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General use

glm fits generalized linear models of y with covariates x:

dEw)}=xB8, y~F

Tn the above, g() is called the link function and F' the distributional family. Substituting various

definiti ms for g( ) and F’ results in a surprising array of models. For instance, if 7 is distributed as
Gaussiin (normal) and g( ) is the identity tunction, we have

E(y) = x4, 7y ~ Normal
or lineer regression. If g() is the logit function and v is distributed as Bernoulli, we have
logit{ E(y)} = %8,  y ~ Bernoulli
or logis tic regression. If g( ) is the natural log function and y is distributed as Poisson, we have

In{E(y)} =xB,  y~ Poisson

or Pois::on regression, also known as the log-linear model. Other combinations are possible.

Althrugh glm can be used to perform linear regression (and, in fact, does so by default). this
should 1e viewed as an instructional feature; regress produces such estimates more quickly, and
numero 1s post-estimation commands are available to explore the adequacy of the fit: see [R] regress
and [R] regression diagnostics.

In ary case, you specify the link function using the 1ink() option and the distributional family
using £amily (). The allowed link functions are

Link function glm option
identity link(identity)
log link(log)

logit link(logit)
probit link(probit)
complementary log-log link(cloglog)
odds power link(opower #)
power link(power #)
negative binomial link(nbinomial)
log-log link(loglog)
log-compliment link(logc)

Define ,« = F(y) and n = g(u), meaning that g(-) maps E(y) to n = x3 + offset.
Link function identity is defined as 17 = g(u) — .
Link function log is defined as n = In(u).
Link function logit is defined as 7 = In{p/(1 — w)}, the natural log of the odds.
Link function probit is defined as 77 = ®~1 (1), where ® () is the inverse Gaussian cumulative.
Link function cloglog is defined as 0 = 1n{ —In(1 — /.L)}.
Link function opower is defined as n = [{u/(1 — ,u,)}n — 1]/, the power of the odds. The

funciion is generalized so that 1ink (opower 0) is equivalent to link(logit), the natural log of
the ¢dds.
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Link function power is defined as n = p™. Specif)?ing link(power 1) is equivalent to specifying
link(identity). The power function is generalized so that u° = In(y). Thus, link (power 0)
is equivalent to 1ink(log). Negative powers are, of course, allowed.

Link function nbinomial is defined as ) = ln{u/ (n+ k)}, where k = 1 if family(nbinomial)
is specified and k = #;, it family(nbinomial #) is specified.

Link function loglog is clefined as = —In{—In(p)}.
Link function logc is def ned as 77 = In(1 — u).
The allowed distributional fainilies are

Family glm option

Gaussian (normal) family(gaussian)
inverse Gaussian family(igaussian)
Bernoulli/binomial family(binomial)
Poisscn family(poisson)
negative binomial family(nbinomial)
gamma family(gamma)

family(normal) is allowed as a synonym for family(gaussian).

The binomial distribution cin be specified as (1) family(binomial), (2) family{(binomial #y),
or (3) family(binomial variiamey). In case 2, #x is the value of the binomial denominator N, the
number of trials. Specifying {amily(binomial 1) is the same as specifying family(binomial);
both mean that y has the Bernoulli distribution with values 0 and 1 only. In case 3, varnamey

is the variable containing the binomial denominator, allowing the number of trials to vary across
observations.

The negative binomial disribution can be specified as (1) family(nbinomial) or (2) fam-
ily(nbinomial #;). Omittir g #) is equivalent to specifying family(nbinomial 1). The value #;
enters the variance and devian:e functions. Typical values range between .01 and 2; see the technical
note below.

