

Pr (y = 1 j x; z) = � (1 + 1x+ :75 z) (5)

and illustrates the basic issues involved in interpretation. Each point on the surface
corresponds to the predicted probability for given values of x and z. For exam-
ple, the point in the northwest corner corresponds to Pr (y = 1 j x = �4; z = 8) :
Interpretation can proceed by presenting a table of predicted probabilities at sub-
stantively interesting values of the independent variables, by plotting the predicted
probability holding all but one variable constant, or by computing how much the
predicted probability changes when one independent variable changes holding the
others constant.
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Table 3: The probability of employment by college attendence and the number of
young children.

Number Predicted Probability
of Young Did Not Attended
Children Attend College Di¤erence

0 0.61 0.78 0.17
1 0.27 0.45 0.18
2 0.07 0.16 0.09
3 0.01 0.03 0.02

While Figure ?? is for two independent variables, the idea extends to more
variables. For example, consider the e¤ects of age and income from our example of
labor force participation. First, set all variables but Age and Income to their means.
Holding Age at 30, compute the predicted probability of labor force participation
as Income ranges from 0 to 100 using the equation

cPr (LFP = 1 j x�) = ��x�b�� ;
where x� contains the assumed values of each variable. These predictions are plotted
with the line marked with circles in Figure ??. This process is repeated holding age
at 40, 50, and 60. The nonlinearities in the e¤ects are apparent, with the e¤ect of
income decreasing with age. When relationships are nonlinear, plots are often useful
for uncovering relationships.

In other cases, a table is a more useful way to summarize results. For example,
holding all variables at their means except for the wife�s education and the number
of young children, Table 3 clearly shows the e¤ect of eduction and family on labor
force participation.

4.3.2 Marginal and Discrete Change

Another useful method of interpretation is to compute the change in the probability
of the outcome event as one variable changes, holding all other variables constant.
In economics, the most commonly used measure of change is the marginal change,
shown by the tangent to the probability curve in Figure ??:

Marginal Change =
@ Pr(y = 1 j x)

@xk
:

This value is often computed with all variables held at their means or by computing
the marginal change for each observation in the sample and then averaging across
all observations.
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Alternatively, the discrete change in the predicted probabilities for a given change
in an independent variables can be used. Let Pr (y = 1 j x; xk) be the probability of
an event given x, noting in particular the value of xk. Thus, Pr(y = 1 j x; xk + �) is
the probability with xk increased by �, all other variables held constant at speci�ed
values. The discrete change for a change of � in xk equals

�Pr (y = 1 j x)
�xk

= Pr (y = 1 j x; xk + �)� Pr (y = 1 j x; xk)
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which can be interpreted as:

For a change in variable xk from xk to xk + �, the predicted probability
of an event changes by �Pr(y=1jx)

�xk
, holding all other variables constant.

As shown in Figure ??, in general the marginal change and discrete change will
not be equal:

@ Pr(y = 1 j x)
@xk

6= �Pr (y = 1 j x)
�xk

:

The two measures of change di¤er since the model is nonlinear and the rate of change
is constantly changing. The discrete change measures the actual amount of change
over a �nite change in an independent variable while the marginal measures the
instantaneous rate of change. The two measures will be similar when the discrete
change occurs over a region of the probability curve that is roughly linear. In
practice, we prefer the discrete change since it measures the actual change occurring,
regardless of the approximate linearity of the model in that area of the curve.

While measures of change are straightforward in the LRM, there is an important
problem in nonlinear models: the magnitude of the change in the probability for a
given change in an independent variable depends both on the level of the independent
variables and on the start value of the variable that is changing. This is illustrated
in Figure ??. Consider the e¤ect of a unit change in x, which corresponds to a
change along a line running southwest to northeast. For example, consider the
change in probability when x changes from �4 to �3, with z = 8: This change is
quite small since the predicted probability is already near 1 at x = �4 and z = 8:
Now, consider the same change in x when z = 4: The change is now much larger.
Clearly, the amount of change caused by a unit change in x depends on the level of
z and also on the start value for x. The key problem in using measures of change
in nonlinear models is to decide on the level of each control variable and the value
at which you want to start the change for a given variable.

Figure ?? also illustrates a subtle, but important point about computing discrete
change that was raised by Kaufman (1996). Consider the point on the curve at
Pr (y = 1 j x). When x increases by 1, Pr(y = 1) increases by some amount. When
x decreases by 1, Pr(y = 1) decreases by an amount that is smaller than the change
caused by the 1 unit increase. Because of this asymmetry around a given point on
the curve, it is useful to center the change around a given value of x. For example,
rather than examining the quantity

�Pr(y = 1 j x)
�xk

= Pr(y = 1 j x; xk + 1)� Pr(y = 1 j x; xk) ;

13



Table 4: Discrete change in the probability of employment.

Centered
Centered Standard Change
Unit Deviation From

Variable Change Change 0 to 1

K5 -0.33 -0.18 - - -
K618 -0.02 -0.02 - - -
Age -0.01 -0.12 - - -
WC - - - - - - 0.18
HC - - - - - - 0.02
Lwg 0.14 0.08 - - -

Income -0.01 -0.09 - - -

Note : Changes are computed with other variables
held at their means.

the centered discrete change can be used:

�Pr(y = 1 j x)
�xk

= Pr
�
y = 1 j x; xk + 1

2

�
� Pr

�
y = 1 j x; xk � 1

2

�
:

This is the measure that we report in our examples.
Table 4 contains measures of discrete change for the probit model of women�s

labor force participation. For example, the e¤ects can be interpreted as:

For a woman who is average on all characteristics, an additional young
child decreases the probability of employment by .33.

A standard deviation change in age centered around the mean will de-
crease the probability of working by .12, holding other variables constant.

If a woman attends college, her probability of being in the labor force
is .18 greater than a woman who does not attend college, holding other
variables at their means.

4.3.3 Odds Ratios

Recall that the logit model, but not the probit model, can be written as linear in
the log of the odds of the event occurring:

ln
 (x) = x� :

Taking the exponential,


 (x; xk) = exp (x�)

= e�0e�1x1 � � � e�kxk � � � e�KxK ;
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Table 5: Factor change coe¢ cients for labor frce participation.

Std
Logit Factor Factor

Variable Coef Change Change z-value

Constant 3.182 - - - - - - 4.94
K5 -1.463 0.232 0.465 -7.43

K618 -0.065 0.937 0.918 -0.95
Age -0.063 0.939 0.602 -4.92
WC 0.807 2.242 - - - 3.51
HC 0.112 1.118 - - - 0.54
Lwg 0.605 1.831 1.427 4.01

Income -0.035 0.966 0.670 -4.20

where 
 (x; xk) makes explicit the value of variable xk. To assess the e¤ect of xk,
we want to see how the odds change when xk changes by some quantity �; which
is often set to 1 or the standard deviation of xk. If we change xk by �, the odds
become


 (x; xk + �) = e
�0e�1x1 � � � e�kxke�k� � � � e�KxK :

The odds ratio is simply

 (x; xk + �)


 (x; xk)
= e�k� ;

which can be interpreted as:

For a change of � in xk, the odds are expected to change by a factor of
exp(�k � �), holding all other variables constant.

