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1 Introduction

Response variables that can be construed of as ordered are commonplace in social science

research. Likert-type items, scales for social spending, and ratings indicators are but a few

of the myriad of ordinal items commonly used by social science researchers. Yet despite

the prevalence of such items, standard applied methods often: 1) fail to exploit information

found in ordinal items; 2) impose assumptions that frequently do not hold; 3) treat the

ordinal item as if it were continuous; and/or 4) collapse categories on an ordinal scale to

create a binary indicator. Each of these approaches are prevalent in applied social science

research, particularly in political science and sociological applications.

In this paper, we discuss some of the implications of these approaches and then consider

some alternative modeling strategies for ordinal categorical data. We note at the start that

most of the models considered herein are straightforward applications of fairly standard

cumulative link models. It is just the case that these models are only rarely considered and

applied in the political science literature. Most of our discussion entails consideration of a

variety of logit-type regression models. In this discussion, we note that common “casual”

assumptions about modeling approaches with ordinal data are frequently wrong and are

usually made out of convenience. Moreover, properties of seemingly appropriate statistical

models for ordinal data, for example, the proportional odds model, are rarely acknowledged

and are almost never tested to see if they hold. To illustrate some of the models, we present

several substantive applications using national survey data on racial attitudes.

2 The Proportional Odds Model

Ordinal variables are commonplace in social science data sets. Likert-type scales, where sur-

vey respondents are asked to place themselves on a semantically balanced scale, are typically

used by social scientists to measure attitudes or preferences over some issue. Similarly, scales

recording intensity of opinion by asking respondents to place themselves on an n-point scale
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are also prevalent in frequently used surveys, for example the National Election Study (NES)

or the General Social Survey (GSS). When these kinds of items are used as response variables

in regression-type models, special issues emerge. And while these issues are generally well

known—most good statistics texts on categorical data discuss them (c.f. Agresti 1996, 2002;

Long 1997; Powers and Xie 2000)—they are often outright ignored in applied work (as we

discuss below).

To motivate what follows, it is worth briefly discussing some of the implications of or-

dinal categorical response variables.1 To fix ideas, imagine that Y is a four-point Likert

item measuring attitudes toward government spending with scale scores “greatly decrease

(spending)”=1, “decrease”=2, “increase”=3, and “greatly increase”=4. In a regression-type

setting, a researcher may be interested in modeling Y as a function of some covariates

x = (x1, x2, . . . , xk). How some variable x relates to the scale, for example, “moving up” or

“moving down” the scale, is presumably of interest. In many social science settings, models

for ordinal scales are motivated by random utility (McKelvey and Zavoina 1975).2 Under

this perspective, the observed scale scores on Y are assumed to be discretized measurements

on an otherwise continuous, but latent, response variable Y ∗. As such, researchers commonly

interpret models with ordinal response variables probabilistically: regression parameters give

information about how the probability (or odds) for some level of government spending in-

crease or decrease with respect to changes in x. This kind of motivation, then, leads to

consideration of

Y ∗
i = α + x′β + εi. (1)

Because the response variable in model (1) is unobserved, Y ∗ is connected to Y through a

series of “cut points” such that

Y = 1 ≡ Y ∗ ≤ α1

1Part of the following discussion is adapted from Jones and Sobel (2000).
2Though it is important to note that the utility perspective need not be adopted in order to motivate the

models discussed herein (Jones and Sobel 2000; Powers and Xie 2000).

2



Y = 2 ≡ α1 < Y ∗ ≤ α2

Y = 3 ≡ α2 < Y ∗ ≤ α3

Y = 4 ≡ Y ∗ > α3. (2)

The cut points, given by αj, partition the latent variable in terms of the J categories of Y .

Hence, for a J-category response variable, J − 1 cut points fully partition Y ∗. A statistical

model relating x to Y can be constructed from (1) if a distribution function is specified for

εi. If the standard logistic function is applied, the proportional odds (ordinal logit) model is

obtained and is given by

Pr(Y ≤ yj | x) =
exp(αj − x′β)

1 + exp(αj − x′β)
, (3)

where αj correspond to J−1 intercepts. These parameters relate back to model (1) through

the relationship given in (2); as such, these intercepts serve as the estimated cut points

discussed above. The parameters in (3) are usually estimated as a linear model for the

log-odds ratio using the logit link:

log

[
Pr(Y ≤ yj | x)

Pr(Y > yj | x)

]
= αj − x′β, j = 1, 2, . . . j − 1. (4)

Ordinality in Y is preserved, subject to the constraint that α1 ≤ α2 ≤ . . . αj−1 (Ananth and

Kleinbaum 1997). The derivation of this model is usually credited to Walker and Duncan

(1967), Williams and Grizzle (1972), Simon (1974) and especially McCullagh (1980), who

referred to this model as the “proportional odds” model.3 The proportional odds model

in (4) has some attractive features. Because the regression parameters β are invariant to

the cut points (note they are not indexed by j), the odds ratios are the same over the

j − 1 cumulative probabilities (Liu and Agresti 2005). Thus, this model has the important

property that

Pr(Y ≤ yj | x = x1)/ Pr(Y > yj | x = x1)

Pr(Y ≤ yj | x = x2)/ Pr(Y > yj | x = x2)
=

3Most of our discussion in the remainder of this paper will concentrate on the logit link, though as Liu
and Agresti (2005) note, any cumulative link function can be used for ordinal response variables (for example
the standard normal link or the complementary log-log link).
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exp(x1β)

exp(x2β)
= exp{(x1 − x2)

′β}, (5)

where x1 and x2 are two different values taken by x. The result in (5) shows that odds

ratios derived from (4) are proportional to the distance between values of x (Powers and

Xie 2000). Because of this proportionality, the model gets its name “proportional odds.”

If this property holds, then the proportional odds model gives rise to stochastic ordering

in the cumulative probabilities (McCullagh 1980). That is, if exp{(x1 − x2)
′β} > 0, then

Pr(Y ≤ j | x = x1 < Pr(Y ≤ j | x = x2) for j = 1, 2, . . . , j − 1, implying that the

response distribution is stochastically higher in covariate class x2 than x1 (Jones and Sobel

2000). Proportional odds is therefore a convenient property because knowing β is sufficient to

describe how responses on Y “move” with respect to changes in x; the cut points simply move

the cumulative probabilities to the left or right, but the shape of the function is determined

by β, which is invariant to the cut points. Long (1997) describes this as “parallel regression.”