You do not have to specify both family () and 1ink(); the default 1ink () is the canonical link
for the specified family () (ecept for nbinomial):

Family Default link
family(gaussian) link{(identity)
family(igaussian) link(power -2)
family(binomial) link(logit)
family(poisson) link(log)

family(nbinomial) link(log)
family (gamma) link(power -1)

If you do specify both family () and 1ink (), note that not all combinations make sense. You may
choose from the following conibinations:

identity log logit probit cloglog power opower nbinomial loglog logc

Gaussian X X

negative binomial

X
inverse Gaussian X
binomial X X X X X X X
Poisson X
X
X

S I R
B S

gamma
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3 Tectinical Note

some family() and 1ink() combinations result in models already fitted by Stata. These are

?;31 ily O 1ink () Options Other Stata command

gai ssian identity nothing I irls ‘ irls oim regress

gaissian identity t(var) nwest (nwest #) viactor(#,;) newey, t{var) lag(#) (see note 1)
bir omial cloglog nothing 1 irls oim cloglog (see note 2)

biromial probit nothing l irls oim probit (see note 2)

biromial logit nothing | irls | irls oim logit or logistic (see note 3)
poisson log nothing | irls | irls oim poisson (see note 3)

nbinomial log nothing I irls oim nbreg (see note 4)

ganma log scale(1) streg, dist(exp) nohr (see note 5)
Not:s:

1. The variance factor #, should be set to n/(n — k), where n is the number of observations and

I: the number of regressors. If not specified, the estimated standard errors will, as a result, differ
ty this factor.

. I these cases, since the link is not the canonical link for the binomial family, one must specify the
¢ im option if using irls to get equivalent standard errors. If irls is used without oim, then the
1gression coefficients will be the same but the standard errors only asymptotically equivalent. If

1 0 options are specified (nothing), glm will optimize using Newton-Raphson, making it equivalent
ty the other Stata command.

Lee [R] cloglog and [R] probit for more details about these commands.

. It these cases, since the canonical link is being used, the standard errors will be equivalent whether
tie EIM or the OIM estimator of variance is used.

. Family negative binomial, log-link models——also known as negative binomial regression— are used
for data with an overdispersed Poisson distribution. Although glm can be used to fit such medels,
vse of Stata’s maximum-likelihood nbreg command is probably better. In the GLM approach, one
s»ecifies family (nbinomial #;) and then searches for a #; that results in the deviance-based
cispersion being 1. nbreg, on the other hand, finds the maximum likelihood estimate of #, and
rsports a confidence interval for it; see [R] nbreg and Rogers (1993). Of course, glm allows links
¢ ther than log, and for those links, including the canonical nbinomial link, you will need to use
glm. Since the default link for family (nbinomial) is a noncanonical link, standard errors will
te only asymptotically equivalent if glm, irls without the oim option is used.

. glm can be used to estimate parameters from exponential regressions, but this requires specifying
scale(1). However, censoring is not available with this method. Censored exponential regression
riay be modeled using glm with family(poisson). The log of the original response is entered
i1ito a Poisson model as an offset, while the new response is the censor variable. The result of such
riodeling is identical to the log relative hazard parameterization of streg, dist (exp) nohr. See
[317 streg for details about the streg command.

11 general, where there is overlap between a capability of glm and that of some other Stata command,

we ‘ecommend using the other Stata command. Our recommendation is not due to some inferiority
of tlie GLM approach. Rather, it is that those other, more specialized commands, by being specialized,
provide options and ancillary commands missing in the broader glm framework. Nevertheless, glm
doe: produce the same answers where it should.
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Special note. In cases ‘vhere equivalence is expected, for some datasets, one may still see very
slight differences in the resulis, most often only in the latter digits of the standard errors. When

comparing glm output fo an “equivalent” Stata command, these tiny discrepancies arise for many
reasons: /

a. glm wvses a general methodology for starting values, while the equivalent Stata command may be
more specialized in ifs treatment of starting values.

b. When using a canonical link, glm, irls should be equivalent to the maximum likelihood method
of the equivalent Stata command, yet the convergence criterion is different (one is in terms of

deviance, the other in -erms of log likelihood). These discrepancies are easily resolved by adjusting
one convergence criteion to correspond to the other.

