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5. POLYI'OMOUS LOGISTIC REGRESSION AND 
ALTERNATIVES TO LOGISTIC REGRESSION 

Logistic regression analysis may be extended beyond the analysis of 
dichotomous variables to the analysis of categorical (nominal or ordi­
nal) dependent variables with more than two categories. In the lit­
erature on logistic regression, the resulting models have been called 
polytomous, polychotomous, or multinomial logistic regression mod­
els~re, the terms dichotomous and polytomous will be used to 
refer to logistic regression models, and the terms binomial and multi­
nomial will be used to refer to logit models from which polytomous 
logistic regression models may be derived. For polytomous dependent 
variables, the logistic regression model may be calculated as a special 
case of the multinomial logit modaj}Agresti, 1990; Aldrich & Nelson, 
1984; DeMaris, 1992; Knoke & Burke, 1980). 

Mathematically, the extension of the dichotomous logistic re~s­
sion model to polytomous dependent variables is straightforward.(Que 
value (typically the first or last) of the dependent variable is des­
ignated as the reference category, Y = h0, and the probability of 
membership in other categories is compared to the probability of 
membership in the reference categoiy:'1For nominal variables, this may 
be a direct comparison, like the mcircator contrasts for independent 
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variables in the logistic regression model for dichotomous variables. 
Qor an ordinal variable, contrasts may be made with successive cat­

egories, in a manner similar to repeated or Helmert contrasts for 
independent variables in dichotomous logistic regression modeW 
(!or dependent variables with some number of categories M, this 
requires the calculation of M - 1 equations, one for each category rel­
ative to the reference category, to describe the rel~~ship between 
the dependent variable and the independent vari~)For each cate­
gory of the dependent variable except the reference category, we may 
write the equation 

g .(x X X ) _ e(a1,+b1,1X,+b1,2X2+ -+b,,kXkl 
h 1, 2, ... , k - · 

h=l,2, ... ,M-1, [5.1] 

where the subscript k refers, as usual, to specific independent vari­
ables X and the subscript h refers to specific values of the dependent 
variable Y. For the reference category, g0(X1 , X 2 , ... , Xk) = 1. The 
probability that Y is equal to any value h other than the excluded 
value h0 is 

P(Y = h\X1, X2, ... , Xk) 
e(a1,+b1,1X1 +b1,2X2+ .. ·+b1,kXk) 

- 1 + "-'M-l e(a,,+b1,1X 1+b1,2X2+·-+b1,kXk)' 
L.,h=l 

h = l, 2, ... , M - l, 

and for the excluded category h0 = M or 0, 

P(Y = h0 jX1, X 2 , ... , Xk) 

1 

1 + r:f :i l e(a1,+bh1X1 +b1,,X2+ ··-+bhkXk) 

[5.2] 

h=l,2, ... ,M-1. [5.3] 

Note that when M = 2, we have the logistic regression model for 
the dichotomous dependent variable, the reference category is the 
first category, h0 = 0, and we have a total of M - 1 = 1 equations 
to describe the relationship. Logistic regression models for polyto­
rnous nominal dependent variables can be calculated in SAS using 
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CATMOD and in SPSS prior to version 10 using LOGLINEAR, 
both general log-linear analysis routines in which the calculation 
of polytomous logistic regression models is rather cumbersome. 

('§ SPSS as of version 10, however, NOMREG provides a more 
user-friendly approach to logistic regression models for nominal 

dependent variables. SAS LOGISTIC and SPSS PLUM provide 
similarly user-friendly routines for ordered polytomous dependent 
variabl~though the focus of this monograph is on SAS and SPSS, 
it is also' worth noting that STATA (1999) provides a broad range 
of routines for logistic regression, including MLOGIT for nominal 
dependent variables and OLOGIT for ordinal dependent variables. 

To illustrate the use of polytomous logistic regression, the depen­
dent variable from previous examples, prevalence of marijuana use, is 
replaced by drug user type. Drug user type has four categories. 

1. Nonusers report that they have not used alcohol, marijuana, heroin. 
cocaine, amphetamines, barbiturates, or hallucinogens in the past year. 

