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Abstract. Many researchers and journals place a strong emphasis on the sign and
statistical significance of effects—but often there is very little emphasis on the
substantive and practical significance of the findings. As Long and Freese (2006,
Regression Models for Categorical Dependent Variables Using Stata [Stata Press])
show, results can often be made more tangible by computing predicted or expected
values for hypothetical or prototypical cases. Stata 11 introduced new tools for
making such calculations—factor variables and the margins command. These can
do most of the things that were previously done by Stata’s own adjust and mfx

commands, and much more.

Unfortunately, the complexity of the margins syntax, the daunting 50-page
reference manual entry that describes it, and a lack of understanding about what
margins offers over older commands that have been widely used for years may
have dissuaded some researchers from examining how the margins command could
benefit them.

In this article, therefore, I explain what adjusted predictions and marginal ef-
fects are, and how they can contribute to the interpretation of results. I further
explain why older commands, like adjust and mfx, can often produce incorrect
results, and how factor variables and the margins command can avoid these er-
rors. The relative merits of different methods for setting representative values for
variables in the model (marginal effects at the means, average marginal effects,
and marginal effects at representative values) are considered. I shows how the
marginsplot command (introduced in Stata 12) provides a graphical and often
much easier means for presenting and understanding the results from margins,
and explain why margins does not present marginal effects for interaction terms.
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1 Introduction

Many researchers and journals place a strong emphasis on the sign and statistical signif-
icance of effects—but often there is very little emphasis on the substantive and practical
significance of the findings. As Long and Freese (2006) show, results can often be made
more tangible by computing predicted or expected values for hypothetical or prototyp-
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ical cases. For example, if we want to get a practical feel for the impact of gender in a
logistic regression model, we might compare the predicted probabilities of success for a
man and woman who both have low, average, or high values on the other variables in
the model. Such predictions are sometimes referred to as margins, predictive margins,
or (Stata’s preferred terminology) adjusted predictions. Another useful aid to interpre-
tation is marginal effects, which can succinctly show, for example, how the adjusted
predictions for blacks differ from the adjusted predictions for whites.

Stata 11 introduced new tools for making such calculations—factor variables and
the margins command. These can do most of the things that were previously done by
Stata’s own adjust and mfx commands, and much more. Unfortunately, the complexity
of the margins syntax, the daunting 50-page reference manual entry that describes it,
and a lack of understanding about what margins offers over older commands that have
been widely used for years may have dissuaded some researchers from examining how
the margins command could benefit them.

In this article, therefore, I illustrate and explain some of the most critical features and
advantages of the margins command. I explain what adjusted predictions and marginal
effects are, and how they can aid interpretation. I show how margins can replicate
analyses done by older commands like adjust but can do so more easily. I demonstrate
how, thanks to its support of factor variables that were introduced in Stata 11, margins
can avoid mistakes made by earlier commands and provide a superior means for dealing
with interdependent variables (for example, X and X2; X1, X2, and X1 × X2; and
multiple dummies created from a single categorical variable). I illustrate the different
strategies for defining “typical” cases and how margins can estimate them: marginal
effects at the means (MEMs), average marginal effects (AMEs), and marginal effects at
representative values (MERs); I also show some of the pros and cons of each approach.
The output from margins can sometimes be overwhelming; I therefore show how the
marginsplot command, introduced in Stata 12, provides an easy and convenient way of
generating graphical results that can be much more understandable. Finally, I explain
why, unlike older commands, margins does not report marginal effects for interaction
terms and why it would be nonsensical to do so.

2 Data

We use nhanes2f.dta1 (Second National Health and Nutrition Examination Survey),
available from the StataCorp website. The examples examine how demographic vari-
ables are related to whether a person has diabetes.2 We begin by retrieving the data,
extracting the nonmissing cases we want, and then computing variables we will need
later.

1. These data were collected in the 1980s. Rates of diabetes in the United States are much higher
now.

2. To simplify the discussion and to facilitate our comparison of old and new commands, we do not
use the sampling weights that come with the data. However, margins can handle those weights
correctly.
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. webuse nhanes2f, clear

. keep if !missing(diabetes, black, female, age, age2, agegrp)
(2 observations deleted)

. label variable age2 "age squared"

. describe diabetes black female age age2 agegrp

storage display value
variable name type format label variable label

diabetes byte %9.0g diabetes, 1=yes, 0=no
black byte %8.0g 1 if race=black, 0 otherwise
female byte %8.0g 1=female, 0=male
age byte %9.0g age in years
age2 float %9.0g age squared
agegrp byte %8.0g agegrp Age groups 1-6

. * Compute the variables we will need

. tab1 agegrp, generate(agegrp)

-> tabulation of agegrp

Age groups
1-6 Freq. Percent Cum.

age20-29 2,320 22.45 22.45
age30-39 1,620 15.67 38.12
age40-49 1,269 12.28 50.40
age50-59 1,289 12.47 62.87
age60-69 2,852 27.60 90.47
age 70+ 985 9.53 100.00

Total 10,335 100.00

. generate femage = female*age

. label variable femage "female * age interaction"