Clearly, the proportional odds model seems naturally suited to ordinal survey items.

The model is easy to interpret and generally poses no particular problems to estimate.

Nevertheless, at least three issues are worth raising with respect to the proportional odds

model. First, it is not always clear that an ordinal response variable, given some set of

covariates x is truly ordinal; second, even if it is ordinal, it is not always obvious that

the contrasts given by the proportional odds model are the contrasts the researcher will be

interested in; and third (which is closely related to the previous point), it is very likely that

in any particular application, the proportional odds assumption does not hold. It should be

clear from (5) that proportionality in the odds ratios is a property of the model, and not

(necessarily) a property of the “real world.” Minimally, the proportional odds assumption

should, as a matter of course, be tested for in any applications using the proportional odds

model. Unfortunately, most social science work, especially political science analyses, using

ordinal categorical response variables usually never evaluate this assumption (Jones and

Sobel 2000).
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Ironically, the kinds of problems discussed above are often never encountered in many

analyses. Indeed, as Liu and Agresti (2005) note, researchers still commonly proceed by

applying normal-theory (Gaussian) models to ordered categorical response variables, for

example, ordinary least squares. Under this approach, one explicitly assumes that Y is

equal-interval scored. The problem with this is we almost never know the “true” interval

between the observed scale scores. Indeed, this is one motivating factor giving rise to the

random utility perspective discussed above. On the face of it, this seems an obviously inap-

propriate strategy. Nevertheless, it is a commonly employed strategy by political scientists

and sociologists. In a “non-scientific” survey of research using ordinal response variables

between 1995–2005, we found 57 applications.4 Of these 57 papers, 23 (40 percent) used

simple OLS regression; 28 (49 percent) used cumulative link models (like the proportional

odds model), and 6 (11 percent) used alternatives to the standard cumulative link models.

The use of OLS is usually justified on the grounds that OLS results are “similar to” results

from cumulative link models and therefore OLS results are given because of their “ease of

interpretation” (statements like these can be found in a variety of papers, for example Hill

2002, Loftus 2001, Zuckerman and Jost 2001). Still, other researchers provide no justification

for assuming equal-interval scoring (c.f. Oliver and Mendelberg 2000). In the next section,

we will discuss some of the problems in applying OLS to categorical response variables as

well as turn attention to the three issues raised above regarding the proportional odds model.

2.1 The Proportional Odds Assumption

By proceeding with the model given by (4), the researcher is making the relatively strong

assumption that the covariate effects are invariant to the cut points, thus implying pro-

portionality in the odds ratios. Of course, if one forgoes the proportional odds model (or

something like it) and chooses to apply Gaussian methods, one is making an even stronger

4We thank Jennifer Byrne for her research assistance in doing this analysis. The search engine J-Stor
was used in this survey.
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statement: the scale-score intervals are known and so the regression coefficient informs the

researcher explicitly on how E(Y ) is changing with respect to changes in x. In either case,

one implicitly assumes that once estimated, β describes “movement” over the scale. In the

case of OLS, the interpretation is tied directly to the expected value of Y ; in the case of the

proportional odds model, the interpretation is connected to the conditional or cumulative

probabilities (or log-odds or odds ratios). To illustrate some issues, we estimate a model of

white attitudes on affirmative action using data from the 1991 National Race and Politics

Study (Sniderman, Tetlock, and Piazza 1991).

The dependent variable is a four point item asking about opposition to giving African-

Americans preferential treatment in university admissions.5 We include in our model mea-

sures of both symbolic racism and of traditional racial prejudice. Following Oliver and

Mendleberg (2000), we construct the symbolic racism measure from a three point likert scale

item concerning the amount of attention given to minorities by the government and two 11

point items rating the amount of anger felt by the respondent toward special advantages

given to blacks in employment and toward minority leaders who are always complaining

about discrimination. The measure of traditional racism consists of the difference between

the average scores of five responses each to 11 point positive and negative racial stereotype

items. Both symbolic racism and traditional prejudice are rescaled from 0 to 1. We also

include education, which is a six point scale rescaled from 0 to 1, ideology, which is scored

as -1 if liberal, 0 if moderate, and 1 if conservative, and gender (1 = female). We include in

the analysis only white, non-Latino respondents.

In Table 1, we give the OLS and proportional odds estimates for the model of affirmative

action attitudes. The way we have presented the parameter estimates, a positively signed

coefficient implies an increase in xk is related to higher scores on Y (or in the cumulative

probabilities), and thus, greater opposition to affirmative action. In “eyeballing” the two

5More precisely, the measure is a combination of two questions. Respondents were asked if they support
or oppose preferential treatment and then asked if they strongly support (oppose) or somewhat support
(oppose) the policy. Higher scores represent greater opposition to affirmative action.
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sets of coefficients, one might conclude (as many do at this point) that the OLS results are

“similar to” the proportional odds estimates. Indeed, at conventional levels of statistical

significance, what is statistically significant in one model is significant in the other. For

example, the confidence interval around, say, the symbolic racism scale is not wide in either

of the models. The major presentational difference between the two models are the J − 1

cut point parameters given by the proportional odds model. In the OLS model, only a single

intercept is needed, owing to the luxury afforded the equal-interval scoring assumption. Be-

cause the proportional odds model is parameterized as a linear model for the log-odds ratios

and because of the presence of two additional intercept parameters, researchers sometimes

conclude OLS results are “more interpretable” because they connect directly back to Y , and

not to cumulative or conditional probabilities. In order to get quantities of more natural

interest, additional work needs to be done to the proportional odds model.

Our interest centers on the proportional odds assumption, however. Consider the sym-

bolic racism scale. In Figure 1, we plot the estimated odds ratio associated with this scale,

given by exp(β̂ ∗ xSR). Clearly, the odds of responding in a higher category (less supportive

of affirmative action policies) substantially increase as scores on the scale increase. This

result is consistent with theoretical expectations: individuals harboring racially intolerant

attitudes tend to also be in opposition to affirmative action policies. Figure 1 nicely illus-

trates a desirable feature of the proportional odds model: the relationship is invariant to the

cut points and so it is unnecessary to consider them in calculating odds ratios.6 Further, it

must be true by definition of the model that the odds ratios are proportional to changes in

scale scores. The only impact the cut points have is to move the response distribution to

the left or right; the relationship shown in Figure 1 is therefore unaffected by the αj.