Importantly, the e¤ect of a change in xk does not depend on the level of xk or on
the level of any other variable.
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The factor change and standardized factor change coe¢ cients for the logit model
analyzing labor force participation are presented in Table 5. Here is how some of
the coe¢ cients can be interpreted:

For each additional young child, the odds of being employed are de-
creased by a factor of .23, holding all other variables constant.

For a standard deviation increase in wages, the odds of being employed
are 1.43 times greater, holding all other variables constant.

Being ten years older decreases the odds by a factor of .52 (=e�:063�10),
holding all other variables constant.

Since the odds ratio is a multiplicative coe¢ cient, �positive�e¤ects are greater
than one, while �negative�e¤ects are between zero and one. Therefore, positive and
negative e¤ects should be compared by taking the inverse of the negative e¤ect (or
vice versa). For example, a positive factor change of 2 has the same magnitude as a
negative factor change of :5=1=2. Second, a constant factor change in the odds does
not correspond to a constant change or constant factor change in the probability. For
example, if the odds are 2:1 and are doubled to 4:1, the probability changes from
.667 to .800, a change of .130. If the odds are 10:1 and double to 20:1, the change is
the probability is only: .909-.952=.043. While the odds change by a constant factor
of two, the probabilities do not change by a constant amount. Consequently, when
interpreting a factor change in the odds, it is essential to know what the current
level of the odds or probability is.

4.3.4 Summary Regarding Interpretation

For nonlinear models, no single approach to interpretation can fully describe the
relationship between a variable and the outcome probability. The data analyst
should search for an elegant and concise way to summarize the results that does
justice to the complexities of the nonlinear model. To do this, it is often necessary
to try each method of interpretation before a �nal approach is determined.

5 Models for Ordinal Outcomes

While there are several models for ordinal outcomes, we focus on the ordered logit
and ordered probit models, which are the most commonly used models for ordinal
outcomes in the social sciences. These models, referred to jointly as the ordered
regression model (ORM), were introduced by McKelvey and Zavoina (1975) in terms
of an underlying latent variable. At about the same time, the model was developed in
biostatistics (McCullagh 1980), where it is referred to as the proportional odds model,
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the parallel regression model, or the grouped continuous model. After presenting the
ORM, we consider several less common models for ordinal outcomes.

5.1 A Latent Variable Model

The close relationship between the BRM and the ORM is easily shown in the latent
variable formulation of the model. Using the same structural model

y�i = xi� + "i ;

we simply expand the measurement model to divide y� into J ordinal categories:

yi = m if �m�1 � y�i < �m for m = 1 to J :

The cutpoints or thresholds �1 through �J�1 are estimated and, for reasons that are
explained below, we assume �0 = �1 and �J = 1. For example, people respond
to the statement: �A working mother can establish just as warm and secure of
a relationship with her child as a mother who does not work,� with the ordinal
categories: �Strongly Disagree�(SD), �Disagree�(D), �Agree�(A), and �Strongly
Agree� (SA). The latent variable is the propensity to agree that working mothers
can be good mothers, leading to the measurement model:

yi =

8>><>>:
1) SD if �0 = �1 � y�i < �1
2) D if �1 � y�i < �2
3) A if �2 � y�i < �3
4) SA if �3 � y�i < �4 =1 :

For a single independent variable, this ORM is shown in Figure ??. The pre-
dicted probability of an outcome is the area under the curve between a pair of
cutpoints at a given level of the independent variables. For example, we observe
y = 2 when y� falls between �1 and �2:

Pr (y = 2 j x) = Pr (�1 � y� < �2 j x) :
Substituting y� = x� + " and using some algebra, the predicated probability is the
di¤erence

Pr (y = 2 j x) = F (�2 � x�)� F (�1 � x�) ;
where F is the cdf for the assumed distribution of the errors. As with the BRM, if
F is normal with Var(") = 1, we have the ordinal probit model; if F is logistic with
Var(") = �2=3; we have the ordinal logit model. In general, for each outcome m:

Pr (y = m j x) = F (�m � x�)� F (�m�1 � x�) : (6)

For y = 1, the second term drops out since F (�1� x�) = 0; for y = J , the �rst
term equals F (1� x�) = 1. Thus, with two outcome categories, the model is
identical the binary regression model (see Equation 4).
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5.1.1 Parameterization

In the BRM, we assumed that � = 0 in order to identify the model. The ORM is
commonly identi�ed in either of two ways. First, some software assumes that �1 = 0
and estimates the intercept �0, while others programs assume that �0 = 0 and
estimate the threshold �1. The choice of parameterization does not a¤ect estimates
of the slopes, but does a¤ect the estimates of �0 and the ��s. Importantly, the
parameterization does not a¤ect the predicted probabilities.

5.2 The Parallel Regression Assumption

To understand and interpret the ORM, it is helpful to reformulate the model in
terms of the cumulative probability that an outcome is less than or equal to m:

Pr (y � m j x) =
mX
j=1

Pr (y = j j x) :

Expanding Pr (y = j j x) with Equation 6 and canceling terms leads to the simple
expression

Pr (y � m j x) = F (�m � x�) : (7)

This equation both shows the link between the BRM and the ORM and makes
explicit a fundamental assumption of the ORM.

Consider the case with a single independent variable:

Pr (y � m j x) = F (�m � [�+ �x]) (8)

= F ([�m � �] + �x)
= F (��m + �x) :

The new notation makes it clear that the cumulative probability equation is identical
to a binary regression. That is, the ORM is equivalent to simultaneously estimating
J �1 binary regressions. For example, with four outcomes we would simultaneously
estimate three equations:

Pr (y � 1 j x) = F (��1 + �x) (9)

Pr (y � 2 j x) = F (��2 + �x)

Pr (y � 3 j x) = F (��3 + �x) :

While the ��m�s di¤er across equations, the ��s do not. This is re�ected by the lack
of subscripts for �. The J � 1 binary regressions are assumed to have exactly the
same value across all equations. This assumption is referred to either as the parallel
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Table 6: Descriptive statistics for the attitudes toward working mothers example.

Std
Name Mean Dev Min Max Description
Yr89 0.40 0.49 0.00 1.00 Survey Year: 1=1989; 0=1977.
Male 0.47 0.50 0.00 1.00 1=male; 0=female.
White 0.88 0.33 0.00 1.00 1=white; 0=non-white.
Age 44.94 16.78 18.00 89.00 Age in years.
Ed 12.22 3.16 0.00 29.00 Years of education.
Prst 39.59 14.49 12.00 82.00 Occupational prestige.

Note : N=2293.

regression assumption (since plotting Equation 8 for m = 1 to J � 1 results in
parallel curves) or, for the ordinal logit model, as the proportional odds assumption.

While the constraint of parallel regressions or proportional odds is implicit in
the ordinal regression model, in our experience the assumption is violated in many
applications. This is illustrated with an example.

5.2.1 Attitudes toward Working Mothers

The 1977 and 1989 General Social Survey asked respondents to evaluate the state-
ment: �A working mother can establish just as warm and secure a relationship with
her child as a mother who does not work.� Responses were coded as: 1=Strongly
Disagree (SD); 2=Disagree (D); 3=Agree (A); and 4=Strongly Agree (SA). The
variables used in our analysis are described in Table 6. Estimates from ordered logit
are given in the �rst column of Table 7, with estimates from three binary logits on
cumulative probabilities in the last three columns. The parallel regression assump-
tion requires that the ��s in the last three equations are equal. While some of the
estimates are similar across equations (e.g., White), others are quite di¤erent (e.g.,
Male).