. summarize diabetes black female age age2 femage, separator(6)

Variable Obs Mean Std. Dev. Min Max

diabetes 10335 .0482825 .214373 0 1
black 10335 .1050798 .3066711 0 1

female 10335 .5250121 .4993982 0 1
age 10335 47.56584 17.21752 20 74

age2 10335 2558.924 1616.804 400 5476
femage 10335 25.05031 26.91168 0 74

The observations in the sample range in age from 20 to 74, with an average age
of 47.57. Slightly over half the sample (52.5%) is female and 10.5% is black.3 Less
than 5% of the respondents have diabetes, but as we will see, the likelihood of having
diabetes differs by race, gender, and age. Note that the mean of femage (female×age)
is about half the mean of age. This reflects the fact that men have a score of 0 on
femage while for women, femage = age.

3. Less than two percent of the sample is coded Other on race, and their rates of diabetes are identical
to whites. We therefore combine whites and others in the analysis.
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3 Adjusted predictions for a basic model

We first fit a relatively uncomplicated model.

. * Basic model

. logit diabetes black female age, nolog

Logistic regression Number of obs = 10335
LR chi2(3) = 374.17
Prob > chi2 = 0.0000

Log likelihood = -1811.9828 Pseudo R2 = 0.0936

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

black .7179046 .1268061 5.66 0.000 .4693691 .96644
female .1545569 .0942982 1.64 0.101 -.0302642 .3393779

age .0594654 .0037333 15.93 0.000 .0521484 .0667825
_cons -6.405437 .2372224 -27.00 0.000 -6.870384 -5.94049

According to the model, on an “all other things equal” basis, blacks are more likely
to have diabetes than are whites, women are more likely to have diabetes than are men,
and the probability of having diabetes increases with age. (The effect of being female
is not significant in this model, but it will be significant in other models we test.) The
coefficients tell us how the log odds of having diabetes are affected by each variable (for
example, the log odds of a black having diabetes are 0.718 greater than the log odds
for an otherwise-identical white). But because most people do not think in terms of log
odds, many would find it more helpful if they could see how the probability of having
diabetes was affected by each variable. For example, the positive and highly significant
coefficient for age tells us that getting older is bad for one’s health. This is hardly
surprising, but just how bad is it? For most people, the coefficient for age of 0.059 has
little intuitive or practical appeal.

Adjusted predictions can make these results more tangible. With adjusted predic-
tions, you specify values for each of the independent variables in the model and then
compute the probability of the event occurring for an individual who has those val-
ues. To illustrate, we will use the adjust command to compute the probability that
an “average” 20-year-old will have diabetes and compare it to the probability that an
“average” 70-year-old will.
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. adjust age = 20 black female, pr

Dependent variable: diabetes Equation: diabetes Command: logit
Covariates set to mean: black = .10507983, female = .52501209
Covariate set to value: age = 20

All pr

.006308

Key: pr = Probability

. adjust age = 70 black female, pr

Dependent variable: diabetes Equation: diabetes Command: logit
Covariates set to mean: black = .10507983, female = .52501209
Covariate set to value: age = 70

All pr

.110438

Key: pr = Probability

The results show that an “average” 20-year-old has less than a 1% chance of having
diabetes, while an otherwise-comparable 70-year-old has an 11% chance. Most people
will find such results much more tangible and meaningful than the original coefficient
for age. But what does “average” mean? In this case, we used the common, but not
universal, practice of using the mean values for the other independent variables (female,
black) that are in the model; for example, the value of female is set to 0.525, while the
value for black is fixed at 0.105. Later, when discussing marginal effects, I show other
options for defining “average”.

With margins, it is even easier to get these results, and more. We use the at()
option to fix a variable at a specific value or set of values. The atmeans option tells
margins to fix all other variables at their means. (Unlike adjust, this is not the default
for margins.) If we wanted to see how the probability of having diabetes for average
individuals differs across age groups, we could do something like this:4

4. The vsquish option suppresses blank lines between terms. An even more compact display can be
obtained by using the noatlegend option, which suppresses the display of the values that variables
were fixed at. However, be careful using noatlegend because not having that information may
make output harder to interpret.
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. margins, at(age=(20 30 40 50 60 70)) atmeans vsquish

Adjusted predictions Number of obs = 10335
Model VCE : OIM

Expression : Pr(diabetes), predict()
1._at : black = .1050798 (mean)

female = .5250121 (mean)
age = 20

2._at : black = .1050798 (mean)
female = .5250121 (mean)
age = 30

3._at : black = .1050798 (mean)
female = .5250121 (mean)
age = 40

4._at : black = .1050798 (mean)
female = .5250121 (mean)
age = 50

5._at : black = .1050798 (mean)
female = .5250121 (mean)
age = 60

6._at : black = .1050798 (mean)
female = .5250121 (mean)
age = 70

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .0063084 .0009888 6.38 0.000 .0043703 .0082465
2 .0113751 .0013794 8.25 0.000 .0086715 .0140786
3 .0204274 .0017892 11.42 0.000 .0169206 .0239342
4 .0364184 .0021437 16.99 0.000 .0322167 .04062
5 .0641081 .0028498 22.50 0.000 .0585226 .0696935
6 .1104379 .005868 18.82 0.000 .0989369 .121939

According to these results, an average 70-year-old (who is again 0.105 black and
0.525 female) is almost 18 times as likely to have diabetes as an average 20-year-old
(11.04% compared with 0.63%). Further, we see that there is a large increase in the
predicted probability of diabetes between ages 50 and 60 and an even bigger jump
between 60 and 70.