2. Alcohol users report having used alcohol, but no illicit drugs, in the past 
year. 

3. Marijuana users report having used marijuana (and, except in one case, 
using alcohol as well). 

4. Polydrug users report illicit use of one or more of the "hard" drugs 
(heroin, cocaine, amphetamines, barbiturates, hallucinogens). Polydrug Lusers also report using alcohol and, except in one case (a respondent 
who reported a single incident of hard drug use), marijuana as well. 

The four categories can reasonably be regarded as being ordered from 
least serious to most serious drugs, in terms of legal consequences. 
Alternatively, with respect to the nonlegal consequences of the drugs, 
the scale could arguably be regarded as nominal. Both ordinal and 
nominal models of this variable will be considered. One additional 
change is made from previous models. Because the dependent vari­
able has four categories and because of the small number of cases 
in the category "other" on the variable ethnicity (ETHN), ethnicity 
was recoded into two categories, white and nonwhite, for the follow­
ing analyses. Failure to do this would have resulted in problems with 
zero cells, and instability in estimates of coefficients and their stan­
dard errors. 
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5.1. Polytomous Nominal Dependent Variables n Figure 5.1 presents the output from SPSS NOMREG22 with 
DRGTYPE as a dependent variable, using a contrast for DRGTYPE 
hat compares, in succession, (a) nonusers with alco. ho. I users, 
b) nonusers with marijuana users, and (c) nonusers with poly-

i drug users. The resulting functions, g1(X), g2(X), and g3(X) may be 
I defined as 

l 
g1 = logit (probability of using some alcohol versus nonuse 

of drugs), 

g2 = logit (probability of using marijuana versus nonuse of drugs), 

and 

\ g3 = logit (probability of using other illicit drugs versus nonuse 

L__ of drugs). 

The equations for g1, g2 , and g3 using unstandardized coefficients are, 
from Figure 5 .1, 

and 

g1 = .165(EDF5) - .271(BELIEF4) + .505(SEX) 

+ 1.616(WHITE) + 5.085, 

g2 = .506(EDF5)- .285(BELIEF4) - .920(SEX) 

+ .357(WHITB) + 2.503, 

g3 = .633(EDF5) - .360(BELJEF4) - 2.224(SEX) 

+ 2.209(WHITE) + . 768. 

[:he calculation of R2 or r,2 and the standardized logistic regres­
s10n coefficients is done separately for each logistic function, g1 , g2, 

and g;)This is similar to the calculation of separate canonical cor­
rela-t;;/coefficients and standardized discriminant function coeffi­
cients for each linear discriminant function in discriminant analysis; 
see Klecka, 1980.) R2 for the full model is calculated based on the 
predictei_ probabilities and observed classification for all four cate­
gories~diction tables are included in SPSS NOMR~and can 
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nomreg c:trgtyp5 by sex ethn with edf5 befief41moctel=ectf6 belief4 sex ethnlprint-=fll lrt parameter summary classtablelscale==deviance_ 

W arnuigs: There are 437 (70.9%) cells (i.e., ~t vanable lewfs by subpoplltalions) with zero frequencies 

Ca:,r, Processing .Surlflllc1ry 

N 

CRGTYP5 1 000 alcohol 87 

2.000 marijuana 50 

3.000 drugs 31 

4.000 nonuser 59 

SEX male 110 

2 female 117 

ETHN 1 white 175 

2 nonwhite 52 

Valid 227 

Missinq 30 

Total 257 

Goodness-of-Fit 

Chi-Square df Sig. 

Pearson 479.072 '" .142 

Deviance 341.094 '47 1.000 

Classification 

Predicted 

Observed 1.000 alcohol 

1.000 alcohol 61 

:'. 000 marijuana. 21 

~. GOO drugs 6 

4,000 nonuser 20 

Overall Percentage 41. 6\ 

Mcdf': f1 t_ t.ing Information 

H.odE1 -2 L,>(J L1k.('litwodjChi-Squarejdtjs1g. 

Intercept or.lyf549.126 

Final 379. ?78 3-69.348 1121.000 

11 kel ihood Ratio Tests 

Effect -2 Log Likelihood of Reduced Hodel Chi-Square df Sig. 