Formal tests are also available. A score test is included in SAS�s LOGISTIC
(SAS Institute 1990:1090). An approximate LR test is in Stata�s omodel command
(Wolf and Gould, 1998). These are omnibus tests that do not allow you to tell if
the problem only exists for some of the independent variables. Brant�s (1990) Wald
test allows both an overall test that all �m�s are equal, and tests of the equality of
coe¢ cients for individual variables. This test is available in Stata through the brant
command (Long and Freese forthcoming). In our example, the value of the Brant
test for the hypothesis that all coe¢ cients are parallel is 49.18 with 12 degrees of
freedom, providing strong evidence that the assumption of parallel regressions is
violated. Looking at the tests for individual variables, we �nd that the evidence
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Table 7: Ordered logit and cumulative logit regressions.

Ordered Cumulative Logits
Variable Logit m � 1 m � 2 m � 3

Yr89 � 0.524 0.965 0.565 0.319
z 6.33 6.26 6.09 2.80

Male � -0.733 -0.305 -0.691 -1.084
z -9.23 -2.36 -7.68 -8.88

White � -0.391 -0.553 -0.314 -0.393
z -3.27 -2.40 -2.24 -2.49

Age � -0.022 -0.017 -0.025 -0.019
z -8.52 -4.06 -8.84 -4.94

Ed � 0.067 0.105 0.053 0.058
z 4.20 4.14 2.86 2.27

Prst � 0.006 -0.001 0.010 0.006
z 1.84 -0.25 2.50 1.14

Note : � is an unstandardized coe¢ cient; z is a
z-test of �.

against parallel regressions is strongest for the variables Yr89 (X2 = 13:01, df= 2,
p < :01) and Male (X2 = 22:24, df= 2, p < :01).

5.3 Interpretation

If the idea of a latent variable makes substantive sense (and assuming that the
assumption of parallel regressions is not violated), simple interpretations are possi-
ble by rescaling y� and computing standardized coe¢ cients. When concern is with
the observed categories, the methods illustrated for the BRM can be extended to
multiple outcomes. Since the ORM is nonlinear in the outcome probabilities, no
single approach can fully describe the relationship between a variable and the out-
come probabilities. Consequently, you should consider each of these methods before
deciding which approach is most e¤ective in a given application.

5.3.1 Partial Change in y�

In the ORM, y� = x� + " and the marginal change in y� with respect to xk is

@y�

@xk
= �k :
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Since y� is latent, the marginal cannot be interpreted without standardizing y�. The
variance of y� can be estimated by the quadratic form

b�2y� = b�0dVar (x) b� +Var (") ; (10)

wheredVar (x) is the covariance matrix for the observed x�s; b� contains ML estimates;
and Var(") = 1 for the probit model and �2=3 for the logit model. Then, the y�-
standardized coe¢ cient for xk is

�Sy
�

k =
�k
�y�

;

which can be interpreted as:

For a unit increase in xk, y� is expected to increase by �
Sy�

k standard
deviations, holding all other variables constant.

With �k equal to the standard deviation for xk, the fully standardized coe¢ cient is

�Sk =
�k�k
�y�

= �k�
Sy�

k ;

which can be interpreted as:

For a standard deviation increase in xk, y� is expected to increase by �Sk
standard deviations, holding all other variables constant.

For our example using the ordinal logit model, b�2y�=3:77 and the standardized
coe¢ cients can be interpreted as follows:

In 1989, support was .27 standard deviations higher than in 1977, holding
all other variables constant.

Each standard deviation increase in education increases support by .11
standard deviations, holding all other variables constant.

5.3.2 Predicted Probabilities

The predicted probabilities and cumulative probabilities can be estimated as:

cPr (y = m j x) = F
�b�m � xb��� F �b�m�1 � xb�� (11)

cPr (y � m j x) = F
�
�m � xb�� :
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Table 8: Predicted probabilities by gender and year.

1977 SD D A SA

Men 0.19 0.40 0.32 0.10
Women 0.10 0.31 0.41 0.18

Men-Women 0.09 0.09 -0.09 -0.08

1989 SD D A SA

Men 0.12 0.34 0.39 0.15
Women 0.06 0.23 0.44 0.27

Men-Women 0.06 0.11 -0.05 -0.12

Change from 1977
to 1989 SD D A SA

Men -0.07 -0.06 0.07 0.05
Women -0.04 -0.08 0.03 0.09

Either set of probabilities can be plotted. For example, in Panel A of Figure ??, the
predicted probabilities for each outcome are plotted. The probability of strongly
agreeing, indicated with circles, shows that at age 20 the probability is :39. As
age increases the probability decreases to :25 at age 50 and is :15 at age 80. The
probability of disagreeing, indicated by triangles, is nearly the mirror image. It
begins at :16 at age 20 and ends at :34 at age 80. There is a smaller change in the
probability of strongly disagreeing, indicated by diamonds, that starts at :04 and
ends at :12. The probability of agreeing, shown by squares, illustrates an unusual
characteristic of the ORM, which also occurs with nominal models. The e¤ect of
age on agreeing is initially positive and is then negative. As age increases from 20,
more cases from category SA move into category A than move from A into D, which
increase the probability of A. With increasing age, more cases leave A for D than
enter A from SA, resulting in a smaller probability.

Cumulative probabilities can be plotted as shown in Panel B. The cumulative
probabilities �stack� the corresponding probabilities from the top panel and show
the overall increase with age in negative attitudes toward the statement that working
women can have a warm relationship with their children. The information in the
graph can be viewed in two ways. First, height within a category (e.g., the height
of the trapezoid labeled �Strongly Agree�) corresponds to the predicted probability
for that category. Second, the height from the x-axis to the top of a category is the
probability for all categories at or below that level.

Tables can also be used to present probabilities. Table 8 contains the predicted
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probabilities for men and women by the year of the survey, along with di¤erences by
gender in the probabilities within year and across years. The �rst thing to notice is
that men are more likely than women to disagree and strongly disagree that working
women can have as warm of relationships with their children. Second, between 1977
and 1989 there was a movement for both men and women towards more positive
attitudes.

Both partial and discrete change can also be used. The partial derivative of
Equation 6:

@ Pr(y = m j x)
@xk

=
@F (�m � x�)

@xk
� @F (�m�1 � x�)

@xk
= �k [ f(�m�1�x�)� f(�m�x�) ] ;

is the slope of the curve relating xk to Pr(y=m jx), holding all other variables
constant. The sign of the marginal is not necessarily the same as the sign of �k,
since f(�m�1�x�) � f(�m�x�) can be negative. Accordingly, the sign of the
estimated ��s in the ORM should not be used as a quick indication of the direction
of a variables e¤ect on any of the outcome categories (as illustrated by the curve for
agreeing in Panel A of Figure ??).6 Since the marginal e¤ect depends on the levels of
all variables, we must decide on which values of the variables to use when computing
the e¤ect. As with the BRM, the marginal can be averaged over all observations or
computed at the mean of all variables. Keep in mind that the marginal change does
not indicate the change in the probability that would be observed for a unit change
in xk, unless an independent variable is varying over a region of the probability
curve that is nearly linear. When the curve is approximately linear, the marginal
e¤ect can be used to summarize the e¤ect of a unit change in the variable on the
probability of an outcome.