4 Factor variables

Suppose, instead, we wanted to compare the average female with the average male, and
the average black with the average nonblack. We could give the commands

. margins, at(black = (0 1)) atmeans

. margins, at(female = (0 1)) atmeans
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Using factor variables, introduced in Stata 11, can make things easier. We need to
rerun the logit command first.

. logit diabetes i.black i.female age, nolog

Logistic regression Number of obs = 10335
LR chi2(3) = 374.17
Prob > chi2 = 0.0000

Log likelihood = -1811.9828 Pseudo R2 = 0.0936

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.black .7179046 .1268061 5.66 0.000 .4693691 .96644
1.female .1545569 .0942982 1.64 0.101 -.0302642 .3393779

age .0594654 .0037333 15.93 0.000 .0521484 .0667825
_cons -6.405437 .2372224 -27.00 0.000 -6.870384 -5.94049

. margins black female, atmeans

Adjusted predictions Number of obs = 10335
Model VCE : OIM

Expression : Pr(diabetes), predict()
at : 0.black = .8949202 (mean)

1.black = .1050798 (mean)
0.female = .4749879 (mean)
1.female = .5250121 (mean)
age = 47.56584 (mean)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

black
0 .0294328 .0020089 14.65 0.000 .0254955 .0333702
1 .0585321 .0067984 8.61 0.000 .0452076 .0718566

female
0 .0292703 .0024257 12.07 0.000 .024516 .0340245
1 .0339962 .0025912 13.12 0.000 .0289175 .0390748

The i. notation tells Stata that black and female are categorical variables rather
than continuous. As the Stata 12 User’s Guide (StataCorp 2011) explains in sec-
tion 11.4.3.1, “i.group is called a factor variable, although more correctly, we should
say that group is a categorical variable to which factor-variable operators have been
applied . . . . When you type i.group, it forms the indicators for the unique values of
group.”

In other words, Stata, in effect, creates dummy variables coded 0 or 1 from the
categorical variable. In this case, of course, black and female are already coded 0
or 1—but margins and other postestimation commands still like you to use the i.
notation so they know the variable is categorical (rather than, say, being a continuous
variable that just happens to only have the values of 0 or 1 in this sample). But if, say,
we had the variable race coded 1 = white and 2 = black, then the new variable would
be coded 0 = white and 1 = black.
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Or if the variable religion was coded 1 = Catholic, 2 = Protestant, 3 = Jewish,
and 4 = Other, then saying i.religion would cause Stata to create three 0 or 1 dum-
mies. By default, the first category (in this case, Catholic) is the reference category,
but we can easily change that; for example, ib2.religion would make Protestant the
reference category, or ib(last).religion would make the last category, Other, the
reference.

Factor variables can also be used to include squared terms and interaction terms in
models. For example,

. logit diabetes i.black i.female age c.age#c.age, nolog

. logit diabetes i.black i.female age i.female#c.age, nolog

The # (pronounced cross) operator is used for interactions and product terms. The
use of # implies the i. prefix; that is, unless you indicate otherwise, Stata will assume
that the variables on both sides of the # operator are categorical and will compute
interaction terms accordingly. Hence, we use the c. notation to override the default
and tell Stata that age is a continuous variable. So, c.age#c.age tells Stata to include
age2 in the model; we do not want or need to compute the variable separately. Similarly,
i.female#c.age produces the female × age interaction term. Stata also offers a ##
notation, called factorial cross. It can save some typing and provide an alternative
parameterization of the results.

At first glance, the use of factor variables might seem like a minor convenience at
best: they save you the trouble of computing dummy variables and interaction terms
beforehand. However, the advantages of factor variables become much more apparent
when used in conjunction with the margins command.

5 Adjusted predictions when there are interdependencies
among variables

Sometimes the value of one variable or variables perfectly determines the value of an-
other. For example, if a model includes both X and X2, then if X = 10, X2 must
equal 100. Or if X1 = 0, then the interaction X1×X2 must also equal 0; or if X1 = 1,
then the interaction X1 × X2 must equal X2. If multiple dummies have been created
from the same categorical variable (for example, black, white, and other have been cre-
ated from the variable race), then if black = 1, the other race dummies must equal 0.