Intercept 379. 778 .000 0 

EDFS 444. 950 65.172 3 .ooo 

BEL1EF4 396. 795 17.017 3 .001 

SEX 404. 765 24. 987 3 .ooo 

ETHN 399.995 20. 217 3 .000 

The chi-square statistic is the dif[erence in -2 log~ likelihoods 

between the fina1 mode:. and a reduced .model. 'I'he reduced model is 

formed by omitting an effect from the final model. The null 

hypothesis is that all parameters ct that effect are o. 

Fseud-c R-Squ,1:,.re 

Cox and snel 1 .526 R' = .303 
R,' = .189 

Nagelkerke .566 R,' = .149 
R/ = .337 

McFadden .282 Ap = . 300 p = .ooo 
'• - . 399 p = .ODO 

2.000 marijuana 3.000 drugs 4.000 nonuser Percent Correct 

7 2 17 70.U 

h 8 s 32 0% 

7 18 0 SB.H 

5 0 34 57 .61 

15.41 12. 3% 24, 7% 56.8% 

Figure 5.1. Polytomous Nominal Logistic Regression 

be constructed for SAS CATMOD by calculating the probability of 
classification for each value of Y, including the reference category, 
using Equations 5.2 and 5.3, then classifying each case into the cat­
egory of Y for which it has the highest probability. The table itself 
can then be constructed using SAS PROC FREQ. Once the classi-
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Parameter Estimates 

B Std. Wald df Sig. Exp!B) 95!ti Confidence Standardized Logistic 

Error Interval for Exp(B) Regreesion Coefficients 

DRGTYPS i.ower Upper Note: These have been 

Bound Bound edited into the output. 

1.000 Intercept 5.085 2.463 4.264 1 .039 

alcOhol 

EDFS .165 .091 J.303 1 .069 1,179 .981 1.409 .209 

B&LIEF4 -.271 .070 14.906 l .000 • 763 .66S .875 -. 319 

[SE>C•l] .sos .338 2.226 1 .136 1.656 .854 3.21' .075 

[SEX•2] O(aJ 0 

[ETHN--11 1.616 .400 16.277 l .ooo 5.032 2,295 11.031 .202 

[E'rKN•21 O(a} 0 

2.000 Intercept 2.503 2.674 .876 1 .349 

marijuana 
EDFS .506 .096 27 .54-t l .ooo 1.659 1.373 2,004 .671 

B'£LIEF4 -.285 .Oi8 13.3U l .ODO .152 .645 .S76 -.350 

(SEXi=lJ -.920 .4.39 4.401 1 .036 .398 .169 .941 -.143 

[SEX=2] O(a) 0 

{ETHN=l) .357 .462 .596 l .440 1.428 .578 3.531 .047 

[ETHN=2] O(a) 0 

J.000 Intercept .168 3.049 .064 l .801 

d:ru.gs 

EDF5 .633 .106 35.976 l .000 1.883 1.531 2.316 .617 

BELIEN -.360 .086 1'1.51S 1 .ooo .698 .590 .826 -.357 

[SEX•lJ -2.224 .619 12.893 l .000 .108 3.211£-02 .364 -.279 

(SEX•2J Dial 0 

(ETHN•ll 2.209 .841 6.901 1 .009 9.104 1. 752 47 .302 .233 

[E'rHN•21 O(a) 0 

a This parameter is set to :r.ero becausEI: it is redundant. 

Figure 5.1. (Continued) 

fication table has been constructed, indices of predictive efficiency 
can be calculated as they have been for the Classification table in 
Figure 5.1, using the procedures described in Chapter 2. It is for 
polytomous models with nominal dependent variables that the dif­
ferences between AP and T P' as opposed to other proposed indices of 
predictive efficiency, become most evident. 