Since interpretation using marginal e¤ects can be misleading when the probabil-
ity curve is changing rapidly or when an independent variable is a dummy variable,
we prefer using discrete change. The discrete change in the predicted probability
for a change in xk from the start value xS to the end value xE (e.g., a change from
xk = 0 to xk = 1) is

�Pr (y = m j x)
�xk

= Pr (y = m j x; xk = xE)� Pr (y = m j x; xk = xS) ;

where Pr (y = m j x; xk) is the probability that y = m given x; noting a speci�c
value for xk. The change is interpreted as:

6Note, however, that since Equation 7 is a binary logit for any given m, the sign of an estimated
� indicates the direction of the e¤ect of a variable on the probability of being less than or equal to
some category.
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Table 9: Discrete change in the probability of attitudes about working mothers for
the ordered logit model.

Variable Change � SD D A SA

Overall Probability - - - 0.11 0.33 0.40 0.16

Yr89 0! 1 0.06 -0.05 -0.08 0.05 0.07

Male 0! 1 0.09 0.08 0.11 -0.08 -0.10

White 0! 1 0.05 0.04 0.06 -0.04 -0.06

Age �1 0.00 0.00 0.00 -0.00 -0.00
�� 0.04 0.04 0.05 -0.04 -0.05

�Range 0.18 0.18 0.19 -0.18 -0.19

Ed �1 0.01 -0.01 -0.01 0.01 0.01
�� 0.03 -0.02 -0.03 0.02 0.03

�Range 0.16 -0.15 -0.17 0.16 0.17

Prst �1 0.00 -0.00 -0.00 0.00 0.00
�� 0.01 -0.01 -0.01 0.01 0.01

�Range 0.05 -0.04 -0.06 0.04 0.06

Note : 0! 1 is change from 0 to 1; �1 is centered change
of one around the mean; �� is centered change of one
standard deviation around the mean; �Range is change
from the minimum to the maximum. � is the average
absolute discrete change.

When xk changes from xS to xE, the predicted probability of outcome
m changes by �Pr(y=mjx)

�xk
, holding all other variables at x.

As with the BRM, the value of the discrete change depends on: (1) the value at
which xk starts; (2) the amount of change in xk; and (3) the values of all other
variables. Most frequently each continuous variable except xk is held at its mean.
For dummy independent variables, the change might be computed for both values of
the variable. For example, we could compute the discrete change for age separately
for men and women.

Table 9 contains measures of discrete change for our example using the ordered
logit model.

The probability of strongly disagreeing is .08 higher for men than women,
holding all other variables at their means.

For variables that are not binary, the discrete change can be interpreted for a unit
change centered around the mean, for a standard deviation change centered around
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the mean, and when the variable goes from its minimum to its maximum value. For
example,

For each additional year of education, the probability of strongly agreeing
increases by .01, holding other variables constant at their means.

For a standard deviation increase in age, the probability of disagreeing
increases by .05, holding other variables at their means.

Moving from the minimum prestige to the maximum prestige changes
the predicted probability of strongly agreeing by .06, holding all other
variables at their means.

The J discrete change coe¢ cients for a variable can be summarized by computing
the average of the absolute values of the changes across all of the outcome categories:

� =
1

J

JX
j=1

�����Pr (y = j j x)�xk

���� :
The absolute value is taken since the sum of the changes without taking the absolute
value is necessarily zero. The average absolute discrete change in the table clearly
shows that the respondent�s gender, education, and age have the strongest e¤ects
on attitudes about working mothers.

5.3.3 Odds Ratios

To illustrate the use of odds ratios, consider the coe¢ cient for gender from Table 7:
�Male = �:73, so that exp(��Male ) = 2:1. This can be interpreted as:

The odds of SD versus the combined outcomes D, A, and SA are 2.1
times greater for men than women, holding other variables constant.
Similarly, the odds of SD and D versus A and SA are 2.1 times greater
from men than women; and the odds of SD, D, and A versus SA are 2.1
times greater.

The coe¢ cient for age is �Age = �:02 with a standard deviation sAge = 16:8. Thus,
100

�
exp

�
�sAge � �Age

�
� 1

�
= :44, which can be interpreted as:

For a standard deviation increase in age, the odds of SD versus D, A,
and SA are increased by 44 percent, holding other variables constant.
Similarly, the odds of SD and D versus A and SA are 44 percent greater
for every standard deviation increase in age; and the odds of SD, D, and
A versus SA are 44 percent greater.
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5.3.4 Summary

The ordered regression model is the most frequently used model for ordinal out-
comes. However, as our discussion has shown, this model imposes the strong as-
sumption of parallel regressions or proportional odds. We recommend that you
always test this assumption, ideally in a way that allows you to assess which vari-
ables are violating the assumption (which can suggest problems in the speci�cation
of the model). In our experience, outcomes that are considered ordinal often contain
complexities that are �assumed away�by the ORM. For example, a variable could
be ordered di¤erently with respect to di¤erent independent variables. Or, it might
be ordered on more than one dimension or be only partially ordered. Accordingly,
we suggest that if your outcome is ordinal, you also consider the ordinal models
discussed in the next section as well as models for nominal outcomes.

6 Less Common Models for Ordinal Outcomes

In this section we consider brie�y several less commonly used models for ordinal
outcomes. While we do not consider methods of interpretation, the same approaches
discussed above can be used after making the appropriate change to the formula
for computing predicted probabilities. The �rst two models that we consider, the
generalized ordered logit model and the stereotype model, relax the assumption of
equal ��s over outcome categories that is found in the ORM. The last two models,
the adjacent categories model and the continuation ratio model, propose alternative
comparisons for the ordinal categories.

6.1 Generalized Ordered Logit Model

The parallel regression assumption results from assuming the same coe¢ cient vector
� for all comparisons in the J � 1 equations:

ln
y�m (x) = �m � x� ;

where 
y�m (x) =
Pr(y�mjx)
Pr(y>mjx) . The generalized ordered logit model (GOLM) removes

the restriction of parallel regressions by allowing � to di¤er for each of the J � 1
comparisons. That is,

ln
y�m (x) = �m � x�m for j = 1; J � 1 :

Or, in terms of odds


y�m (x) = exp (�m � x�m) for j = 1; J � 1 :
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Predicted probabilities are computed by solving these equations, resulting in:

Pr (y = 1 j x) =
exp (�1 � x�1)

1 + exp (�1 � x�1)

Pr (y = j j x) =
exp

�
� j � x�j

�
1 + exp

�
� j � x�j

� � exp
�
� j�1 � x�j�1

�
1 + exp

�
� j�1 � x�j�1

� for j = 2; J � 1
Pr (y = J j x) = 1�

exp
�
�J�1 � x�J�1

�
1 + exp

�
�J�1 � x�J�1

� :
To insure that the Pr (y = j j x) is between 0 and 1, it must be the case that�
� j � x�j

�
�
�
� j�1 � x�j�1

�
. Since this constraint is not imposed during esti-

mation, it is possible that predicted probabilities can be negative or greater than 1:
Once predicted probabilities are computed, all of the approaches used to interpret
the ORM results can be readily applied.