¢. In cases where both :lm and the equivalent Stata command are using Newton—Raphson, small
differences may still occur if the Stata command has a different default convergence criterion

than glm. Again, adjusting the convergence criterion will resolve the difference. See [R] ml and

[R] maximize for moiz details. a
L Example

In [Rr] logistic, we fit ¢ model based on data from a study of risk factors associated with low birth

weight (Hosmer and Lemx eshow 2000, 25). We can replicate the estimation using glm:

. use http://www.s:ata-press.com/data/r8/1lbw
(Hosmer & Lemeshow data)

. xi: glm low age .wt i.race smoke ptl ht ui, f(bin) 1(logit)

i.race Irace_1-3 (naturally coded; _Irace_1 omitted)
Iteration O: log likelihood = -101.0213
Iteration 1: log likelihood = -100.72519
Iteration 2: log likelihood = -100.724
Iteration 3: log likelihood = ~100.724
Generalized linear models No. of obs = 189
Optimization : ML: Newton-Raphson Residual df = 180
Scale parameter = 1
Deviance = 201.4479911 (1/8f) Deviance = 1.119156
Pearson = 182.0233425 (1/df) Pearson = 1.011241
Variance functiom: V{(u) = u*x(i-u) [Bernoullil
Link function ¢ glu) = InCu/(4~u)) [Logit]
Standard errors : 0OIM
Log likelihocod = -100.7239956 AIC = 1.1611
BIC = ~742 0664716
low © Coef. Std. Err. z P>zl [95% Conf. Intervall
age -.0271003 . 0364504 ~0.74 0.457 -.0985418 .0443412
lwt ~.0151508 . 0069259 -2.19 0.029 -.0287263 ~.0016763
_Irace_2 1. 282647 .5264101 2.40 0.016 .2309024 2.294392
_Irace_ 3 .85320792 .4391532 1.96 0.050 .0013548 1.722804
smoke .9 1233448 .4008266 2.30 0.021 .137739 1.708951
ptl .5118368 .346249 1.56 0.118 ~-.136799 1.220472
ht 1..332b618 .6916292 2.65 0.008 . 4769494 3.188086
ul .7.:85135 .4593768 1.65 0.099 ~.1418484 1.658875
_cons .41112239 1.20459 0.38 0.702 -1.899729 2.822176

glm, by default, presents coefficient estimates, whereas logistic presents the exponentiated
coefficients —the odds ratids. glm’s eform option reports exponentiated coefficients, and glm, like
Stata’s other estimation cornmands, replays results.
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. glm, eform

Gen:ralized linear models No. of obs = 189
Optimization : ML: Newton-Raphson Residual d4f = 180
Scale parameter = 1
Dev Lance = 201.4479911 (1/4f) Deviance = 1.119156
Pea "son = 182.0233425 (1/df) Pearson = 1.011241
Var iance function: V{(u) = u*x(i-u) [Bernoulli] '
Lintc function ¢ g(w) = 1n(u/(1-u)) [Logit]
Staidard errors : 0IM
Log likelihood = -100.7239956 AIC = 1.1611
BIC = ~742.0664716
low | Ddds Ratio  Std. Err. z P>zl [95% Conf. Intervall
age .9732636 .0354759 ~0.74  0.457 .9061578 1.045339
1wt . 9849634 .0068217 -2.19 0.029 .9716834 .9084249
_Irace_2 3.534767 1.860737 2.40 0.016 1.259736 9.9184086
_Irace_3 2.368079  1.039949 1.96 0.050 1.001356 5.800207
smoke 2.517698 1.00916 2.30 0.021 1.147876 5.628162
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602  4.322408 2.65 0.008 1.6111562 24.24199
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534

These res ilts are the same as reported in [R] logistic.

Includid in the output header are values for the Akaike (1973) information criterion (AIC) and
the Bayesian information criterion (BIC) (Raftery 1996). Both are measures of model fit adjusted
for the npumber of parameters that can be compared across models. In both cases. a smaller value
generally indicates a better model fit. AIC is based on the log likelihood, and thus is only available
when Nevton—-Raphson optimization is employed. BIC is based on the deviance, and thus is always

available,
N