But suppose this assumption were wrong? In this setting, one or more of the log-odds

ratios would vary with respect to the cut points. Consequently, the associated odds ratios

6It is worth noting that because attention often centers on odds ratios, many statistical treatments of the
proportional odds model refer to the cut points as nuisance parameters. As Liu and Agresti (2005) write,
the cut points “are usually nuisance parameters of little interest” (p. 3).
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would differ, depending on the scale location. In this sense, the unsubscripted β from

equation (4) would need to be indexed by j. Fortunately, the proportional odds assumption

is, in fact, a testable assumption; unfortunately, in applied work, it is almost never done.

Two standard tests have been proposed for evaluating the proportional odds assumption.

The first is a global Lagrange multiplier test. The proportional odds model can be considered

as a series of J -1 binary logits where the β′s are constrained across the models such that:

β1 = β2 = . . . = βj−1 = β (6)

The null hypothesis of the Lagrange multiplier test is that the log likelihood of the constrained

model is no different than that of the unconstrained model. The resulting test statistic

is distributed as chi-square with K (J -2) degrees of freedom, where K is the number of

covariates in the model.

While the global test is useful, it does not diagnose violations of the proportional odds

assumption for individual covariates. Brant (1990) suggests a Wald test for the overall model

and for each variable in the model.7 The test is conducted by first running J -1 cumulative

logits. The global null hypothesis in (6) can be tested with a Wald statistic, which is also

distributed chi-square with K (J -2) degrees of freedom. If the proportional odds assumption

holds for covariate K, then the coefficients for that covariate should be equal across the

cumulative logits. Thus, a Wald statistic can be constructed for each covariate to test the

null hypothesis:

βK1 = βK2 = . . . = βK,j−1 = β (7)

The test statistic is distributed chi-square with J -2 degrees of freedom.

In applying the Brant test to the proportional odds model from Table 1, we obtain the

results presented in Table 2.8 Globally, we can reject the null that proportional odds hold

for the model. Using the Brant covariate specific test, we see that the symbolic racism scale,

7See also Peterson and Harrell (1990).
8This test can be implemented in Stata by the spost routine created by Long and Freese. See also Long

(1997) for an explanation of how to conduct the test for statistical software with a matrix language.

8



the racial prejudice scale, and the indicator for female respondents indicate nonproportion-

ality in the odds. Substantively, this suggests the relationship between these covariates and

affirmative action attitudes might vary over the scale scores, a relationship that is assumed

not to exist in the standard proportional odds model. In short, if the central property of

the proportional odds model does not hold, then alternative modeling strategies should be

considered. But before considering some alternatives, consider the implications for applying

OLS to these data, as is done in Table 1. The alleged similarity in coefficients between the

OLS and proportional odds models is illusory. If the proportional odds assumption does not

hold, it makes no difference how “similar” linear regression results are to the logit coeffi-

cients because the covariate effect is changing with respect to scale location. In using the

proportional odds model and testing for this property, one can detect this; in applying OLS,

one cannot. Therefore, normal-theory regression models estimated out of convenience will

often be misleading. Further, as Lall, Walters, and Morgan (2002), Peterson and Harrell

(1990), and Long and Freese (2003) note, the proportional odds assumption commonly will

not hold. Indeed, as the number of K parameters to be estimated increases, the chances

of finding nonproportionality in the odds ratios will increase. Thus, if one defines a “well

specified” model as one having many parameters (usually not a good definition!), then the

likelihood the proportional odds assumption is false increases with “improved” specification.

Clearly, alternatives should be considered.

3 Multinomial Models for Ordinal Response Variables

A variety of models have been proposed, apart from the proportional odds model, for ordinal

categorical response variables. In this section, we consider several we think have applicabil-

ity to the kinds of survey items social scientists regularly work with. Some of the models

discussed are designed to explicitly deal with nonproportional odds; other models are at-

tractive because of the different kinds of contrasts that stem from them. Most of the models
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discussed below can be thought of as “multinomial” models insofar as estimation of them

usually results in multiple parameter vectors. As such, they seemingly increase in complexity

as the number of logit functions increase (usually resulting in J−1 regression functions). To

continue the discussion from the previous section and to motivate what follows, we consider

first, models for nonproportional odds.

3.1 Nonproportional Odds

Nonproportional odds imply the relationship between some covariate xk and Y changes over

the scale. Notationally, we can rewrite model (4) as

log

[
Pr(Y ≤ yj | x)

Pr(Y > yj | x)

]
= αj − x′βj, j = 1, 2, . . . j − 1, (8)

to reflect nonproportional odds. Here, the β are indexed by J , indicating the relationship

is assumed to hold differently over the scale scores. Estimating something like this would

require multiple parameters on β to be estimated, thus giving rise to a multinomial type

model. Several modeling strategies have been proposed for (8), though, as noted earlier,

applied political science work rarely utilizes these models. We consider first a model proposed

by Peterson and Harrell (1990), which they called an “unconstrained partial proportional

odds model.”

Peterson and Harrell’s “Unconstrained” Model

To motivate the unconstrained partial proportional odds (hereafter UPP) model, consider a

fully generalized cumulative logit model of the form

Pr(Y ≤ yj | x) =
exp(−αj − x′βj)

1 + exp(−αj − x′βj)
, (9)

with log-odds

log

[
Pr(Y ≤ yj | x)

Pr(Y > yj | x)

]
= −αj − x′βj, j = 1, 2, . . . j − 1. (10)
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In (10) the notational convention is adapted from Peterson and Harrell (1990) (see also

Ananth and Kleinbaum 1997).9 This is a fully generalized cumulative logit model because

each of the K regression parameters are estimated separately for each scale score. Because of

this, J − 1 equations need to be estimated in order to derive the full set of cumulative prob-

abilities. So for a four-category ordinal variable with αj and βj, j = 1, 2, 3, the cumulative

probabilities would be given by

Pr(2 + vs. 1) =
1

1 + exp(−α1 − x′β1)

Pr(3 + vs. 2, 1) =
1

1 + exp(−α2 − x′β2)

Pr(4 + vs. 3, 2, 1) =
1

1 + exp(−α3 − x′β3)
.