97 

In Figure 5.1, the model works fairly well, as indicated by the 
statistically significant model x2 and the McFadden R[ of .28. 
The explained variance in logit(Y) varies by the category of the 
dependent variable and is highest for g3 (polydrug use) and low­
est for g2 (marijuana use). In the overall model, as indicated by 
the Likelihood Ratio Tests table, all four of the predictors are sta­
tistically significant. As indicated at the top of Figure 5.1 in the 
SPSS NOMREG statement, the dispersion has been corrected using 
the deviance x2 (/scale = deviance). This is because the deviance 
x2 appears to be somewhat lower than the degrees of freedom 
(x2 = 341, df = 447, x2 /df = .76), indicating underdispersion. The 
adjustment for dispersion will affect the statistical significance of the 
Wald coefficients. For alcohol use; the standardized coefficients (not 
part of the SPSS output, but like ,\p, Tp, and R2 added to the output) 
indicate that the best predictor is belief that it is wrong to violate 
the law, followed by ethnicity (white respondents are more likely 
to use alcohol than nonwhites). Exposure to delinquent friends is 
marginally significant according to the Wald statistic (p = .069), and 
gender is not statistically significant. For both marijuana and polydrug 
use, the best predictor is exposure to delinquent friends, followed by 
belief, then gender. Ethnicity is not a statistically significant predictor 
for marijuana use, but white respondents are more likely than non­
white respondents to be polydrug users. Based on the Classification 
table in Figure 5.1, the indices of predictive efficiency AP = .300 and 
T P = .399 are both statistically significant and moderately strong. 

5.2. Polytomous or Multinomial Ordinal Dependent Variables 

When the dependent variable is measured on an ordinal scale, many 
possibilities for analysis exist, including, but by no means limited to, 
logistic regression analysis. For a more detailed discussion, see Agresti 
(1990, pp. 318-332), Long (1997, pp. 114-147), or Clogg and Shihadeh 
(1994). Briefly, the options available include 

1. Ignoring the ordering of the categories of the dependent variable and 
treating it as nominal fJ L '4 t-,.. 

2. Treating the variable as though it were measurei.i on a true ordinal scale 
3. Treating the variable as though it were measured on an ordinal scale, 

but the ordinal scale represented crude measurement of an underlying 
interval/ratio scale 

4. Treating the variable as though it were measured on an interval scale. 
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(Qne possibility consistent with the first option is the use of a multi­
nomial logit or logistic regression model for a nominal categorical 
dependent variable, as in Figure 5.L\<\Iso possible unde~ option 1 
would be the use of discriminant analysis (Klecka, 1980)[}\n example 
of the second option is the use of a cumulative logit mo'aer, in which 
the transformation of the dependent variable incorporates not only 
each category compared to a reference category, but also a compari­
son of each category with all of the ca~egor· with higher (or lower) 
numeric codes than the present category. rI'he third option, assum­
ing an underlying interval scale, coul e implemented in LISREL 
by using weighted least squares (WLS) analysis of polychoric corre­
lations (Joreskog & Sorbom, 1988).23 The fourth option might be 
implemented by using OLS regression with an ordinal dependent 
varia@ 

Selectmg one of the options is a matter requiring careful judg­
ment. {ffie fourth option effectively assumes that the data are mea­
sured more precisely than . they really are, but for ordinal variables 
with a large number of categories, it may be reasonabJvl'he use of 
WLS with polychoric correlations appears to be a better option; it 
can be used with both large and small numbers of categories, and for 
most ordinal variables. The assumption of imprecise measurement of 
a quantity that is really continuous (political conservatism, seriousness 
of drug use) is inherently plausible. Both of these options allow pre­
dicted values that lie outside the range of observed values, but under 
the assumption of imprecise measurement, this may be reasonable. 

Mechanical application of ortions available in existing software 
packages is not recommended@>r example, SAS PROC LOGISTIC 
and SPSS PLUM can calculate polytomous logistic regression models 
for ordinal dependent variables, but both use a cumulative logit model 
for the dependent variab'TeJThis model assumes that the coefficient 
for each independenf°Vl'tffl(f)le is invariant across the three equations, 
that is, bEDFS,1 = bEDFS,2 = bEDFS,3, bsEX,l = bsEX,2 = bsEX,3, etc. 
(parallel slopes), where the variable in the subscript is the variable to 
which the coefficient refers, and the number in the subscript is the 

. equation (1, 2, or 3) in which the coefficient appear&r the parallel 
\/ slopes model, only the intercept is different for the three equations; 

· otherwise, the effects of the independent variables are assumed to be 
constant across group comparis~ is important to emphasize that 
although this model is easily calculiiled using SAS PROC LOGISTIC or 
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SPSS PLUM, it may not be the most appropriate model for the relation­
ship between the dependent variable and the predictors. 

