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CONFOUNDED COEFFICIENTS: EXTENDING RECENT ADVANCES IN THE 

ACCURATE COMPARISON OF LOGIT AND PROBIT COEFFICIENTS ACROSS 

GROUPS 

 

ABSTRACT 

The logit and probit models are critical parts of the sociologist’s analytical arsenal. We often 

want to know if a covariate has the same effect for different groups, e.g., men and women. 

Unfortunately, many attempts to compare the effect of covariates across groups make the 

unwarranted assumption that each group has the same residual variation. If this assumption is 

false, comparisons of coefficients can reveal differences where none exist and conceal 

differences that do exist. Recent work has emphasized the theoretical potential for this problem 

and proposed a test of whether the effect of covariates differs across groups that is accurate, if 

limited, despite differences in residual variation.  This paper extends these advances in three 

ways.  First, it uses simulations to show that this theoretical problem is substantively significant 

under a wide range of common conditions, meaning that traditionally executed comparisons of 

logit coefficients should be viewed skeptically.  Second, it uses simulations to assess the power 

of the test recently proposed to overcome the problem, finding that they are an improvement over 

naïve comparisons of coefficients, but have significant limitations.  Third, it proposes and tests 

two alternative means of comparing coefficients across groups that avoid the assumption of 

equal residual variation entirely.  The article closes with implications for the practice of research.  

Keywords: Logit, probit, discrete choice 
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INTRODUCTION 

The logit and probit models have become critical parts of the sociologist’s analytical arsenal. 

Researchers have used them to study topics ranging from support for capital punishment (Bailey 

2002) to the likelihood that a particular venture capital firm invests in a given target company 

(Sorenson and Stuart 2001).  Often it is of interest to know if a covariate has the same effect for 

different groups. For example, Long, Allison, and McGinnis (1992) studied whether the number 

of articles published affected the likelihood of promotion for male and female faculty equally 

and Pager (2003) asked if a criminal record had the same impact on the job prospects of blacks 

and whites. 

Unfortunately, attempts to compare the effect of logit or probit coefficients across groups 

require an assumption that is often false. Logit and probit coefficients are scaled by the unknown 

variance of their residual variation. Naïvely comparing coefficients as one would in linear 

models assumes that residual variation is the same across groups, though in many cases it may 

not be. Differences in coefficients across groups may merely reflect the difference in residual 

variation across groups, rather than real differences in the impact of covariates across groups. As 

Allison (1999a:190) expresses it, “Differences in the estimated coefficients tell us nothing about 

the differences in the underlying impact of x on the two groups.” Worse yet, comparisons may 

appear informative. They can reveal differences where none exist, conceal differences that do 

exist, and even indicate differences in the reverse direction of the actual situation.1  

In a recent, influential paper, Allison (1999a) explicated the theoretical basis of this 

problem.2 He then developed a set of related tests to determine if (a) the residual variation of two 

groups differs sufficiently to render traditional comparisons inappropriate, (b) if there is evidence 

that the effect of at least one covariate differs significantly across groups, and (c) if the effect of 

                                                 
1 This same problem plagues cross-group comparison of coefficients in any generalized linear model, including logit, 
probit, and Poisson, as the variance of the dependent variable contains a scale factor which can vary across groups. 
Liao (2002:87-96) provides an extensive discussion of the topic, cast more broadly as dispersion heterogeneity in 
generalized linear models. 
2 An indication of the paper’s influence is that 14 published articles have cited it in the four years since its 
publication. 
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a specific covariate differs across groups—assuming that the true effect of the other covariates is 

equal across groups. While Allison makes the theoretical basis for concern clear, it is less 

obvious under what conditions this theoretical concern will actually have substantive effect.  

Whatever the theoretical concerns, how likely are researchers actually to encounter situations in 

which the traditional means of comparisons would lead to the wrong conclusions?   