(11)

This statement, it should be clear, is greatly simplified in the proportional odds model of

(4) because a single parameter vector is estimated. This gives rise to the proportional odds

model’s property of stochastic ordering. Here, the βk are estimated uniquely for each contrast

over the scale. An application of model (10) in political science can be found in Branton and

Jones (2005). The desirable feature of (10) is the proportional odds assumption is relaxed;

the undesirable feature of the model is that many parameters must be estimated, some of

which may not be of substantive interest. Thus, if Y has four categories and there are three

covariates, there are K + 1(J − 1) = 12 parameters to estimate. Because the number of

estimated parameters proliferate with J and x, Peterson and Harrell (1990) proposed the

UPP model. Under their formulation, two sets of coefficients are estimated: one set having

proportional odds, the second set having non-proportional odds. This model has the form:

log

[
Pr(Y ≤ yj | x)

Pr(Y > yj | x)

]
= −αj − x′β − t′γj, j = 1, 2, . . . j − 1. (12)

9This notation is not necessary and it is important to note that different software code will parameterize
this (as well as (4) differently). For example, using R and Yee’s (2003) VGAM package, the log-odds are given
by (9). Using the Stata ado module, glogit2 (Williams 2006), the odds ratios are given by αj +x′β (that is,
the signs are different). The quantities of interest from either parameterization will be identical, of course.
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Under (12), x is a p × 1 vector of covariates that maintain the proportional odds property

and t is a q × 1 vector of covariates that are nonproportional. If each covariate exhibits

nonproportionality, then model (12) can be shown to be equivalent to the fully generalized

model (10); if q < p, then only a subset of parameters are nonproportional, thus giving rise

to the name “partial” proportional odds. The γj are the parameters associated with the

incremental change in the log-odds associated with the nonproportional covariate (Peterson

and Harrell 1990; Ananth and Kleinbaum 1997). If the γj = 0, then proportionality holds

and the odds ratios are derived as in model (3).

To illustrate the UPP model, we return to the affirmative action data. Recall from

Table 2, we found evidence that several of the covariates from the proportional odds model

displayed nonproportionality. We refit the model from Table 1 using model (12). The results

are given in Table 3. Of the five covariates, three are estimated as having nonproportional

odds: symbolic racism, racial prejudice, and the indicator variable for female. Consider

the symbolic racism scale. The estimate for the log-odds of a respondent answering in

categories 2+ versus 1 is 1.79 with an odds ratio of about 6. However, since this covariate

exhibits nonproportionality, the log-odds ratios vary over the scale scores. For the log-odds of

answering in categories 3+ versus 2 or 1, the estimate is given by β +γ2 = 1.79+ .80 ≈ 2.59.

The odds ratio is thus exp(2.59) or approximately 13.33. Finally, the log-odds for answering

in category 4 (being least supportive of affirmative action) are β+γ3 ≈ 3.13 with an odds ratio

of about 23. Nonproportional odds informs us that the odds of scoring in a higher category

as versus a lower category on the response variable are increasing nonproportionally over the

scale. This is in contrast to Table 1, which suggested the odds ratio for the symbolic racism

scale was about 12 and was invariant to the cut points. Here, we find that for increases on

the symbolic racism scale (i.e. respondents who are more racially intolerant), the odds of

answering in the highest categories (3 or 4) are much higher than answering in the lower

categories. In this sense, the strongest effects are observed above the implied midpoint of

the scale. For our purposes, note the effect of the γj. These parameters serve to indicated by
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how much the odds are increasing. Thus, as Peterson and Harrell (1990) show and as noted

above, the γj give us an estimate of the incremental change in the odds ratios—precisely what

we would like to estimate for nonproportional odds. Here, the odds are clearly increasing in

Y . This kind of inference is impossible to obtain from the garden variety proportional odds

model (as well as the OLS model).

Generalized Ordinal Logit Models

Fu (1998) and more recently Williams (2005, 2006) have discussed the “generalized ordinal

logit” model. In the case of Fu (1998), his model (which can be implemented as an ado in

Stata as gologit) is equivalent to the generalized model shown in (10). Williams (2005,

2006) proposes a restricted generalized ordinal logit (which can be implemented in Stata

as a ado module called gologit2). Williams’ (2005, 2006) treatment of nonproportional

odds more closely follows the approach derived by Peterson and Harrell (1990). Under the

generalized ordinal logit, the model has the following form:

log

[
Pr(Y ≤ yj | x)

Pr(Y > yj | x)

]
= αj + x′β + z′ζj, j = 1, 2, . . . j − 1. (13)

We have written the Williams model in terms of two sets of parameter estimates, β and

ζj. The β are the coefficient estimates for the covariates maintaining the proportional odds

assumption and the ζj are the estimates for the z covariates having nonproportional odds.

The only difference between the model in (13) and the UPP model is that in the generalized

ordinal logit parameterization, the actual log-odds coefficients are directly reported. In the

UPP model, only the increments (given by γj) are reported. It should be clear that in

Williams’ parameterization, ζ2 − ζ1 = γ2. To illustrate the Williams model, consider Table

3a. In this parameterization, three logit equations are jointly estimated. The first column

(corresponding to “C1”) gives the log-odds of responding above versus below Y = 1; the

second column gives the log-odds of responding in categories 3 or 4 versus 1 or 2; finally, the

third column gives the log-odds of responding in category 4 versus all others. In Table 3a,
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the covariates showing nonproportionality have estimates corresponding to ζj. As such, over

the J − 1 logits, the parameter estimates will vary. Again, looking at the symbolic racism

scale, the log-odds estimates over the logits are: 1.79, 2.59, and 3.13. The correspondence

between Williams’ generalized ordinal logit model and the UPP model is straightforward. To

obtain the odds increments, subtract the log-odds ratios from each adjacent logit. Thus the

log-odds estimate of 2.59-1.79 gives .80, which is γ2 from Table 3. Similarly, to obtain ζ2 from

the UPP model, simply add γ2 + β. The two models are identical (and hence, fit statistics

like the likelihood ratio, will be the same) as both estimate 14 unique parameters: 3 each for

the nonproportional odds; 1 each for the proportional odds; and 3 intercepts. In Table 3a,

note that the education and ideology covariate estimates are constrained to be equal over the

J−1 logits. This is equivalent to saying the odds are proportional. Note also how ordinality

in the scale is preserved. In the UPP model, the γj provide information on incremental

shifts in the odds over the scale; in the generalized ordinal logit, the separate ζj give this

information. Because the models may be estimated with standard likelihood methods (using

a logit link for a cumulative response variable), usual goodness-of-fit statistics can be applied.

In comparing the fit of the partial proportional odds model to the proportional odds model

(from Table 1), standard fit indices suggest the partial proportional odds model is preferable.