Older Stata commands generally do not recognize such interdependencies between
variables. This can lead to incorrect results when computing adjusted predictions.
Factor variables and the margins command can avoid these errors. Following are some
examples.
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5.1 Squared terms

Suppose, for example, that our model includes an age2 term (that is, the age2 variable),
and we want to see what the predicted value is for a 70-year-old who has average (mean)
values on the other variables in the model. We can do the following:

. * Squared term in model

. logit diabetes black female age age2, nolog

Logistic regression Number of obs = 10335
LR chi2(4) = 381.03
Prob > chi2 = 0.0000

Log likelihood = -1808.5522 Pseudo R2 = 0.0953

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

black .7207406 .1266509 5.69 0.000 .4725093 .9689718
female .1566863 .0942032 1.66 0.096 -.0279486 .3413212

age .1324622 .0291223 4.55 0.000 .0753836 .1895408
age2 -.0007031 .0002753 -2.55 0.011 -.0012428 -.0001635
_cons -8.14958 .7455986 -10.93 0.000 -9.610926 -6.688233

. adjust age = 70 black female age2, pr

Dependent variable: diabetes Equation: diabetes Command: logit
Covariates set to mean: black = .10507983, female = .52501209,

age2 = 2558.9238
Covariate set to value: age = 70

All pr

.373211

Key: pr = Probability

adjust yields a predicted probability of 37.3%. That is pretty grim compared with
our earlier estimate of 11%! The problem is that age2 (which has a negative effect) is
not being handled correctly. Because the adjust command does not know that age2 is a
function of age, it simply uses the mean of age2, which is 2558.92. But for a 70-year-old,
age2 = 4900.
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If we instead use factor variables and the margins command, the correct results are
easily obtained.

. logit diabetes i.black i.female age c.age#c.age, nolog

Logistic regression Number of obs = 10335
LR chi2(4) = 381.03
Prob > chi2 = 0.0000

Log likelihood = -1808.5522 Pseudo R2 = 0.0953

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.black .7207406 .1266509 5.69 0.000 .4725093 .9689718
1.female .1566863 .0942032 1.66 0.096 -.0279486 .3413212

age .1324622 .0291223 4.55 0.000 .0753836 .1895408

c.age#c.age -.0007031 .0002753 -2.55 0.011 -.0012428 -.0001635

_cons -8.14958 .7455986 -10.93 0.000 -9.610926 -6.688233

. margins, at(age = 70) atmeans

Adjusted predictions Number of obs = 10335
Model VCE : OIM

Expression : Pr(diabetes), predict()
at : 0.black = .8949202 (mean)

1.black = .1050798 (mean)
0.female = .4749879 (mean)
1.female = .5250121 (mean)
age = 70

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons .1029814 .0063178 16.30 0.000 .0905988 .115364

By using factor-variable notation, we let the margins command know that if age=70,
then age2 = 4900, and it hence computes the predicted values correctly.
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5.2 Interaction terms

Now suppose we have an interaction term in our model, for example, female × age
(femage). We want to compute the predicted probability of diabetes for a male who
has average values on the other variables. We might do something like this:

. * Interaction term

. logit diabetes black female age femage, nolog

Logistic regression Number of obs = 10335
LR chi2(4) = 380.85
Prob > chi2 = 0.0000

Log likelihood = -1808.6405 Pseudo R2 = 0.0953

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

black .7112782 .1268575 5.61 0.000 .4626421 .9599144
female 1.358331 .4851999 2.80 0.005 .4073562 2.309305

age .0715351 .0063037 11.35 0.000 .05918 .0838902
femage -.0199143 .0078292 -2.54 0.011 -.0352593 -.0045693
_cons -7.140004 .3961599 -18.02 0.000 -7.916463 -6.363545

. adjust female = 0 black age femage, pr

Dependent variable: diabetes Equation: diabetes Command: logit
Covariates set to mean: black = .10507983, age = 47.565844, femage = 25.050314
Covariate set to value: female = 0

All pr

.015345

Key: pr = Probability

Note that the adjust command is using femage = 25.05, which, as we saw earlier,
is the mean value of femage in the sample. But that is obviously wrong: if female = 0,
then femage also = 0.
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Now let’s use factor variables and the margins command:

. logit diabetes i.black i.female age i.female#c.age, nolog

Logistic regression Number of obs = 10335
LR chi2(4) = 380.85
Prob > chi2 = 0.0000

Log likelihood = -1808.6405 Pseudo R2 = 0.0953

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.black .7112782 .1268575 5.61 0.000 .4626421 .9599144
1.female 1.358331 .4851999 2.80 0.005 .4073562 2.309305

age .0715351 .0063037 11.35 0.000 .05918 .0838902

female#c.age
1 -.0199143 .0078292 -2.54 0.011 -.0352593 -.0045693

_cons -7.140004 .3961599 -18.02 0.000 -7.916463 -6.363545

. margins female black female#black, atmeans

Adjusted predictions Number of obs = 10335
Model VCE : OIM

Expression : Pr(diabetes), predict()
at : 0.black = .8949202 (mean)