Figure 5.2 summarizes the results of analyzing drug user type, 
DRGTYPE, as an ordinal variable in SAS PROC WGISTIC. 
SAS provides a test of the assumption that the slopes are equal, the 
Score test.(Edr Figure 5.2, the Score test of the null hypothesis that 
the slopes are equal is 32.066 with 8 degrees of freedom, statistically 
significant at the .0001 level. Because the Score test is statistically 
significant, the parallel slopes assumption is rejected, indicating that 
a model that does not assume parallel slopes would be more appro­
priaie.')The reasons for the rejection of the equal slopes model are 
eviaeiit from Figure 5.1: the variation in both the strength and sta­
tistical significance of the effects of EDF5 (not statistically significant 
for alcohol users as opposed to nonusers), SEX (not statistically 
significant for alcohol users as opposed to nonusers; stronger for 
polydrug users than for marijuana users as opposed to nonusers), and 
ETHN (not statistically significant for marijuana users as opposed 
to nonusers).@e pattern of the differences in the coefficients in 
Figure 5.1 (especially the down-and-up pattern of the coefficients for 
ethnicity) suggests that treat~RGTYPE as a categorical nominal 
variable may be the best option. 

SPSS PLUM provides mucli" fhe same information as SAS WGIS­
TIC, except that SPSS PLUM excludes the information at the bottom 
of Figure 5.2 (Association of Predicted Probabilities and Observed 
Responses) and (as in SPSS NOMREG) includes the Pearson and 
deviance goodness-of-fit x2 statistics and the McFadden R't, the 
latter of which (along with R2 for the overall model and for each 
of the sepaB._te functions) has been edited into the SAS output in 
Figure 5.2.~SS PLUM also offers alternatives to the logit distribu­
tion for dependent variables that are normally distributed, positively 
or negatively skewed, or have many extreme values1In., both SPSS 
PLUM and SAS LOGISTIC, it is possible to sa~ted values, 
and to use the predicted and observed values to produce contingency 
tables (in SAS PROC FREQ or SPSS CROSSTABS) to analyze the 
accuracy of classificatioli)Doing so for Figure 5.2 would result in 
AP= .229 (p = .000) and rP = .208 (p = .000), both smaller than in 
Figure 5.1, further suggesting that the dependent variable may better 
be treated as nominal rather than ordinal. For an ordinal variable in 
general, however, the statistics at the bottom of Figure 5.2, particu­
larly the familiar ordinal measures of association Gamma and Tau-a, 
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data: 
infile 'saslrl6a.dat' missover linesize-60 firstobs•l obs•257: 
input IO F66 SEX 8 ETHN 10 USR5 12 PORUGS5 14-15 PMRJ5 17-18 PALC5 20-21 

ORGTYP5 23-24 EOP5 26-33 BELIEF4 35-42 MEAHSCIN 44-51 MEANFAIN 53-60: 
if ethn•l then white-1: if ethn-2 then white-0: 1f ethn•3 then white-0: 
if drgtyp5-l then drgtyp5r-4: if drgtyp5•2 then drgtyp5r•3: 
if drgtyp5•3 then drgtyp5r·2: if drgtyp5•4 then drgtyp5r•l:const5•l: 

run: 
proc logistic: 

model drgtyp5r•edp5 belief4 sex white: run: 

Data Set: WORl(.DATAl 
Response Variable: ORGTYP5R 
Response Levels: 4 
N"'1tler of Observations: 227 
Link Function: Logit 

Response Profi 1 e 

Ordered 
Value ORGTYP5R Count 

l 
2 
3 
4 

l 
2 
3 
4 

31 
50 
87 
59 

WARNING: 30 observation(s) were deleted due to missing ·values for the response or explanatory variables. 