Note that since the proportional odds model is obtained when γj = 0, this model is nested

under the UPP (or generalized ordinal). The likelihood ratio test is 30.55. On six degrees

of freedom, the p-value is .00003. Moreover, the AIC for the UPP model is 4576 and for the

proportional odds model, 4595, indicating the UPP model is preferable on these grounds.

The two (complementary) approaches outlined above would seem preferable to the garden

variety proportional odds model when the parallel regressions assumption does not hold. The

problem, however, is that many users simply fail to evaluate this assumption and proceed

as in Table 1. Worse, if users proceed with normal-theory methods, not only is the model

putatively inappropriate (on many fronts), possibly useful information on nonproportional

odds is lost. Of course, all of the preceding worked on the premise that: 1) ordinality was
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present in the data and/or 2) the contrasts afforded the proportional odds model are of

primary interest. Nevertheless, it is conceivable that non-ordinal models might actually be

preferred in some instances to ordinal models. Further, alternative contrasts might reveal

information not easily obtained from the proportional odds model (or the UPP or generalized

ordinal logit model). We turn to these issues/models next.

3.2 Alternative Modeling Strategies

In the previous section, we considered a class of multinomial models that preserved the in-

formation on ordinality in Y while relaxing the proportional odds assumption. Nevertheless,

there are alternative strategies apart from those just discussed that can be applied to pu-

tatively ordinal response variables from surveys. To fix some ideas, we first consider the

baseline category logit model.

Baseline Category Logit

Possibly the most general model is a multinomial model where ordinality is not assumed.

The baseline category logit model, or “multinomial logit,” model proceeds by treating a

polytomous response variable has having an arbitrarily defined baseline to which the log-

odds ratios are referenced. This model is usually applied for truly nominal and non-ordered

data. In the context of an ordinal response variable, the log-odds ratios are

log

[
Pr(Y = yj | x)

Pr(Y = 1 | x)

]
= αj + x′βj, j = 1, 2, . . . j − 1, (14)

where the denominator in the log-odds ratio corresponds to the baseline category. The

choice of the baseline category is irrelevant. Because the parameters are subscripted by J ,

the resulting model yields J−1 nonredundant logits. If the response variable is four-category,

the contrasts from the model are category J = 2 versus 1, J = 3 versus 1, and J = 4 versus

1. The model in (14) is actually quite similar to the fully generalized ordinal model shown in

(9); however, ordinality in the response variable is not assumed (or is not preserved) in this
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particular setup. In principle, there is nothing particularly wrong in applying this model

to ordinal data. Indeed, even if a response variable is ostensibly ordered, ordinality may

not actually be found conditional on the covariates, (i.e. the response distribution may not

monotonically increase or decrease in x.) In such a case, applying the baseline category

logit model may be a reasonable strategy. Nevertheless, on the face of it, with an ordinal

response variable, there is usually some compelling reason to derive ordinal (or “ranked”)

interpretations from the model. To see, however, the connection between baseline category

logit model and ordinal data, we consider a reparameterized baseline category logit.

Adjacent Category Logit

The adjacent category logit model proceeds by forming J − 1 logits for all pairs of adjacent

categories (Agresti 1996). The model has not been widely applied in political analysis

(though see Cameron, Epstein and O’Halloran 1996 or Jones and Sobel 2000) though it

would seem to have some appeal given the prevalence of multicategorical response variables

in political science research. This model has been much more widely applied in sociological

applications. This is probably due to its close connection to log-linear models (Agresti

1996, Sobel, Becker, and Minick 1998, Jones and Sobel 2000, Powers and Xie 2000). The

model gets its name because of how the log-odds ratios are parameterized. Note that in the

baseline category model of (14), the log-odds are in reference to a baseline category (which

is arbitrarily defined). In the adjacent category logit model, the log-odds of score J + 1 are

in reference to score J–that is, the “adjacent” category. The model can be written as

log

[
Pr(Y = yj+1 | x)

Pr(Y = yj | x)

]
= αj + x′βj, j = 1, 2, . . . j − 1. (15)

The resulting odds ratios from (15), then, give the odds of responding in a higher category

versus the lower adjacent category. The model itself is easily estimated because the param-

eters and standard errors can be directly obtained from the baseline category logit model.

To illustrate, we apply the adjacent category logit model to data on immigration attitudes.
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Specifically, we use the 2004 National Election Studies (NES) to examine white, non-Latino

evaluations of the effect of immigration on job availability. Our dependent variable is con-

structed from a question about whether it is extremely likely, very likely, somewhat likely,

or not likely at all that current immigration levels will take jobs away from people already in

the United States.10 We include five independent variables in the model. First, we construct

a measure of evaluations of Hispanic stereotypes from three seven-point questions, with high

values meaning negative stereotypes. A score measuring the relative group evaluations is cre-

ated from subtracting a Hispanic feeling thermometer from a white thermometer. Four items

are scaled to create a measure of moral traditionalism where higher values equate to higher

levels of traditionalism. Personal retrospective economic evaluations are also included in the

model.11 Finally, ideology is measured with a seven point self-placement question (strong

liberals = 0). All five measures are recoded from 0 to 1. We hypothesize that larger values

of the independent variables should increase the likelihood that a respondent believes that

immigration will reduce the number of available jobs.12 The results for an adjacent category

logit model are given in Table 4.

The interpretation of the coefficients are akin to any logit model. A positively signed

coefficient implies the log-odds are increasing in x. What sets this model apart from others

considered to this point are the contrasts it gives. The first column of estimates in Table 4,

for example, gives the log-odds of responding in category 2 (“very likely”) versus category

1 (“extremely likely”); column 2 gives the log-odds of responding in category 3 (“somewhat

likely”) versus category 2; and column 3 gives the log-odds for responding in category 4

(“not likely at all”) versus category 3. To illustrate, consider the moral traditionalism scale.

In the first column, the odds of 2 vs. 1 are exp(−.81) = .44; the odds of 3 vs. 2 are

exp(−1.52) = .22; and the odds of 4 vs. 3 are exp(−1.75) = .17. Interestingly, the odds

10We code extremely likely = 1, not very likely = 4
11This is a five-point question asking how much better or worse the respondent’s family is economically

than one year ago.
12See Branton, Jones, and Westerland (2006) for a more complete discussion.
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ratios are monotonically decreasing over the range of the scale. Further, the confidence

interval around the contrast 2 vs. 1 is much wider than the other contrasts suggesting the

substantive impact of moral traditionalism is strongest for the higher categories of the scale

but not the lower categories.