1.black = .1050798 (mean)
0.female = .4749879 (mean)
1.female = .5250121 (mean)
age = 47.56584 (mean)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

female
0 .0250225 .0027872 8.98 0.000 .0195597 .0304854
1 .0372713 .0029632 12.58 0.000 .0314635 .0430791

black
0 .0287052 .0020278 14.16 0.000 .0247307 .0326797
1 .0567715 .0067009 8.47 0.000 .0436379 .0699051

female#black
0 0 .0232624 .0026348 8.83 0.000 .0180983 .0284265
0 1 .0462606 .0068486 6.75 0.000 .0328376 .0596835
1 0 .0346803 .0028544 12.15 0.000 .0290857 .0402748
1 1 .0681786 .0083774 8.14 0.000 .0517592 .084598

This tells us that the average male (who is 0.105 black and 47.57 years old) has
a predicted 2.5% chance of having diabetes. The average female (also 0.105 black
and 47.57 years old) has a 3.7% chance. If we fail to take into account the fact that
femage is a function of age, we underestimate the likelihood that men will have diabetes;
that is, if we do it wrong, we estimate that the average male has a 1.5% probability of
having diabetes when the correct estimate is 2.5%.
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We also asked for information pertaining to race. This shows that the average white
(who is 0.525 female and 47.57 years old) has a 2.9% chance of having diabetes, while
for the average black the figure is nearly twice as high at 5.7%. The female#black
notation on the margins command does not mean that an interaction term for race and
gender has been added to the model. Rather, it simply causes the adjusted predictions
for each combination of race and gender (based on the model that was fit) to be included
in the output.

5.3 Multiple dummies

One other sort of interdependency not handled well by older commands is when multiple
dummies are computed from a single categorical variable. For example, suppose we do
not have the continuous variable age and instead have to use the categorical agegrp
variables. We want to estimate the probability that the average person aged 70 or above
has diabetes:

. * Multiple dummies

. logit diabetes black female agegrp2 agegrp3 agegrp4 agegrp5 agegrp6, nolog

Logistic regression Number of obs = 10335
LR chi2(7) = 368.98
Prob > chi2 = 0.0000

Log likelihood = -1814.575 Pseudo R2 = 0.0923

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

black .7250941 .1265946 5.73 0.000 .4769733 .9732148
female .1578264 .0941559 1.68 0.094 -.0267158 .3423686
agegrp2 .7139572 .3397881 2.10 0.036 .0479847 1.37993
agegrp3 1.685402 .3031107 5.56 0.000 1.091316 2.279488
agegrp4 2.223236 .2862673 7.77 0.000 1.662162 2.784309
agegrp5 2.674737 .2680303 9.98 0.000 2.149407 3.200066
agegrp6 2.999892 .2783041 10.78 0.000 2.454426 3.545358

_cons -5.242579 .2658865 -19.72 0.000 -5.763707 -4.721451

. adjust agegrp6 = 1 black female agegrp2 agegrp3 agegrp4 agegrp5, pr

Dependent variable: diabetes Equation: diabetes Command: logit
Covariates set to mean: black = .10507983, female = .52501209,

agegrp2 = .15674891, agegrp3 = .12278665,
agegrp4 = .12472182, agegrp5 = .27595549

Covariate set to value: agegrp6 = 1

All pr

.320956

Key: pr = Probability
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According to the adjust command, the average person (average meaning 0.105
black and 0.525 female) who is age 70 or above has a 32.1% chance of having diabetes—
far higher than our earlier estimates of around 10 or 11%. Being old may be bad for
your health, but it is not that bad! As the logit results show, each older age group is
more likely to have diabetes than the youngest age group. But each person only belongs
to one age group; that is, if you have a score of 1 on agegrp6, you have to have a score
of 0 on all the other age-group variables. adjust, on the other hand, is using the mean
values for all the other age dummies (rather than 0), which causes the probability of
having diabetes for somebody aged 70 or above to be greatly overestimated.

Factor variables and margins again provide an easy means of doing things correctly.

. logit diabetes i.black i.female i.agegrp, nolog

Logistic regression Number of obs = 10335
LR chi2(7) = 368.98
Prob > chi2 = 0.0000

Log likelihood = -1814.575 Pseudo R2 = 0.0923

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.black .7250941 .1265946 5.73 0.000 .4769733 .9732148
1.female .1578264 .0941559 1.68 0.094 -.0267158 .3423686

agegrp
2 .7139572 .3397881 2.10 0.036 .0479847 1.37993
3 1.685402 .3031107 5.56 0.000 1.091316 2.279488
4 2.223236 .2862673 7.77 0.000 1.662162 2.784309
5 2.674737 .2680303 9.98 0.000 2.149407 3.200066
6 2.999892 .2783041 10.78 0.000 2.454426 3.545358

_cons -5.242579 .2658865 -19.72 0.000 -5.763707 -4.721451
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. margins female black agegrp, atmeans

Adjusted predictions Number of obs = 10335
Model VCE : OIM

Expression : Pr(diabetes), predict()
at : 0.black = .8949202 (mean)