 The answer to this question is important, as neither of Allison’s tests for the true effects of 

covariates differing across groups is completely satisfactory. A researcher must either be 

satisfied knowing that at least one covariate differs, but not which one(s), or base conclusions 

regarding a given covariate on the untestable assumption that the effect of the other covariates 

are identical across groups.  Further, the tests require cannot be carried out with pre-packaged 

statistical routines.  The programming required is straight-forward, but still adds a level of 

complexity to analysis.3   

This paper contributes to the literature by extending Allison’s advances in three ways. First, 

it uses simulations to explore the substantive significance of ignoring the assumption of equal 

residual variation, finding that even small differences in the groups’ residual variation can make 

comparisons of coefficients extremely misleading. To my knowledge, this is the first time this 

has been demonstrated. Second, it uses simulations to ascertain the power of Allison’s tests, 

finding that they are a significant improvement over naïve comparison of coefficients, although 

they have limitations and are not a panacea.  Lastly, it proposes two additional approaches for 

comparing the underlying effect of covariates across groups that avoid the assumption of equal 

residual variation entirely.  

                                                 
3 It is worth emphasizing that the algebra underlying the problem and potential solutions is straight-forward (see 
pages 192-4 of Allison (1999) for the latter).  At issue is the importance of the problem in finite samples and the 
finite-sample performance of potential solutions.  As Greene (2000:484) points outs, the small-sample properties are 
many test statistics are unknown, except in a few special cases.  Prior work including Davidson & Mackinnon 
(1984), Orme (1995), Skeels and Vella (1999) and Yatchew and Griliches (Yatchew and Griliches 1985) has 
established that certain tests perform particularly poorly in finite samples and asymptotically equivalent variants of 
the same test can generate radically different small sample results.  This is of particular relevance for logit and probit 
models, the finite-sample properties of which are largely unknown, unlike OLS models (Long 1997:53). 
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The article proceeds by briefly reviewing the logit and probit models, particularly the 

potential problem caused by inter-group differences in residual variation.  I then present the 

simulations used to explore the problem and Allison’s approaches to addressing it.  Next, I 

propose two alternatives that avoid the assumptions of equal residual variation entirely.  The 

paper concludes with a discussion of implications for the practice of research using logit and 

probit.  

IMPLICATIONS OF ASSUMPING EQUAL RESIDUAL VARATION ACROSS GROUPS 

Statistical implication of the assumption 

Since standard econometric texts (e.g., Greene 2000) and more specialized works (Maddala 

1983; Train 1986; Long 1997; Allison 1999b) cover the logit and probit models, this section will 

review the logit model only briefly, focusing on the elements relevant to this paper.  As much of 

the paper builds on Allison (1999a), I closely follow his exposition for the convenience of the 

reader.  

Suppose we are modeling which of two alternatives occurs, e.g., whether a faculty member 

achieves tenure. Without loss of generality, we assign a value of 0 to the dependent variable yi 

for cases in which one alternative occurs and set yi equal to 1 for cases in which the other 

alternative occurs. We assume that y equals 1 only if an unobserved, continuous variable y* is 

greater than an unobserved threshold, τ. That is,  
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Further, we assume that y* is linearly related to the observed independent variables: 
  

(2) 

where xi is a vector of observed covariates and εi is a random disturbance independent of the 

observed covariates. As in the linear model, the disturbance reflects the impact of differences 

across cases in variables the researcher does not observe—residual variation. σ is a scale 

parameter that allows the amount of residual variation to be greater or smaller. 

iiiy σε+= αx*
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 Since y* is a latent variable, we cannot estimate its variance. In the logit model, we assume ε 

has a logistic distribution (also called a Gumbel or type 1 extreme value distribution) and 

variance π2/3. In the probit case, we assume ε is normally distributed with a variance of 1. These 

arbitrary values are assigned as identifying assumptions and cannot be confirmed by the data.   