The appealing feature of the adjacent category logit model is that the contrasts forth-

coming from this model would seem to be of natural interest in many political science appli-

cations (Jones and Sobel 2000). The model is general in the sense that the odds ratios can

(obviously) vary over the adjacent categories. Consequently, no assumption of proportional

odds needs to be made. Ordinality in the response variable is preserved because the odds

are estimated for each pair of adjacent categories. If Y is a Likert-type survey item, then

the local logits inform the analyst on how x is related to “climbing the scale.” The major

drawback of the model is it yields (K +1)(J−1) log-odds ratios. The number of parameters

could be reduced by placing restrictions over some of the adjacent category logits, but the

model is multinomial nonetheless. It is useful to note the equivalence between the adjacent

category logit model and the baseline category logit. Suppose we apply model (14) to these

data, treating category 1 as the baseline. Were we to do so, the J − 1 log-odds for the moral

traditionalism scale would be: (2 vs. 1): −.81; (3 vs. 1): −2.33; and (4 vs. 1): −4.08. To

obtain the adjacent category logits, one simply subtracts these ratios sequentially. Thus, the

log-odds of category 3 vs. 2 is given by −2.33 + .81 = −1.52 and the log-odds of category 4

vs. 3 is −4.08+2.33 = −1.75. These are identical to the ratios obtained from Table 4. Given

the equivalence of the two models, it makes no sense to think about adjudicating between

them: the likelihood ratio is the same (and is −981.839). The major difference here is one

of interpretation. The adjacent category logit gives rise to an “ordinal” interpretation (in

terms of adjacent scores); the baseline category logit model does not.
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Anderson’s Stereotype Model

As an alternative to the baseline category logit (as well as, perhaps, the adjacent category

logit), Anderson (1984) derived a model he named the “stereotype” ordinal regression model.

The model’s awkward sounding name comes from the perspective Anderson took towards

ordinal response variables. Specifically, he noted that researchers often work with “assessed”

ordinal scales (Anderson 1984, 2). Such a scale requires “judges” to assign ordinal ratings

on an otherwise continuous scale. Because judgements require categorization, these scores

may be “loose stereotypes” (Anderson 1984, 10), and be prone to error. Put differently,

imagine a medical researcher assessing “pain” a patient is experiencing. The judge (the

researcher) may rely on multiple pieces of information to assess the pain level. Once a

judgement is made, a category is assigned. The category assigned to a given patient may

be “stereotypical” for that kind of patient. Similarly, in survey research, respondents are

called upon to answer questions. As noted throughout, it is common that survey researchers

categorize otherwise ordinal concepts into a series of observable scale categories. In the

language of Anderson, these categorizations might be stereotypical labels. The import of

the model is in its recognition that observed scale scores from an ordinal item might be error

prone because the categorizations are stereotypes. Anderson (1984) reasoned that because

of this, a putatively ordinal scale may in fact not be ordered at all. Further, Anderson

(1984) developed the stereotype logit model as an alternative to the baseline category logit.

Because the number of terms estimated increase in both K and J , Anderson proposed a

model that estimated a single set of regression parameters (i.e. β) and a series of weights

(φj) that could be used to evaluate the ordinality assumption. In terms of the log-odds, the

stereotype model is given by

log

[
Pr(Y = yj | x)

Pr(Y = 1 | x)

]
= αj + x′φjβ, j = 1, 2, . . . j − 1, (16)

where the φ correspond to the estimated weights for each scale category. As with the baseline

category logit, one of the J categories must serve as a referent. To identify the model, φJ = 0
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and βJ = 0. To normalize the scale, a further restriction is placed on the model such that

φ1 = 1. Thus for a four-category response variable, two φ parameters are estimated. It

should be clear that inference on the βk is not independent of the φ; the log-odds are given

by φjβk.

The stereotype logit model has not been widely applied. As Liu and Agresti (2005)

note, this is probably because Anderson died just before his 1984 paper was published.

Nevertheless, the model has some attractive features. First, far fewer parameters need to

be estimated than when compared to the multinomial models discussed earlier. Further,

the model can be thought of as providing a test of ordinality. Specifically, since the φj give

information about the scale categories, if the condition given by

1 = φ1 > φ2 > . . . φJ = 0

hold, then an ordered regression model is obtained (Ananth and Kleinbaum 1997, Lall et

al 2002); if this condition does not hold, then there is some evidence of a lack of ordinality

(given the covariates in the model). Thus, a nice feature of the model is that ordinality is not

a property of the model and so (16) provides an explicit test of the property. Yee and Wild

(1996) and Yee and Hastie (2003) refer to the stereotype model as a “reduced-rank” model.

This is because only a single parameter vector is estimated for the β (again, in contrast

to the baseline category logit). For similar reasons, McCullagh (1984) calls this model a

canonical regression model.

We illustrate and interpret the stereotype model using the data on immigration attitudes

discussed in the previous section. We applied the stereotype model using the same set of

covariates as in Table 4. The parameter estimates and standard errors are given in Table 5.

For purposes of identification, category J = 4 (“not very likely”) is treated as the baseline

category. The φj parameters correspond to the weights just discussed. The αj correspond

to the intercepts for the J − 1 categories. To interpret the model, first consider the αj. The

estimates suggest the log-odds ratios are ordinal, as they monotonically increase from J = 4
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(the baseline category) to J = 1. The estimated standard errors relative to the parameter

estimates are small and so there is evidence suggesting the categories are distinguishable from

one another. Moreover, the φj give information about the “distance” between categories.

For example, the difference between the baseline category (J = 4) and category J = 3

(“somewhat likely”) is largest (.51). In contrast, the distance between scale score J = 1 and

J = 2 is the smallest (.15). Given the nature of the scale, this is not surprising: category

four is distinct from the remaining three categories as it is the only response option allowing

respondents to claim immigrants will not likely take away jobs. Since the other categories

record negative views toward immigrants and the chances they will take away jobs, the

difference between the αj are smallest for them.