While we have not seen social science applications of this model, it has been
discussed by Clogg and Shihadeh (1994:146-147), Fahrmeir and Tutz (1994:91), and
McCullagh and Nelder (1989:155). Applications may become more common since
this model has recently been programmed for Stata by Fu (1998).

6.2 The Stereotype Model7

The stereotype ordered regression model (SORM) was proposed by Anderson (1984)
in response to the restrictive assumption of parallel regressions in the ordered re-
gression model. The SORM is a compromise between allowing the coe¢ cients for
each independent variable to vary by outcome category and restricting them to be
identical across all outcomes. The SORM is de�ned as8

ln
Pr (y = q)

Pr (y = r)
= (�q � �r)�0 +

�
�q � �r

�
(x�) ; (12)

where �0 is the intercept and � is a vector of coe¢ cients associated with the inde-
pendent variables; since �0 is included in the equation, it is not included in �. The
��s and ��s are scale factors associated with the outcome categories. To see how

7The name of this model appears to come from a line in Anderson�s (1984) article in which he
discusses how cases might allocated to ordinal outcomes: �One possibility is that the judge has
loose stereotypes for each category and that a new case for categorization is �tted into the most
appropriate category.�

8The sterotype model can be set up in several di¤erent ways. For example, in some presentations,
it is assumed that �0 = 0 and fewer constraints are imposed on the ��s. Here we parameterize the
model to highlight its links to other models that we consider.
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these work, consider a model with two independent variables and three outcomes:

ln
Pr (y = 1)

Pr (y = 2)
= (�1 � �2)�0 + (�1 � �2)�1x1 + (�1 � �2)�2x2

ln
Pr (y = 1)

Pr (y = 3)
= (�1 � �3)�0 + (�1 � �3)�1x1 + (�1 � �3)�2x2

ln
Pr (y = 2)

Pr (y = 3)
= (�2 � �3)�0 + (�2 � �3)�1x1 + (�2 � �3)�2x2 :

The model allows the coe¢ cients associated with each independent variable to di¤er
by a scalar factor that depends on the pair of outcomes on the left-hand-side of the
equation. For example, in the equation comparing outcomes 1 and 2, the coe¢ cient
�1 for x1 is rescaled by the factor �1 � �2; for outcomes 1 and 3, by the factor
�1 � �3; and for 2 and 3, by the factor �2 � �3. The same factors are also used for
the coe¢ cient for x2. Similarly, the ��s allow di¤erent intercepts for each pair of
outcomes.

As the model stands, it is over-parameterized (i.e., there are too many uncon-
strained ��s and ��s to allow the parameters to be uniquely determined) and con-
straints must be imposed to identify the model. The model can be identi�ed in a
variety of ways. For example, we can assume �1 = 1, �J = 0, �1 = 1, and �J = 0.
Or, using the approach from loglinear models for ordinal outcomes, the model is
identi�ed by the constraints

PJ
j=1 �j = 0 and

PJ
j=1 �

2
j = 1. See DiPrete (1990) for

further discussion.
The model we have presented above, which does not include any order restric-

tions, is commonly referred to as the stereotype model. However, Anderson (1984)
referred to the model without ordering constraints as the �ordered regression model.�
The stereotype model includes additional constraints that insures the ordinality of
the outcomes: �1 = 1 > �2 > � � � > �J�1 > �J = 0.

Equation 12 can be used to compute the predicted probabilities:

Pr (y = m j x) = exp (�m�0 + �mx�)PJ
j=1 exp

�
�j�0 + �jx�

� :
This formula can be used for interpreting the model using methods discussed above.
The model can also be interpreted in terms of the e¤ect of a change in xk on the
odds of outcome q versus r. After rewriting Equation 12 in terms of odds:


qjr (x;xk) =
Pr (y = q)

Pr (y = r)
= exp

�
(�q � �r)�0 +

�
�q � �r

�
(x�)

�
;

it is easy to show that


qjr (x;xk + 1)


qjr (x;xk)
= e(�q��r)�k =

 
e�q

e�r

!�k
:
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Thus the e¤ect of xk on the odds of q versus r di¤er across outcome comparisons
according to the scaling coe¢ cients �.

DiPrete (1990) used a general ML program in GAUSS to estimate this model.
Recently, Hendrickx�s (2000) mclest program in Stata can also be used to esti-
mate the model. Note that these programs do not impose the ordinality constraint
�1 = 1 > �2 > � � � > �J�1 > �J = 0. Since the SORM is closely related to the
multinomial logit model (MNLM), discussed below, the model can be informally
assessed by examining the parameters from the MNLM to see if the structure of
the stereotype model is approximated. This approach was taken by Greenwood and
Farewell (1988).

6.3 Adjacent Categories Model

The adjacent categories model (Agresti 1990: 318; Clogg and Shihadeh 1994:149-
154) is a special case of the multinomial logit model considered in the next section.
The model is speci�ed as

ln

�
Pr (y = m j x)

Pr (y = m+ 1 j x)

�
= �m � x� ;

where the outcome is the log of the odds of category m versus category m+1. Note
that the vector � is the same for all values of m. Taking exponentials,


mjm+1 (x) =
Pr (y = m j x)

Pr (y = m+ 1 j x)
= exp (�m � x�) :

From this it follows readily that for a unit increases in xk; 
mjm+1 changes by a
factor of exp (��k), holding all other variables constant.

Using simple but tedious algebra, these equations can be solved for the predicted
probabilities:

Pr (y = m j x) =
exp

�PJ�1
r=m [� r � x�]

�
1 +

PJ�1
q=1

h
exp

�PJ�1
r=q [� r � x�]

�i for m = 1; J � 1

Pr (y = J j x) = 1�
J�1X
q=1

pq

These probabilities can be used in the methods of interpretation that were discussed
for the ORM.
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6.4 The Continuation Ratio Model

The continuation ratio model was proposed by Fienberg (1980:110) and designed
for ordinal outcomes in which the categories represent the progression of events or
stages in some process though which an individual can advance.9 For example, the
outcome could be faculty rank, where the stages are assistant professor, associate
professor, and full professor. A key characteristic of the process is that an individual
must pass through each stage. For example, to become an associate professor you
must be an assistant professor; to be a full professor, an associate professor. While
there are versions of this model based on other binary models (e.g., probit), here we
consider the logit version.

If Pr (y = m j x) is the probability of being in stage m given x, then the proba-
bility of being in stage m or later is:

Pr (y � m j x) =
JX

j=m

Pr (y = j j x) :

The conditional probability of being in stagem given that you are in stagem or later
(e.g., the probability of being an associate professor given that you have progressed
from the rank of assistant professor) is:

Pr (y = m j y � m, x) = Pr (y = m j x)
Pr (y � m j x) :

And accordingly the probability of begin beyond stage m is:

Pr (y > m j y � m, x) = 1� Pr (y = m j y � m, x)

=
Pr (y > m j x)
Pr (y � m j x) :

Using these probabilities, we can compute the odds of being in stage m compared
to being past stage m given that a respondent is in stage m or later:

Pr (y = m j y � m, x)
Pr (y > m j y � m, x) =

Pr (y = m j x)
Pr (y > m j x) :

We can then construct a model for the log odds::

ln

�
Pr (y = m j x)
Pr (y > m j x)

�
= �m � x� for m = 1 to J � 1

9For a discussion of the links between this model and survival analysis, see Allison (1995).
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where the ��s are constrained to be equal across outcome categories, while the
constant term �m di¤ers by stage. As with other logit models, we can also express
the model in terms of the odds:

Pr (y = m j x)
Pr (y > m j x) = exp (�m � x�) :

Accordingly, exp (��k) can be interpreted as the e¤ect of a unit increase in xk on the
odds of being in m compared to being in a higher category given that an individual
is in category m or higher, holding all other variables constant.