Letting pi represent Pr(yi=1|xi), these assumptions lead to the familiar logit model4 

βxi=⎟⎟
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p
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ln  (3) 

The β coefficients we obtain from estimating equation (3) are related to the α coefficients in 

equation (2) as follows. 

σ
αβ = . (4) 

This relationship is the heart of the problem in comparing coefficients across groups. Since 

the value of σ is unidentifiable, we cannot recover α. The unobservable value of σ determines 

the scale of β.  Accordingly, if σ varies between groups, the logit coefficient β will also vary, 

even if the underlying effect of the covariate on y*,α, is the same between groups.5  

Substantive implications of the assumption 

In many contexts, it is reasonable to assume that residual variation differs across groups. For 

example, institutional pressures may lead Japanese firms to be more similar in their strategy than 

U.S. firms (Lincoln 2001). In labor mobility studies, there is evidence that women have more 

heterogeneous career paths than men (Long and Fox 1995).  

There is a heavy burden of proof on any author claiming that residual variation is the same 

across groups, because the failure of this assumption can have serious consequences. To 

demonstrate these consequences, consider the following hypothetical model, which uses a 

simulated dataset. We wish to model the dichotomous variable y as a result of two independent 

variables, x1 and x2. We are particularly interested in knowing whether the effect of x2 on the 
                                                 
4 Since the same development applies to both the logit and probit models, I subsequently limit my discussion to the 
logit for simplicity. 
5 Within a group, equation 4 poses no problem.  Whatever the value of σ, β will only be zero when α is zero.  Tests 
of the significance of β will therefore provide accurate inferences of the relationship between associated covariate 
and y*. 
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likelihood of y=1 differs across two groups, which I unimaginatively label “Group 0” and 

“Group 1”. I generated the data according to equation (5). 6  

igiii xxy εσ++= 21
* 2  

x1, x2 ~ N(0, 4) 
σ1=2 
σ2=4 

(5) 

Note that the actual impacts of x1 and x2 are the same for both groups. Only the residual 

variation differs across groups. For simplicity, I assume the two groups are the same size and that 

group membership is exogenous, e.g., gender or firm’s home country.7 

There are two common approaches to comparing coefficients across groups: comparing the 

coefficients that result from estimating separate models for each group or estimating a single 

model that interacts a variable for group membership with variables of interest. Table 1 reports 

the results of the first approach. I estimated the following equation twice, once for each group.  
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Naively comparing the results, we see an apparent difference in the impact of x2. It appears to 

have almost twice as strong an effect (1.835/.922) for Group 0 as for Group 1. In a linear model, 

we would use the Wald chi-squared statistic to determine if the difference in the estimated 

coefficients is statistically significant. Assuming the coefficients for each group have 

independent sampling distributions, the statistic is  
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6 All data generation and estimation was performed using Stata version 8/SE.   To ensure replicability, random 
number generation was initiated with a seed of 125.  Logistic error terms were generated from 
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where U(0,1) indicates a random number from the uniform distribution.  (See 
http://www.resacorp.com/gumbel_random.htm). yi was set to 1 if *

iy > -.577. (Textbook presentations normally 
express the threshold as 0, which is of course completely arbitrary.  The mean of the extreme value distribution is 
actually not zero (Train 2004:39), which is immaterial to the estimation. Setting the threshold at the mean value as I 
have done here simply means that approximately 50% of the observations have yi=1.) 
7 If group membership is endogenously determined, e.g., firms’ choice of entry mode into a foreign market, 
selection bias must be addressed. See Shaver (1998) for details. 
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which has one degree of freedom. Applying it to the coefficients for x2 yields a statistic of 31.12, 

which is highly significant (p<.001). We would thus conclude that the effect of x2 differs across 

groups. This conclusion is, of course, false, since by construction the only difference between the 

two groups is the scale of their residual variation. Unfortunately, in a real world application, we 

would not know the residual variation in each group and could not tell if differences in 