1.black = .1050798 (mean)
0.female = .4749879 (mean)
1.female = .5250121 (mean)
1.agegrp = .2244799 (mean)
2.agegrp = .1567489 (mean)
3.agegrp = .1227866 (mean)
4.agegrp = .1247218 (mean)
5.agegrp = .2759555 (mean)
6.agegrp = .0953072 (mean)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

female
0 .0280253 .0025121 11.16 0.000 .0231016 .0329489
1 .03266 .0027212 12.00 0.000 .0273266 .0379935

black
0 .0282075 .0021515 13.11 0.000 .0239906 .0324244
1 .0565477 .006821 8.29 0.000 .0431787 .0699166

agegrp
1 .0061598 .0015891 3.88 0.000 .0030453 .0092744
2 .0124985 .002717 4.60 0.000 .0071733 .0178238
3 .0323541 .0049292 6.56 0.000 .0226932 .0420151
4 .0541518 .0062521 8.66 0.000 .041898 .0664056
5 .082505 .0051629 15.98 0.000 .0723859 .092624
6 .1106978 .009985 11.09 0.000 .0911276 .130268

Similarly to our earlier results, the probability of having diabetes is much greater
for an otherwise-average person aged 70 or above than it is for a similar person in his
or her 20s.

We also got the predicted values for average females, males, blacks, and whites.
While these numbers are similar to before, the average person is no longer 47.57 years
old. Rather, the average person now has a score of 0.224 on agegrp1, 0.157 on agegrp2,
and so on.

To sum up, for many purposes both older and newer, Stata commands like adjust
and margins will work well, but margins is usually easier to use and more flexible.
When variables are interdependent, for example, when the value of one or more vari-
ables completely determines the value of another, the margins command is clearly
superior. You can try to include options with older commands to take into account the
interdependencies, but it is generally easier (and probably less error-prone) if you use
the new margins command instead.
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6 Marginal effects

Marginal effects are another popular means by which the effects of variables in nonlinear
models can be made more intuitively meaningful. As Cameron and Trivedi (2010, 343)
note, “A marginal effect (ME), or partial effect, most often measures the effect on the
conditional mean of y of a change in one of the regressors, say, xj . In the linear regres-
sion model, the ME equals the relevant slope coefficient, greatly simplifying analysis.
For nonlinear models, this is no longer the case, leading to remarkably many different
methods for calculating MEs.”

Marginal effects for categorical independent variables are especially easy to under-
stand.5 The ME for categorical variables shows how P(Y = 1) changes as the categorical
variable changes from 0 to 1, after controlling in some way for the other variables in
the model.With a dichotomous independent variable, the ME is the difference in the
adjusted predictions for the two groups, for example, for blacks and whites.

There are different ways of controlling for the other variables in the model. Older
Stata commands (for example, adjust and mfx) generally default to using the means
for variables whose values have not been otherwise specified, that is, they estimate
marginal effects at the means (MEMs). Presumably, the mean reflects the “average”
or “typical” person on the variable. However, at least two other approaches are also
possible with the margins command: average marginal effects (AMEs) and marginal
effects at representative values (MERs). We now illustrate each of these approaches,
with each building off of the following basic model.

. * Back to basic model

. logit diabetes i.black i.female age, nolog

Logistic regression Number of obs = 10335
LR chi2(3) = 374.17
Prob > chi2 = 0.0000

Log likelihood = -1811.9828 Pseudo R2 = 0.0936

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.black .7179046 .1268061 5.66 0.000 .4693691 .96644
1.female .1545569 .0942982 1.64 0.101 -.0302642 .3393779

age .0594654 .0037333 15.93 0.000 .0521484 .0667825
_cons -6.405437 .2372224 -27.00 0.000 -6.870384 -5.94049

6.1 MEMs

MEMs are easily estimated with the margins command. The dydx() option tells
margins which variables to compute MEs for. The atmeans option tells margins to
use the mean values for other variables when computing the ME for a variable. For
the same reasons as given before, it is important to use factor-variable notation so that
Stata recognizes any interdependencies between variables. It is also important because
MEs are computed differently for discrete and continuous independent variables.

5. See Cameron and Trivedi (2010) for a discussion of marginal effects for continuous variables.
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. * MEMs - Marginal Effects at the Means

. margins, dydx(black female) atmeans

Conditional marginal effects Number of obs = 10335
Model VCE : OIM

Expression : Pr(diabetes), predict()
dy/dx w.r.t. : 1.black 1.female
at : 0.black = .8949202 (mean)

1.black = .1050798 (mean)
0.female = .4749879 (mean)
1.female = .5250121 (mean)
age = 47.56584 (mean)

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.black .0290993 .0066198 4.40 0.000 .0161246 .0420739
1.female .0047259 .0028785 1.64 0.101 -.0009158 .0103677

Note: dy/dx for factor levels is the discrete change from the base level.

The results tell us that if you had two otherwise-average individuals, one white, one
black, the black’s probability of having diabetes would be 2.9 percentage points higher.
And what do we mean by “average”? With MEMs, average is defined as having the
mean value for the other independent variables in the model, that is, 47.57 years old,
10.5% black, and 52.5% female.