The formula for the predicted probabilities highlights the structure of the model.
The probability of y = 1 is computed from Pr(y=1jx)

Pr(y>1jx) = exp (�1 � x�) just as in the
model binary logit:

Pr (y = 1 j x) = exp (�1 � x�)
1 + exp (�1 � x�)

:

The probability of y = 2 equals:

Pr (y = 2 j x) = exp (�2 � x�)
[1 + exp (�2 � x�)]� [1 + exp (�1 � x�)]

:

In general,

Pr (y = m j x) =
exp (�m � x�)Qm

j=1 [1 + exp (� j � x�)]
for m = 1 to J � 1

Pr (y = J j x) = 1�
J�1X
j=1

Pr (y = j j x) :

These predicted probabilities can be used for interpreting the model.

7 Models for Nominal Outcomes

For ordinal outcomes, we also recommend using models for nominal outcomes, which
are now discussed. If a dependent variable is ordinal and a nominal model is used,
there is a loss of e¢ ciency since information is being ignored. On the other hand,
when an ordinal model is applied to a nominal dependent variable, the resulting es-
timates are biased or nonsensical. Overall, if there are concerns about the ordinality
of the dependent variable, the potential loss of e¢ ciency in using models for nominal
outcomes is outweighed by avoiding potential bias. Of course, these models must
also be used when the dependent variable is nominal. We consider three closely re-
lated models: the multinomial logit model, the conditional logit model, and �nally
the multinomial probit model.
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7.1 Multinomial Logit

The MNLM can be thought of as simultaneously estimating binary logits for all
comparisons among the outcome categories. Indeed, Begg and Gray (1984) show
that estimates from binary logits are consistent estimates of the parameters of the
MNLM. For example, let y be a nominal outcome with categories A, B, and C and
a single independent variables x. We can estimate the e¤ect of x on y by running
three binary logits:

ln

�
Pr (A j x)
Pr (B j x)

�
= �0;AjB + �1;AjBx

ln

�
Pr (B j x)
Pr (C j x)

�
= �0;B jC + �1;B jC x

ln

�
Pr (A j x)
Pr (C j x)

�
= �0;AjC + �1;AjC x

where the subscripts to the ��s indicate which comparison is being made. The three
binary logits include redundant information in the sense that the following equality
must hold:

ln

�
Pr (A j x)
Pr (B j x)

�
+ ln

�
Pr (B j x)
Pr (C j x)

�
= ln

�
Pr (A j x)
Pr (C j x)

�
:

This implies that

�0;AjB + �0;B jC = �0;AjC (13)

�1;AjB + �1;B jC = �1;AjC :

Accordingly, if there are 3 outcomes, only 2 binary logits are needed since the
remaining comparison can be derived. In general, with J outcomes, only J � 1
binary logits are needed.

The problem with estimating the MNLM by a series of binary logits is that each
binary logit is based on a di¤erent sample since only cases from two outcomes are
used. Consequently the equalities in Equation 13 will not hold exactly. Programs
for the MNLM simultaneously estimate the J � 1 binary logits, thus insuring that
the implied equalities hold. Speci�c packages di¤er in which comparisons are es-
timated. For example, one program might estimate AjC and B jC, while another
might estimate AjB and C jB.

Formally, the MNLM can be written as

Pr (y = m j xi) =
exp

�
xi�mjr

�
PJ
j=1 exp

�
xi�jjr

� ; (14)
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where r is the reference category used by the software estimating the model. Re-
gardless of the reference category used, the predicted probability for a given outcome
is identical. Alternatively, the model can be written in terms of logits

ln
mjr (xi) = xi�mjr (15)

or in terms of odds

mjr (xi) = exp

�
xi�mjr

�
: (16)

Note that with J dependent categories, there are J � 1 non-redundant, coe¢ -
cients associated with each independent variable xk. In our simple example, the
coe¢ cients �1;AjC and �1;B jC completely describe the e¤ects of x on the three out-
come categories. Accordingly, to test that a variable has no e¤ect, you need to test
that J � 1 coe¢ cients are simultaneously equal to zero. In our example, to test the
e¤ect of x the hypothesis is:

H0: �1;AjC = �1;BjC = 0 :

Or, more generally, the hypothesis that xk does not a¤ect the dependent variable
can be written as:

H0: �k;1jb = � � � = �k;J jb = 0

where b is the base category. Since �k;bjb is necessarily 0, the hypothesis imposes
constraints on J � 1 parameters. This hypothesis can be tested with either a Wald
or a LR test using standard procedures available with most packages that estimate
the MNLM. Both types of test are distributed as chi-square with J � 1 degrees of
freedom.

7.1.1 Interpretation of the MNLM

While the MNLM is mathematically a simple extension of the binary model, inter-
pretation is di¢ cult due to the large number of possible comparisons. For example,
with 3 outcomes you can compare 1j2, 1j3, and 2j3. With four outcomes: 1j4, 2j4,
3j4, 2j3, 2j4, and 3j4. And so on. To illustrate how to interpret the model, we
consider the e¤ects of race, education, and work experience on occupation.

Example of Occupation The 1982 General Social Survey asked respondents
their occupation. These occupations were recoded into �ve broad categories: menial
jobs, blue collar jobs, craft jobs, white collar jobs, and professional jobs. This
outcome is one that many would argue is ordered. However, as illustrated by Miller
and Volker (1985), di¤erent orderings lead to di¤erent outcomes. Accordingly, a
nominal model is appropriate. Three independent variables are considered, which
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Table 10: Descriptive statistics for the occupational attainment example.

Std
Name Mean Dev Min Max Description
White 0.92 0.28 0.0 1.0 Race: 1=white; 0= nonwhites.
Ed 13.10 2.95 3.0 20.0 Education: Number of years of formal

education.
Exp 20.50 13.96 2.0 66.0 Possible years of work experience: Age

minus years of education minus 5.

Note : N = 337.

are described in Table 10. The estimated coe¢ cients in Table 11 are the standard
output from a program that estimates the MNLM and correspond to the equations:

ln
BjM (xi) = �0;BjM + �1;BjMWhite + �2;BjMEd + �3;BjMExp

ln
CjM (xi) = �0;CjM + �1;CjMWhite + �2;CjMEd + �3;CjMExp

ln
W jM (xi) = �0;W jM + �1;W jMWhite + �2;W jMEd + �3;W jMExp

ln
P jM (xi) = �0;P jM + �1;P jMWhite + �2;P jMEd + �3;P jMExp :

Predicted Probabilities The estimated coe¢ cients can be plugged into Equa-
tion 14 to compute predicted probabilities that can be used in the same way as
shown for ordinal outcomes.