coefficients indicate differences in actual effect.8  

Table 2 extends this simulation to show how severe the problem can become with even small 

differences in the residual variation. I again generated data using Equation (5), but let σ1, the 

scale parameter for Group 1’s residual variation, range from 1 to 2 in increments of 0.2. I 

generated 1000 datasets of 1000 observations each for the five different values. The table shows 

the results of estimating Equation (6) on each dataset. The first column shows that the estimated 

value of β2 decreases quickly as the residual variation increases, even though the value of the α2 

coefficient is exactly the same in each dataset. The next column uses Equation (7) to test for the 

equality of β2 between Group 1 and Group 0 (for which the scale of the residual variation was 

held at 1.0). When σ1 was 1.2, the coefficients were incorrectly found to differ at the five percent 

level of significance in 223 out of 1000 cases. Larger differences in the residual variation led to 

more false results, as one would expect. For example, when σ1 was 1.6, the coefficients were 

found to differ in 923 out of 1000 cases. This clearly illustrates the hazards of comparing 

coefficients across groups if their residual variation might differ.  The theoretical concerns are 

substantively relevant given even relatively small differences in residual variation across groups.  

                                                 
8 Odds-ratios are also often used in interpreting logit coefficients. In the context of cross-group comparisons, they 
present several particular challenges.  First, since they are merely a transformation of the estimated βk coefficient, 
they remain susceptible to the problems discussed in this article. Long (1997:82) points out that the change in 
probability implied by a given change in odds depends critically on the current odds; these may well vary across 
groups, creating an additional pitfall for cross-group comparisons.  Comparisons of the change in probability at 
specific values of the covariates are valid, although these chosen values must be valid for both groups if the 
comparison is to be meaningful. 
 
Changes in predicted probabilities at theoretically relevant values of covariates can also be calculated.  Again, the 
values chosen must be valid for both groups if the comparison is to be meaningful. For either approach, the issue of 
determining the statistical significance of any differences found remains.  Therefore, this paper will focus on 
comparison of coefficients. 
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This finding means that traditionally executed comparisons of coefficients should be viewed with 

skepticism. 

The second approach to comparing the effect of a covariate across groups is to estimate a 

single regression for all observations (Aiken and West 1991; Pindyck and Rubinfeld 1991). 

Although Allison (1999a) does not discuss this approach, it is common enough to merit 

examination.  A dummy variable is set to one for one type of observation, e.g., Group 1, and 

interacted with the relevant covariates. Considering a linear model with only one variable, x, and 

letting the dummy variable, G, be set to 1 for Group 1 firms, the equation would be of the form  

iiiii xGxy εβββ +++= )(210  (8) 

An estimate of β2 significantly different from 0 indicates that the impact of x varies between 

Group 0 and Group 1. The sign of β2 indicates whether the impact of x is diminished or increased 

for Group 1. 

As indicated by the presence of a single error term, εi, this approach assumes that the residual 

variation for Group 0 and Group 1 is the same (Pindyck and Rubinfeld 1991:107; Darnell 

1994:111). We can test this assumption in the linear model (Quandt 1960), but as discussed 

above, we cannot test it in a logit model, because the standard deviation of the residual variation 

cannot be identified and has been arbitrarily set to π2/3 (Maddala 1983:23; Long 1997:47). 

Therefore, the single equation approach is inappropriate unless there are strong theoretical 

reasons to believe that the residual variation is the same in both groups.9  

A variation of the above simulation demonstrates how misleading this sort of comparison can 

be. I generated 1000 simulated datasets of 1000 observations each, 500 each from Group 0 and 

Group 1, according to the following equation. 