Turning now to the odds ratios, consider again the moral traditionalism scale. The

coefficient estimate of 4.11 gives the log-odds ratio for responding in category 1 (“extremely

likely to take away jobs”) versus category 4 (“not very likely”). The associated odds ratios

is exp(4.11) ≈ 61. This implies the odds for a respondent scoring highest on the moral

traditionalism scale saying immigrants are extremely likely to take away jobs is about 60

times that of someone scoring lowest on the moral traditionalism scale. The confidence

interval around this estimate is very tight, as the standard error is very small. The remaining

odds ratios can be derived from Table 5 by accounting for the scale score weights. Thus,

the odds of responding “very likely” (J = 2) versus “not very likely” (J = 4) is exp(βφ2) =

exp(4.11× .85) ≈ 33, or roughly half of the previous contrast. Finally, the odds of answering

“somewhat likely” versus “not very likely” (i.e 3 vs. 4) are about 8.02, or roughly a quarter

of the previous contrast.

It is clear that the interpretation of the stereotype model is akin to the baseline category

logit model with two very important differences. First, ordinality in Y is explicitly tested for

here in the φj; second, there is only a single parameter vector estimated for K (making it a

reduced rank model). In comparing the stereotype logit model to a baseline category logit

(the full model is not reported here), we find that the odds ratios for the same set of contrasts
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computed in the previous paragraph are approximately, 59, 26, and 6. The estimates are

similar to, though not identical, to the estimates gotten from the stereotype model. Since the

stereotype model is a reduced rank version of the baseline category, standard likelihood ratio

tests can be applied. We find that the log-likelihood for the 15 parameter baseline category

logit is −981.839 and for the 10 parameter stereotype logit is −983.586. On five degrees of

freedom, the difference in likelihoods between the baseline category and the stereotype logit

is not significant. We would probably, therefore, prefer the stereotype model on the grounds

of parsimony (use of the AIC and BIC criteria would reenforce this decision).

4 Discussion and Conclusion

Numerous alternatives to the standard approaches for ordinal response variables exist. Rarely

in political science applications are these alternatives considered. A variety of reasons, both

statistical and theoretical, were forwarded here to lend motivation for thinking about these

alternative strategies. We should note that the survey of models provided here is by no

means exhaustive. For example, we have made no mention of the continuation ratio logit

model (McCullagh 1980; Cole and Ananth 2001), the multidimensional Anderson stereotype

model (Anderson 1984, Ananth and Kleinbaum 1997, Lall et al 2002), and the constrained

partial proportional odds model (Peterson and Harrell 1990). The continuation ratio logit

model, in our view, has less applicability to the issues considered here: ordinal survey items.

This is a compelling model when the ordering in the data is sequential, such that once

category J is “passed through,” it cannot be returned to (for example, progression of an

illness). There is little reason to believe that data on survey responses to ordinal variables

satisfies this sequentiality condition. The multidimensional stereotype model is most appli-

cable when the response variable can be thought of as an amalgam of multiple indicators

(Anderson 1984, Ananth and Kleinbaum 1997). The “dimensionality” refers to the number

of possible dimensions underlying the observed scale. Because of space constraints, we opted
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to discuss the simpler one-dimensional model (given its connection to the other multinomial

models considered herein) and forgo discussion of this model for another paper. Finally, we

did not discuss the constrained partial proportional odds model forwarded by Peterson and

Harrell. This model is a straightforward extension of the model discussed in (12) subject

to the constraint that prespecified scalars are included in the model to describe the nature

of nonproportional odds. Because these constraints are rarely known (and the ability to

“know” them decreases as the number of parameters increase in the model), our view is the

UPP model will be more naturally applicable to the kinds of problems political scientists

work with.

Nevertheless, the models covered herein address a variety of issues that routinely emerge

with ordinal response variables. The natural question to ask is ‘which model should I

choose?’. As should be clear, there is no obvious answer to this question because a vari-

ety of issues must be sorted through. Among the most important issues here is thinking

about how the data were generated. If use of an ordinal response variable can be motivated

in terms of random utility, then one is implicitly saying that underlying the scale is a contin-

uous and unidimensional latent factor. Further, given this, it is implicitly assumed that the

observed scale scores are ordered. To the extent these assumptions hold—that there exists

some theoretical reason to expect individuals to “think” in terms of the latent factor—then

the proportional odds model seems the natural starting point for the analysis. Unfortunately,

as noted previously, it seems many researchers’ starting point obviates the random utility

perspective and instead opts for assuming equal-interval scoring. This assumption, which

most likely impossibly holds for scales with few categories, leads to the use of normal-theory

models, like OLS. In our “casual” overview of applied work, this strategy was quite prevalent.

We hope we have made it clear that starting from this perspective is generally not a good

idea. It is also important to note that starting and ending with the proportional odds model

is likewise, a potentially bad strategy. The parallel regressions assumption built into the

proportional odds model is a rigid restriction. Indeed, if the property holds, then the model
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has an attractive interpretation. Unfortunately, for many of the kinds of models political sci-

entists like to postulate—models with many parameters—the chances proportionality holds

is unlikely. Minimally, any use of the proportional odds model should be coupled with tests

of the proportional odds assumption. Should the assumption not hold, we have considered a

variety of alternatives to the proportional odds model, ranging from fully generalized ordinal

logit (Fu 1998) to partial proportional odds models (Peterson and Harrell 1990, Williams

2005, 2006). These latter models seem particularly compelling, particularly if only a few

covariates exhibit nonproportionality. Because these kinds of models can be easily estimated

in software like R, Stata, and SAS, there is no particular reason we can think of to forgo

considering them.

In contrast to the random utility perspective, if one is unclear about the dimensionality

of the response variable or if one has reason to suspect ordinality may not hold given the

covariates in the model, alternative strategies may be in order. We discussed a variety

of multinomial models that could be derived from the baseline category logit. Anderson’s

stereotype logit seemed particularly compelling, as it provided a direct test of ordinality in the

response variable. Further, if the model holds, far fewer parameters need to be estimated

(and interpreted) in his model than when compared to the fully generalized multinomial

models (like the baseline category logit).

Another consideration to be made involves the issue of inference and interpretation. As

we hope we have made clear, “what you get” from these models varies substantially over

different parameterizations. This is most clearly evidenced in the adjacent category logit.

If the theoretical interest centers on how respondents move from one scale location to the

next, for example, moving from below a scale’s midpoint to above the midpoint, this kind of

modeling strategy seems attractive because the contrasts are explicitly modeled in terms of

the local logits. However, if interest centers on how respondents score on the scale in reference

to some baseline scale category, then alternative parameterizations may be of interest. The

baseline category logit (and the stereotype) model serves as an example of this.
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The overriding issue of this paper, however is this. Forgoing alternative modeling strate-

gies in favor of either the OLS or proportional odds model may result in either 1) ill-fitting

models or 2) models that ignore possibly useful information. With respect to this second

issue, suppose that proportionality in the odds ratios does not hold. If it does not, this

implies that a covariate’s effect will likely vary over the scale’s location. A partial propor-

tional odds model (or other models we have discussed herein) would be able to capture this

effect. Now imagine a theory of political behavior that postulated some factor should have

a stronger impact, say, above the midpoint on Likert-type item and weaker effect below.