Marginal and Discrete Change Marginal and discrete change can be used in
the same way as in models for ordinal outcomes. Marginal change is de�ned as

@ Pr (y = m j x)
@xk

= Pr (y = m j x)

24�k;mjJ � JX
j=1

�k;jjJ Pr(y = j j x)

35 :
Since this equation combines all of the �k;jjJ�s, the marginal e¤ect of xk on Pr (y = m j x)
need not have the same sign as the corresponding coe¢ cient �k;mjJ (keep in mind
that the �k;jjJ�s are from equations for the odds of outcomes, not probabilities of
being in various outcomes). Discrete change is de�ned as

�Pr (y = m j x)
�xk

= Pr (y = m j x; xk = xE)� Pr (y = m j x; xk = xS) :
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Table 11: Logit coe¢ cients for a MNLMModel of occupational attainment.

Logit Coe¢ cient for

Comparison Constant White Ed Exp

B jM � 0.741 1.237 -0.099 0.0047
z 0.49 1.71 -0.97 0.27

C jM � -1.091 0.472 0.094 0.0277
z -0.75 0.78 0.96 1.66

W jM � -6.239 1.571 0.353 0.0346
z -3.29 1.74 3.01 1.84

P jM � -11.518 1.774 0.779 0.0357
z -6.23 2.35 6.79 1.98

Note : N=337. � is a logit coe¢ cient for the indicated
comparison; z is a z-value. Job types: M=menial; B=blue collar;
C=craft; W=white collar; P=professional.

One di¢ culty with nominal outcomes is the large number of coe¢ cients that need
to be considered: one for each variable times the number of outcome categories. A
plot, such as Figure ??, can help you see the pattern in the e¤ects. In this case it
is easy to see that the e¤ects of education are largest and those of experience are
smallest. Or, each coe¢ cient can be interpreted individually, such as:

The e¤ects of a standard deviation change in education are largest, with
an increase in the probability of over .35 for professional occupations.

The e¤ects of race are also substantial, with average blacks being less
likely to enter blue collar, white collar, or professional jobs.

The expected changes due to a standard deviation change in experience
are much smaller and show that experience increases the probabilities of
more highly skilled occupations.

While discrete change is useful, it is essential to remember that di¤erent values
are obtained at di¤erent levels of the variables. Further, discrete change does not
indicate the dynamics among the dependent outcomes. For example, a decrease in
education increases the probability of both blue collar and craft jobs, but how does
it a¤ect the odds of a person choosing a craft job relative to a blue collar job? To
deal with these issues, the odds ratios can be used.
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Table 12: Odds ratios for the e¤ects of race on occupational attainment.

Factor Change Outcome n
in the Odds of m vs n M B C W P

Outcome M Menial - - - 0.29 0.62 0.21 0.17
m B Blue Collar 3.44 - - - 2.15 0.72 0.58

C Craft 1.60 0.47 - - - 0.33 0.27
W White Collar 4.81 1.40 3.00 - - - 0.82
P Professional 5.90 1.71 3.68 1.23 - - -

Note : The coe¢ cients in the table are exp
�b�1;mjn�.

Odds Ratios As with the binary model, the factor change in the odds of one out-
come compared to another is a simple transformation of the estimated coe¢ cients:


mjn (x; xk + �)


mjn (x; xk)
= e�k;mjn� :

The odds ratio can be interpreted as:

For a unit change in xk, the odds are expected to change by a factor of
exp(�k;mjn), holding all other variables constant.

For a standard deviation change in xk, the odds are expected to change
by a factor of exp(�k;mjn � sk), holding all other variables constant.

To illustrate how to interpret the odds ratios for the MNLM, consider the coef-
�cients for the e¤ect of race on occupational attainment. These are shown in Table
12. The odds ratio for the e¤ect of race on having a professional versus a menial
job is 5.90, which can be interpreted as:

The odds of having a professional occupation relative to a menial occu-
pation are 5.9 times greater for whites than for blacks, holding education
and experience constant.

To fully understand the e¤ects of race, the coe¢ cients for comparisons among all
pairs of outcomes should be considered, even though they provide redundant infor-
mation. However, to consider all of the coe¢ cients for even a single variable with
only �ve dependent categories is complicated. Consequently, we recommend that
these coe¢ cients be plotted (see Long 1997: Chapter 6 for full details), as illustrated
in Figure ??.
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In this plot, the outcome categories are indicated by letters. Distances between
letters for a given variable indicate the magnitude of the corresponding �k;mjn (i.e.,
the coe¢ cient for independent variable xk for outcome m versus n) when measured
using the logit coe¢ cient scale at the bottom. The scale at the top indicates the

factor change exp
�
�k;mjn

�
. The size of the letters is proportional to the square

of the discrete change that was plotted in Figure ??. The square is used so that
the area of the letter corresponds to the size of the discrete change. The graph
shows that race orders occupations from menial to craft to blue collar to white
collar to professional. The dotted lines show that none of the adjacent categories is
signi�cantly di¤erentiated by race. Being white increases the odds of being a craft
worker relative to having a menial job, but the e¤ect is not signi�cant. However,
being white signi�cantly increases the odds of being a blue collar worker, a white
collar worker, or a professional relative to having a menial job. The e¤ects of Ed
and Exp can be interpreted similarly.

7.2 The Conditional Logit Model

The conditional logit model (CLM) is closely related to the MNLM.10 The key
di¤erence is that in the CLM each independent variable is measured for each outcome
category. For example, in modeling which mode of transportation people use for
commuting, we might consider three modes of travel: train, car, and bus. The
amount of time it takes to get to work depends on the mode of transportation and
speci�c characteristics of an individual. For example, if you live next to a bus stop,
your time by bus will be less than someone who has a 30 minute walk to the bus
stop. Thus, each independent variable is de�ned for each outcome category. This
information is entered into the CLM as follows:

Pr (yi = m j zi) =
exp (zim
)PJ
j=1 exp (zij
)

: (17)

This equation can be compared to the MNLM:

Pr (yi = m j xi) =
exp

�
xi�mjJ

�
PJ
j=1 exp

�
xi�jjJ

� : (18)

In Equation 18 there are J�1 parameters �k;mjr for each xk, but only a single value
of xk for each individual. In Equation 17 there is a single 
k for each variable zk,
but there are J values of the variable for each individual.
10 Indeed, the CLM can be used to estimate the MNLM. This is often useful since programs for

CLM allow adding constraints that are not easy to impose in programs for the MNLM.
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Applications of the CLM are relatively rare outside of the area of travel demand
analysis (where the method was initially developed) since appropriate data are not
readily available. Ho¤man and Duncan (1988), however, provide a useful comparison
on multinomial and conditional logit models applied to outcomes of marriage and
welfare status. They also consider a mixed model that includes elements of both
models.