                                                 
9 Ai and Norton (2003) discuss other important issues in the use and interpretation of interaction terms in non-linear 
models, even if the assumption of equal residual variation holds. 
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x1, x2 ~ N(0, 4) 
σ0=1; σ1=3 

(9) 

I then estimated the equation 

( )23221101
ln xGxx

p
p

i
i

i ββββ +++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

 (10) 

on each dataset. A significant coefficient for β3 would indicate that x2’s impact on the 

dependent variable differs across groups. Even though x2’s effect is 25% greater for Group 1 by 

design, estimating Equation (10) fails to find this difference. Figure 1 shows the point estimate 

and 95% confidence intervals for β3 in each of the first 50 of 1000 simulated datasets. The 95% 

confidence interval included the true value of the coefficient, 0.5, in only two datasets: 4 and 23. 

However, the estimated coefficient was not significant in either dataset. Disturbingly, the only 

statistically significant estimates, datasets 5, 8, and 26, were each negative, indicating a 

diminished impact of x2, rather than the true increased impact.  This pattern is replicated in the 

full set of simulated datasets.  β3 was properly estimated as positive and significant in only 4 of 

1000 datasets, while it was incorrectly identified as significant and negative in 94 datasets.  

This unfortunate outcome is not surprising. The likely outcome of using an interaction term 

in a single equation despite differences in variance between the groups is that the slope 

coefficients will be found not to differ, even if they actually do (Gujarati 1988: 527). However, 

datasets 5, 8, and 26 show that it is also possible to find an effect contrary to reality. Clearly, the 

single equation with interaction term strategy is no better than estimating each group separately. 

In fact, it is even less informative. In the single equation model, it is impossible to determine 

if x2 has a significant effect within group 1. Because its effect is β2 + β3, calculations of its effect 

are tainted by the errors in estimating β3.  In contrast, the separate equations reported in Table 1 

show that x2 had a statistically significant effect for both Group 0 and Group 1. 
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To summarize, we cannot compare coefficients across groups in a logit or probit model as we 

would in a linear regression. Doing so, either by regressing each group separately and comparing 

coefficients or by using an interaction term in a single equation, can lead to erroneous 

conclusions. Insignificant differences can appear significant and significant differences can 

appear insignificant. Clearly, we need a way to identify a difference in residual variation across 

groups and to carry out accurate comparisons even in its presence. 

IDENTIFYING AND ADJUSTING FOR UNEQUAL RESIDUAL VARIATION 

Allison’s method 

Allison (1999a) developed a set of related tests to determine if (a) the residual variation of 

two groups differs significantly, (b) if there is evidence that the true effect of at least one 

covariate differs significantly across groups, and (c) if the true effect of a specific covariate 

differs across groups. I will only briefly sketch the underpinnings to this method, focusing on 

demonstrating its power and relative ease of application. This section introduces Allison’s 

method and uses simulations to test its power.10  

At the heart of the approach is rewriting the underlying model as a single equation that 

allows the residual variation to vary across groups. Under the assumption that all coefficients are 

equal across the groups, we can write the model as  

1,
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1
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10 Allison briefly discusses extending his method to more than two groups, allowing an investigator to determine if 
the effect of a given variable is constant across all groups.  I will limit my discussion to the two group case.  Liao 
(2002:89-90) presents a generalized F-test that allows the research to test for the equality of residual variation across 
multiple groups. Liao notes that tests of equal residual variation for more than two groups may not give the same 
results of pairwise tests, which rely on the particular pairs of groups chosen for comparison.  
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Arbitrarily setting σ equal to 1 for group 0, δ>0 implies that the residual variation is smaller 

for Group 1 than Group 0. If δ<0, the residual variation is larger for Group 1 than Group 0. The 

standard deviation of the residual variations differs by 100δ percent.  

Combining this with Equation (3) leads to 
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which can be estimated using code supplied by Allison.11  

The first test proceeds under the null hypothesis that the values of the underlying coefficients 

are the same across groups, but that the residual variation differs. That is, it tests that the α terms 

are the same, but that σ varies across groups. The test proceeds by estimating equation (12) and 

examining δ̂ . We can determine if δ̂ is significantly different from zero by a Wald chi-square 

test (the squared ratio of the estimate to its standard error). Alternatively, we can construct a log-

likelihood ratio test by taking twice the positive difference between the log-likelihood for this 

model and the log-likelihood for an ordinary logit equation (equivalent to assuming δ=1). If δ̂  is 

not significant, the test provides no evidence that the residual variation differs between groups. 