MEMs are easy to explain. With the atmeans option, we fix some variable values (for
example, black = 1), compute the mean values for the other variables, and then use the
fixed and mean values to compute predicted probabilities. The predicted values show
us how the average female compares with the average male, where average is defined as
having mean values on the other variables in the model.

MEMs have been widely used. Indeed, for a long time, MEMs were the only option
with Stata, because that is all the old mfx command supported. But many do not
like MEMs. While there are people who are 47.57 years old, there is nobody who is
10.5% black or 52.5% female. Further, the means are only one of many possible sets of
values that could be used—and a set of values that no real person could actually have
seems troublesome. For these and other reasons, many researchers prefer AMEs, which
I describe next.

6.2 AMEs

Rather than use the means when computing predicted values, some argue it is best to
use the actual observed values for the variables whose values are not otherwise fixed
(which is the default asobserved option for the margins command). With atmeans,
we fix the values of some variables (for example, black = 1) and then use the means for
the other variables to compute predicted probabilities. With asobserved, we again fix
the values for some variables, but for the other variables we use the observed values for
each case. We then compute a predicted probability for each case with the fixed and
observed values of variables, and then we average the predicted values.
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. * AMEs - Average Marginal Effects

. margins, dydx(black female)

Average marginal effects Number of obs = 10335
Model VCE : OIM

Expression : Pr(diabetes), predict()
dy/dx w.r.t. : 1.black 1.female

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.black .0400922 .0087055 4.61 0.000 .0230297 .0571547
1.female .0067987 .0041282 1.65 0.100 -.0012924 .0148898

Note: dy/dx for factor levels is the discrete change from the base level.

Intuitively, the AME for being black is computed as follows:

• Go to the first case. Treat that person as though he or she were white, regardless
of what the person’s race actually is. Leave all other independent variable values
as is. Compute the probability that this person (if he or she were white) would
have diabetes.

• Now do the same thing but this time treating the person as though he or she were
black.

• The difference in the two probabilities just computed is the ME for that case.

• Repeat the process for every case in the sample.

• Compute the average of all the MEs you have computed. This gives you the AME

for being black.

If the margins command did not exist, it would be fairly straightforward to do the
same computations using other Stata commands. Indeed, doing so can yield additional
insights of interest.

. * Replicate AME for black without using margins

. clonevar xblack = black

. quietly logit diabetes i.xblack i.female age, nolog

. replace xblack = 0
(1086 real changes made)

. predict adjpredwhite
(option pr assumed; Pr(diabetes))

. replace xblack = 1
(10335 real changes made)

. predict adjpredblack
(option pr assumed; Pr(diabetes))

. generate meblack = adjpredblack - adjpredwhite
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. summarize adjpredwhite adjpredblack meblack

Variable Obs Mean Std. Dev. Min Max

adjpredwhite 10335 .0443248 .0362422 .005399 .1358214
adjpredblack 10335 .084417 .0663927 .0110063 .2436938

meblack 10335 .0400922 .0301892 .0056073 .1078724

With AMEs, you are in effect comparing two hypothetical populations—one all white,
one all black—that have the exact same values on the other independent variables in the
model. The logic is similar to that of a matching study, where subjects have identical
values on every independent variable except one. Because the only difference between
these two populations is their races, race must be the cause of the difference in their
probabilities of having diabetes.

Many people like the fact that all the data are being used, not just the means, and
feel that this leads to superior estimates. Many, perhaps most, authors seem to prefer
AMEs over MEMs (for example, Bartus [2005] and Cameron and Trivedi [2010]). Others,
however, are not convinced that treating men as though they are women and women as
though they are men really is a better way of computing MEs.

The biggest problem with both of the last two approaches, however, may be that they
only produce a single estimate of the ME. No matter how “average” is defined, averages
can obscure differences in effects across cases. In reality, the effect that variables like
race have on the probability of success varies with the characteristics of the person;
for example, racial differences could be much greater for older people than for younger.
Indeed, in the example above, the summary statistics showed that while the AME for
being black was 0.04, the ME for individual cases ranged between 0.006 and 0.108; that
is, at the individual level, the largest ME for being black was almost 20 times as large
as the smallest.

For these and other reasons, MERs will often be preferable to either of the alternatives
already discussed.

6.3 MERs

With MERs, you choose ranges of values for one or more independent variables and then
see how the MEs differ across that range. MERs can be intuitively meaningful, while
showing how the effects of variables vary by other characteristics of the individual. The
use of the at() option makes this possible.
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. * Section 6.3: MERs - Marginal Effects at Representative Values

. quietly logit diabetes i.black i.female age, nolog

. margins, dydx(black female) at(age=(20 30 40 50 60 70)) vsquish

Average marginal effects Number of obs = 10335
Model VCE : OIM

Expression : Pr(diabetes), predict()
dy/dx w.r.t. : 1.black 1.female
1._at : age = 20
2._at : age = 30
3._at : age = 40
4._at : age = 50
5._at : age = 60
6._at : age = 70