Variable OF 

INTERCPl l 
INTERCP2 1 
INTERCP3 1 
[OPS 1 
8ELIEF4 1 
SEX l 
WHITE l 

Score Test for the Proportional Odds Assumption 
Chi-Square - 32.0660 with 8 OF (p•0.0001) 

Hodel Fitting Information and Testing Global Null Hypothesis BETA·O 

Criterion 

AIC 
SC 
-2 LOG L 
Score 

Intercept 
Only 

606.600 
616.875 
600.600 

Intercept 
and Covariates 

485.626 
509.600 
471.626 

Chi-Square for Covariates R21 • .004 
i', • .089 
i', • .151 

128.975 with 4 OF (p•0.0001) i 20 • .264 
97 .395 with 4 OF (p•0.0001) Re' • .215 

RSquare • .433 Adjusted RSquare • . 467 

Analysis of Maxirun Likelihood Estimates 

Parameter Standard Wald Pr > Standardized Odds 

Estimate Error Chi -Square Chi-Square Estimate bm Ratio 

-1.3616 1.4611 0.8684 0.3514 
0.6157 1.4513 0.1800 0.6714 
2.9884 1.4655 4.1583 0 .0414 
0.2701 0.0424 40.5402 0.0001 0. 633781 1.310 

-0.1774 0.0426 17 .3225 0.0001 -0. 386429 0.837 

-0. 7905 0.2630 9.0312 0.0027 -0.218288 0.454 

0.8343 0.3167 6.9391 0.0084 0.193729 2.303 

Association of Predicted Probabilities and Observed Responses 

concordant • 80.51 
Discordant - 18.21 
Tied • 1.31 
08509 pairs) 

Saners • O = o . 623 
Ganna - 0. 631 
Tau-a • O. 449 
C • 0.811 

Standardi zed 
coefficient 
b*•(b H s,) is, 

.343 
-.209 
-.118 

.105 

Figure 5.2. SAS Output for Ordinal Logistic Regression 

may be even more informative than AP or 'T P' because the former 
two measures, unlike the latter two, incorporate information on the 
ordering of the categories of the dependent variable. 
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5.3. Conclusion 

Ge principal concern in using logistic regression analysis with poly­
tomous dependent variables is not how to make the model work, 
but instead whether the logistic regression model is appropriate at 
all. For ordinal dependent variables, the problems that motivated 
the development of the logistic regression model (out-of-range pre­
dicted values of the dependent variable, heteroscedasticity) may not 
be present, and other models may be more appropriate than logistic 
regression, depending on assumptions about the underlying scale of 
the dependent variable and the functional form (linear, monotonic, 
nomnonotonic) of the relationship between the dependent variable 
and the independent vari~ere is an underlying inteival scale, 
and if the relationships appear to be linear or monotonic, weighted 
least squares with polychoric correlations may be the best optioii(For 
nonmonotonic relationships, and especially when there are re~ 
few categories of the dependent variable, it may be best to treat the 
dependent variable as though it were nominaL)When the dependent 
variable is nominal, or is an ordinal variaolewith few categories and 
is treated as though it were nominal, an alternative worth considering 
is discriminant analysis (Klecka, 1980)@other alternative, separate 
logistic regressions (Bess & Grey, 1984; Hosmer & Lemeshow, 1989, 
pp. 230-232), does not appear to produce results sufficiently consis­
tent with the multinomial logit/polytomous logistic regression model 
to warrant its use. Only if polytomous logistic regression software were 
unavailable (an increasingly rare phenomenon, with all major soft­
ware packages now including polY!omous logistic regression routines) 
would this approach have any m§) 

The ease of use, flexibility, broad applicability, and current pop­
ularity of logistic regression analysis make it particularly susceptible 
to misuse. Thoughtless and mechanical applications of logistic regres­
sion analysis will be no more fruitful than thoughtless and mechan­
ical applications of linear regression or any other technique. It is 
important to recognize the weaknesses as well as the strengths of the 
metho¢-r::ogistic regression is especially appropriate for the analysis 
of dichoro-mous and unordered nominal polytomous dependent vari­
ables. For ordinal polytomous dependent variables, it may be possi­
ble to use polytomous logistic regression analysis, but other models, 
including linear regression and weighted least squares with polychoric 
correlations, also deserve serious conside~ Polytomous ordinal 



102 

variables are the dependent variables for which the technical motiva­
tion for using logistic regression is weakest and for which alternative 
methods of analysis arc most likely to provide better solutions than 
logistic regression. Given these qualifications, however, the same ease 
of use (particularly improvements in logistic regression software, even 
in the few years since the first edition of this monograph), flexibility, 
and broad applicability of the logistic regression approach, as men­
tioned at the beginning of this paragraph, make logistic regression 
an extremely useful tool for analyzing a broad range of dependent 
variables for which OLS regression is not appropriate. 