In this case, Allison suggests continuing with conventional methods for comparing coefficients. 

If, on the other hand, δ̂ is significantly different from zero, it is evidence that the residual 

variation differs across groups. The residual variation differs by 100 δ̂  percent between groups, 

with a positive value indicating that Group 1’s residual variation is greater than Group 0’s.  

If we find unequal residual variation, the next step is to test the null hypotheses that the α 

coefficients are the same across groups versus the alternative hypotheses that at least one of them 

varies. Since the model estimated immediate above constrains the α terms to be equal across 

groups, we need to compare it to an unconstrained model that allows the α coefficients to vary 

across groups. We do so with a likelihood ratio test. We can obtain the log-likelihood for the 

unconstrained model by adding together the log-likelihoods obtained by estimating a separate 

logit model for each group. 

                                                 
11 In Allison’s original code, replace “$ml_y1” with “$ML_y1”, noting the capitalization. 
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I return to the earlier simulation to explore the power of this method. To improve on 

conventional practice, it should meet three criteria. First, it should reveal when residual variation 

differs significantly between groups. Second, it should detect when apparent differences in 

coefficients across groups are merely the impact of differences in residual variation. Third, it 

should allow us to detect true differences of coefficients across groups.  

I first test the method’s performance when the underlying coefficients, the α’s in Equation 

(3), are the same and only the residual variation varies across groups. I generated datasets of 

1000 observations (500 of Group 0, 500 of Group 1) according the following equation.12 

igiii xxy εσ++= 21
* 2  

x1, x2 ~ N(0, 4) 
σ0=1, σ1=1, 1.2, 1.4, 1.6, 1.8 

(13) 

I varied the scale of Group 1’s residual variation from 1 to 1.8. At each level, I generated 

1000 datasets.  

I then tested for differences in residual variation by estimating equation (12) on each dataset. 

The first two columns of Table 3 report the results. The method does moderately well in meeting 

the first criteria, detecting differences in residual variation between groups. When the scale of 

Group 1’s residual variation is 1.8 times that of Group 0, δ̂ is significantly different from zero in 

933 out of 1000 cases (880 out of 1000 using a likelihood ratio test). That is, the method 

accurately indicated a difference in residual variation in the overwhelming majority of cases. 

When the difference is more moderate, σ1=1.4, both the Wald and log-likelihood ratio tests 

indicate a significant difference in residual variation in only about half of the simulated data 

sets.13 Importantly, the test yields relatively few false positives. When the residual variation was 
                                                 
12 The number of observations should not affect differences in residual variation, as the issue is one of identification, 
which additional data cannot address. However, sample size does affect our ability to assess accurately differences 
in unobserved heterogeneity and underlying coefficients, since the precision with which test statistics are estimated 
is influenced by sample size. The simulations in this paper hold the number of observations constant to focus on 
changes in other aspects of the estimation.  However, unreported simulations indicate the smaller samples are 
considerably less powerful.  For example, Allison’s method is up to seven times less powerful at detecting true 
differences in coefficients (shown in Table 4) with a sample of 100 observations, rather than 1000.  
13 Recall that a 40% difference in the scale of residual variation caused conventional tests to falsely indicate a 
difference in the true effect of a covariate in 681 of 1000 cases. Allison commented (personal communication, 
December 17, 2002) that the simulation results “call into question my recommendation” to proceed with standard 
means of comparing coefficients if the test fails to reject the hypothesis that the groups have equal residual variation. 
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equal across groups, the method indicated so in 930 out of 1000 cases (Wald test). That is, it 

falsely indicated that residual variation differed across groups in only 70 of the 1000 cases. 