7.3 Independence of Irrelevant Alternatives

In both the MNLM and the CLM, there is an implicit assumption referred to as
the Independence of Irrelevant Alternatives (IIA). To understand this assumption,
note that the odds in these models do not depend on other outcomes that might be
available:

Pr (y = m j x)
Pr (y = n j x) = exp

�
x
h
�mjJ � �njJ

i�
Pr (y = m j z)
Pr (y = n j z) = exp ([zm � zn]
) :

This implies that adding or deleting outcomes does not a¤ect the odds among the
remaining outcomes. This point is often made with the red bus/blue bus example.
Suppose that you have the choice of a red bus or a car to get to work and that
the odds of taking a red bus compared to a car are 1:1. IIA implies that the odds
will remain 1:1 between these two alternatives if a new bus company comes to town
that is identical to the red bus company except for the color of the bus. Thus,
the probability of driving a car can be made arbitrarily small by adding enough
di¤erent colors of buses! More reasonably, we would expect that the odds of a red
bus compared to a car would be reduced to 1:2 since half of those riding the red bus
would be expected to ride the blue bus.

There are two tests of the IIA assumption. Hausman and McFadden (1984)
proposed a Hausman-type test and McFadden, Tye, and Train (1976) proposed an
approximate likelihood ratio test that was improved by Small and Hsiao (1985).
Details on computing these tests are found in Zhang and Ho¤man (1993) or Long
(1997:Chapter 6). Our experience with these tests is that they often give inconsistent
results and in practice provide little guidance to violations of the IIA assumption.
Unfortunately, there do not appear to be simulation studies that examine their
small sample properties. Perhaps as a result of the practical limitations of these
tests, McFadden (1973) suggested that IIA implies that the multinomial and condi-
tional logit models should only be used in cases where the outcome categories �can
plausibly be assumed to be distinct and weighed independently in the eyes of each
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decision maker.� Similarly, Amemiya (1981:1517) suggests that the MNLM works
well when the alternatives are dissimilar. Care in specifying the model to involve
distinct outcomes that are not substitutes for one another seems to be reasonable,
even if unfortunately ambiguous, advice.

7.4 Multinomial Probit

While logit and probit models for binary and ordinal outcomes are essentially equiv-
alent, the multinomial probit model (MNPM), initially proposed by Aitchison and
Bennett (1970), has important features that are not found in the MNLM. In par-
ticular, the MNPM does not require the IIA assumption. However, until recently,
the computations necessary for estimating the MNPM made the model impractical
for all but the simplest applications. Recent work by McFadden (1989) has made
progress in solving the computational problems and there are at least two programs
that can estimate the MNPM: Limdep (Greene 1995) and GAUSSX (Breslaw 1999).
Now that estimation is computational feasible for modestly sized models, the focus
has turned to issues of identi�cation (Keane 1992), which are discussed below.

The MNPM is generally developed as a discrete choice model, which we will do
using three outcome categories. See Pudney (1989) for a detailed discussion or Long
(1997, Chapter 6) for an introduction. Let uj be the utility associated with choice
j. Then,

u1 = x�1 + "1

u2 = x�2 + "2

u3 = x�3 + "3 ;

where x is a vector of independent variables and "j is the error for outcome j. In
the MNPM, the "�s are assumed to have a multivariate normal distribution with
mean zero and

Cov

0@ "1
"2
"3

1A =

0@ �21 �12 �13
�21 �22 �23
�31 �32 �23

1A :

The correlated errors avoid the restriction of IIA. For example, in the red bus/blue
bus example we would expect the errors to be negatively correlated to re�ect that
these options are close substitutes. If the "�s have an extreme value distribution, the
resulting model is the MNLM, where the IIA assumption is necessary since Cov(")
must be diagonal for the extreme value distribution.

The outcome chosen by an individual is based on a comparison of the utilities
associated with the choices. An individual chooses outcome j over outcome k if
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uj > uk. For example,

Pr (1 over 2 j x) = Pr ([x�1 + "1] > [x�2 + "2]) = Pr (["1 � "2] > [x�2 � x�1])
Pr (1 over 3 j x) = Pr ([x�1 + "1] > [x�3 + "3]) = Pr (["1 � "3] > [x�3 � x�1]) :

Accordingly, the probability of choosing outcome 1 would be

Pr (1 j x) = Pr ([1 over 2] & [1 over 3] j x) :

The last quantity involves multiple integrals which leads to the computation di¢ -
culties in estimating the MNPM. In our experience, for a multinomial logit model
that can be estimated in a minute, the corresponding probit model might take hours
to estimate.

The model is not identi�ed unless restrictions are placed on Cov("), an issue
that is discussed by Keane (1992). Without restrictions, a proportional change in
all elements of Cov(") and the ��s does not a¤ect the probabilities. And, adding a
constant to each �0 leaves the probabilities unchanged since it is only the di¤erence
in utilities that determines the choice. Standard identi�cation conditions involve
normalizing the variance of one alternative and restricting the utility function to 0.
Formally, the model can be identi�ed by setting u3 = 0 and �1 = 0, as follows:

u1 = x�1 + "1

u2 = x�2 + "2

u3 = 0

with covariance matrix:

Cov
�
"1
"2

�
=

�
1 �12
�21 �22

�
:

While these conditions formally identify the model, Keane �nds that this identi�-
cation is fragile. That is, additional restrictions beyond those required for formal
identi�cation are necessary in order to avoid the substantial risk of obtaining unreli-
able results. Our experience in experiment with the MNPM leads us to fully endorse
Keane�s (1992) statement: �Given the lack of practical experience with [multino-
mial probit] models, however, there is a need to develop a �folklore�concerning the
conditions under which the model performs well.� Thus, while the MNPM appears
to o¤er substantial advantages over the MNLM in avoiding the IIA assumption, in
practice this model remains di¢ cult to use.
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8 Conclusions

In this chapter we have considered what we believe are the most basic and useful
models for the analysis of categorical dependent variables. However, in the limited
space available, it is impossible to consider all of the important issues related to
these models. Topics that have not been discussed include: robust, exact, and
nonparametric methods of estimation, speci�cation tests (Davidson and MacKinnon
1993:522-528; Greene 2000:827-831), complex sampling, multiple equation systems
(see Browne and Arminger 1995 for a review), and hierarchical models (Longford
1995:551-556).

There are several sources that we recommend for obtaining further information.
Maddala (1983) considers dozens of models for categorical and limited dependent
variables. McCullagh and Nelder (1989) discuss some of the same models from
the standpoint of the generalized linear model. King (1989) presents many of these
models with particular application to political science. Agresti (1990) is particularly
useful if all of your variables are nominal or ordinal. Powers and Xie (2000) consider
both regression models and loglinear models. Greene�s (1995) Limdep will estimate
many of the models discussed here as well as many others; the manual provides
a wealth of information. Finally, our review has not considered the many useful
models for count outcomes (e.g., how many times did a person go to a doctor; how
many patents did a company receive). Fortunately, Cameron and Trivedi (1998)
provide an extensive review of these models; Long (1997: Chapter 8) provides a
more elementary introduction.

Until recently, the models considered in this chapter required specialized soft-
ware. At this time, however, each of these models can easily be estimated on typical,
desktop computer (with the exception of the MNPM). A detailed discussion of us-
ing SAS for these models is found in Allison (1999). Long and Freese (forthcoming)
provide information on estimating these models in Stata and provide a series of
commands that facilitate the types of interpretation that we recommend. Since
many packages do not make it simple to compute many of the quantities that we
�nd useful for interpretation, Cheng and Long (2000) have written a series of Excel
�les that facilitate post-estimation interpretation.
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