For example, consider Feldman and Huddy’s (2005) important finding that the relationship

between racial resentment and attitudes substantially differs for liberal versus conservative

self-identifiers. If the racial resentment scale were treated as a covariate in a model of racial

attitudes (measured with an ordinal response variable), one might theorize that the relation-

ship between resentment interacted with ideology of the respondent would exhibit sharply

different odds ratios over the scale. Applying a garden variety proportional odds model—or

worse, OLS—would simply not pick this relationship up. The kinds of models discussed

herein, could. Indeed, in the applications presented here, we found substantial differences

in the relationship between symbolic racism and affirmative action attitudes over the range

of the scale. Similar remarks apply to the relationship between moral traditionalism and

attitudes toward immigrants. In short, on theoretical grounds, one might be naturally led

to the multinomial models discussed here.
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Figure 1: This figure gives the estimated odds ratios for the
symbolic racism scale from the proportional odds model.

Table 1: Support for Affirmative Action
OLS and Proportional Odds Estimates

Variable Coefficient

OLS Proportional Odds

Symbolic Racism 1.375 2.562
(0.111) (0.207)

Racial Prejudice 0.383 0.728
(0.193) (0.356)

Education 0.259 0.510
(0.102) (0.182)

Ideology 0.066 0.117
(0.027) (0.047)

Female 0.025 0.075
(0.049) (0.088)

Intercept 1.479
(0.127)

α1 0.652
(0.233)

α2 1.888
(0.236)

α3 3.268
(0.245)

n 1744 1744
log-likelihood: −2289.518
Data are from the 1991 Race and Politics Study. Column one gives
O.L.S. coefficients and column two gives proportional odds estimates.
Models were estimated in both Stata v.9 and R and the VGAM package
(Yee 2003, Yee and Wild 1996). Code is available from authors. Signs
on the proportional odds were switched to make it comparable with
OLS estimates.



Table 2: Testing the Proportional Odds Assumption

Variable Coefficient

y > 1 y > 2 y > 3

Symbolic Racism 1.822 2.458 3.037

Racial Prejudice 1.384 0.219 0.664

Education 0.209 0.496 0.651

Ideology 0.116 0.105 0.139

Female -0.118 0.144 0.052

Constant -0.279 -1.651 -3.645

Variable χ2 p > χ2 df

All 29.33 0.001 10

Symbolic Racism 12.37 0.002 2

Racial Prejudice 8.15 0.017 2

Education 2.29 0.319 2

Ideology 0.33 0.849 2

Female 5.79 0.055 2
Data are from the 1991 Race and Politics Study. Column. The test
for proportional odds was done in Stata using the Brant test (Brant
1990)



Table 3: Support for Affirmative Action
Partial Proportional Odds (UPP Model)

Variable Coefficient Standard Error

Symbolic Racism 1.788 (0.285)

γ2 0.800 (0.257)

γ3 1.345 (0.358)

Racial Prejudice 1.563 (0.495)

γ2 -1.437 (0.440)

γ3 -0.811 (0.586)

Female -0.098 (0.125)

γ2 0.277 (0.111)

γ3 0.147 (0.145)

Education 0.479 (0.182)

Ideology 0.122 (0.047)

α1 .273 (.22)

α2 -1.635 (.203)

α3 -3.263 (.236)
n 1744
log-likelihood −2274.293

Data are from the 1991 Race and Politics Study. The model was
estimated in Stata v.9 using gologit2 (Williams, 2005, 2006). Code
is available from authors.



Table 3a: Support for Affirmative Action
Partial Proportional Odds (Generalized Ordinal Logit)

Variable Coefficient

C1 C2 C3

Symbolic Racism 1.788 2.588 3.133
(0.285) (0.245) (0.280)

Racial Prejudice 1.563 0.127 0.752
(0.495) (0.421) (0.462)

Education 0.478 0.478 0.478
(0.182) (0.182) (0.182)

Ideology 0.122 0.122 0.122
(0.047) (0.047) (0.047)

Female -0.098 0.180 0.049
(0.125) (0.101) (0.113)

Constant -0.509 -1.698 -3.639
(0.283) (0.261) (0.299)

n 1744
log-likelihood −2274.293

Data are from the 1991 Race and Politics Study. The model was
estimated in Stata v.9 using gologit2 (Williams 2005, 2006). A
fully generalized model was also estimated in R using VGAM package
(Yee 2003, Yee and Wild 1996). Code is available from authors.



Table 4:
Adjacent Category Logit

Variable Coefficient

2 vs 1 3 vs 2 4 vs 3

Moral Traditionalism -0.812 -1.517 -1.752
(0.776) (0.639) (0.742)

Group Difference -0.010 -0.028 -0.001
(0.096) (0.076) (0.088)

Hispanic Traits -0.417 -1.092 -1.928
(0.948) (0.779) (0.876)

Ideology 0.490 0.031 0.027
(0.317) (0.262) (0.304)

Economic Evaluation -0.324 -0.179 -0.714
(0.402) (0.336) (0.410)

Constant 1.161 2.235 1.353
(0.748) (0.603) (0.639)

n 774
log-likelihood −981.839

Data are from the 2004 National Elections Study. Models were esti-
mated in R using the VGAM package (Yee 2003, Yee and Wild 1996).
Code is available from authors.



Table 5:
Stereotype Logit Model

Variable Coefficient

Moral Traditionalism 4.111
(0.852)

Group Difference 0.044
(0.093)

Hispanic Traits 3.444
(0.990)

Ideology -0.410
(0.328)

Economic Evaluation 1.092
(0.437)

α1 -4.725
(0.825)

α2 -3.660
(0.726)

α3 -1.382
(0.624)

φ1 1

φ2 0.848
(0.131)

φ3 0.507
(0.102)

φ4 0
n 774
log-likelihood −983.586

Data are from the 2004 National Elections Study. Models were esti-
mated in R using the VGAM package (Yee 2003, Yee and Wild 1996).
Code is available from authors.