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.black
_at
1 .0060899 .0016303 3.74 0.000 .0028946 .0092852
2 .0108784 .0027129 4.01 0.000 .0055612 .0161956
3 .0192101 .0045185 4.25 0.000 .0103541 .0280662
4 .0332459 .0074944 4.44 0.000 .018557 .0479347
5 .0555816 .0121843 4.56 0.000 .0317008 .0794625
6 .0877803 .0187859 4.67 0.000 .0509606 .1245999

1.female
_at
1 .0009933 .0006215 1.60 0.110 -.0002248 .0022114
2 .00178 .0010993 1.62 0.105 -.0003746 .0039345
3 .003161 .0019339 1.63 0.102 -.0006294 .0069514
4 .0055253 .0033615 1.64 0.100 -.001063 .0121137
5 .0093981 .0057063 1.65 0.100 -.001786 .0205821
6 .0152754 .0092827 1.65 0.100 -.0029184 .0334692

Note: dy/dx for factor levels is the discrete change from the base level.

Earlier, the AME for being black was 4%; that is, on average blacks’ probability of
having diabetes is four percentage points higher than it is for whites. But when we
estimate MEs for different ages, we see that the effect of being black differs greatly by
age. It is less than one percentage point for 20-year-olds and almost nine percentage
points for those aged 70. This makes sense, because the probability of diabetes differs
greatly by age; it would be unreasonable to expect every white to be four percentage
points less likely to get diabetes than every black regardless of age. Similarly, while
the AME for gender was only 0.6%, at different ages the effect is much smaller or much
higher than that.

In a large model, it may be cumbersome to specify representative values for every
variable, but you can do so for those of greatest interest. The atmeans or asobserved
options can then be used to set the values of the other variables in the model.
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7 Graphic displays of margins results: The marginsplot
command

The output from the margins command can be very difficult to read. Because of
space constraints, numbers are used to label categories rather than value labels. The
marginsplot command introduced in Stata 12 makes it easy to create a visual display
of results. Here are two simple examples:

. quietly logit diabetes i.black i.female age, nolog

. quietly margins, dydx(black female) at(age=(20 30 40 50 60 70)) vsquish

. marginsplot, noci
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The graph makes it clear how the differences between blacks and whites, and between
men and women, increase with age. Here is a slightly more complicated example that
illustrates how marginsplot can also be used with adjusted predictions.
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. * Plot of adjusted predictions

. quietly logit diabetes i.black i.female age i.female#c.age, nolog

. quietly margins female#black, at(age=(20 30 40 50 60 70))

. marginsplot, noci
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The differences between blacks and whites and men and women are again clear. This
model also included an interaction term for gender and age. The graphic shows that up
until about age 70, women are more likely to get diabetes than their same-race male
counterparts, but after that men are slightly more likely.

8 Marginal effects for interaction terms

People often ask what the ME of an interaction term is. Stata’s margins command
replies: there is not one. You just have the MEs of the component terms. The value of
the interaction term cannot change independently of the values of the component terms,
so you cannot estimate a separate effect for the interaction. The older mfx command
will report MEs for interaction terms, but the numbers it gives are wrong because mfx is
not aware of the interdependencies between the interaction term itself and the variables
used to compute the interaction term.
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. quietly logit diabetes i.black i.female age i.female#c.age, nolog

. margins, dydx(*)

Average marginal effects Number of obs = 10335
Model VCE : OIM

Expression : Pr(diabetes), predict()
dy/dx w.r.t. : 1.black 1.female age

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.black .0396176 .0086693 4.57 0.000 .022626 .0566092
1.female .0067791 .0041302 1.64 0.101 -.001316 .0148743

age .0026632 .0001904 13.99 0.000 .0022901 .0030364

Note: dy/dx for factor levels is the discrete change from the base level.

9 Other points

margins would also give the wrong answers if you did not use factor variables. You
should use margins because older commands, like adjust and mfx, do not support the
use of factor variables. margins supports the use of the svy: prefix with svyset data.
Some older commands do not. margins is, unfortunately, more difficult to use with
multiple-outcome commands like ologit or mlogit. You have to specify a different
margins command for each possible outcome of the dependent variable. But this is
also true of many older commands. It is my hope that future versions of margins
will overcome this limitation. The ability to compute adjusted predictions and MEs for
individual cases would also be a welcome addition to margins. Finally, both margins
and marginsplot include numerous other options that can be used to further refine the
analysis and the presentation of results.

10 Conclusion

Adjusted predictions and marginal effects can make the results from many analyses much
more intuitive and easier to interpret. The margins command offers a generally superior
alternative to the adjust and mfx commands that preceded it. It can estimate the same
models and can generally do so more easily. Interdependencies between variables are
easily handled, and the user has a choice between the atmeans and asobserved options.

The relative merits of atmeans versus asobserved continue to be debated. Clearly,
many prefer the asobserved approach. They would rather compare hypothetical pop-
ulations that have values that real people actually do have than compare hypothetical
persons with mean values on variables that no real person could ever have. But however
“typical” or “average” is defined, any approach that only looks at “typical” values is
going to miss variability in effects across cases. Presenting MERs can make results easier
to interpret and provide a better feel for how the effects of variables differ across cases.
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