The third column shows the results of testing the null hypothesis that the true coefficients are 

all equal across groups versus the alternative that at least one differs. Allison’s test correctly 

indicated that there is no actual difference in the coefficients in approximately 950 out of 1000 

cases at each level of Group 1’s residual variation. That is, it incorrectly rejected the null 

hypothesis of no difference in only approximately 50 of 1000 cases. To emphasize the 

improvement over conventional tests, compare the results to Table 2. There, the conventional test 

incorrectly indicated that x2’s effect differed across groups in 223 out of 1000 cases when Group 

1’s residual variation was 1.2 times greater than Group 0’s, and in 681 out of 1000 cases when 

Group 1’s residual variation was 1.4 times greater. Clearly, the test meets the second criteria for 

improving on current practice. 

I next test the method’s ability to detect true differences in the value of a coefficient across 

groups, the third criteria. I again generated datasets of 500 Group 0 and 500 Group 1 

observations, this time using Equation (14). It fixes the scale of Group 1’s residual variation 

slightly higher than that of Group 0 and varies γ, the additional impact of x2 for Group 1, from 0 

to 1 in 0.2 increments. Since the coefficient for x2 is 2 for Group 0, this range represents an up to 

fifty-percent greater effect for Group 1. For each value of γ, I generated 1000 datasets. 
( )
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x1, x2 ~ N(0, 4)  
σ0=1; σ1=1.4 

γ =0, 0.2, 0.4, 0.6, 0.8, 1.0 

(14) 

The first two columns of Table 4 report on the method’s ability to detect differences in the 

residual variation across groups. When x2 has the same effect in both groups, the method 

                                                                                                                                                             
Further research on this point is needed. A conservative course of action would be to test the null hypothesis that 
none of the true coefficients vary across groups, even if the method does not indicate a difference in the residual 
variation of the groups. 
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accurately reports that the residual variation differs in just over half the sample datasets. 

Unfortunately, the method becomes less able to detect the difference in residual variation across 

groups as x2’s additional impact on Group 1 increases. When x2 has a 20% greater impact on 

Group 1 (γ=.4), the method identifies the difference in residual variation in only 249 of 1000 

cases. Since we know from Table 2 that this degree of difference in residual variation can lead to 

false conclusions about differences in coefficients, this result raises concerns.  

The third column of the table reports on the method’s ability to detect real difference in 

coefficients across groups. When x2 has a 10% greater impact on Group 1 (γ=.2), the method 

reports the difference in only 46 of 1000 cases. However, when the difference is 20%, (γ= .4), it 

detects the difference in 619 of 1000 cases. It continues to improve as the difference increases, as 

one would expect. 

It is also theoretically possible to test the null hypothesis that all of the underlying 

coefficients are the same against the alternative hypothesis that a specific coefficient, e.g., x2, 

differs across groups. However, the test assumes that all of the coefficients not being tested are 

the same across groups. We cannot test this assumption without engaging in circular logic. To 

test whether the coefficients for x2 differ, we must assume that the coefficients for x1 are the 

same. However, we cannot test that assumption without assuming that the coefficients for x2 are 

the same. Given this limitation, the scope for applying this test is limited and I will not test its 

power.  

In general, simulation results are somewhat reassuring about our ability to detect and resolve 

the confounding effect of different residual variation across groups. However, even when the 

difference in the scale of the residual variation was forty percent, Allison’s method failed to 

indicate this difference in almost half of the cases. Still, by identifying the difference in even half 

the cases, it greatly improves on naïve comparison of coefficients and should be routinely 
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applied. However, it is not a panacea. Therefore, I will present two alternative approaches that 

avoid assumption of equal residual variation entirely.14 

Alternative 1: Differences in the relative effect of covariates 

Given the limitations of the method above, particularly its inability to show whether a 

specific coefficient differs across groups, we may want to consider an approach that renders any 

difference in residual variation irrelevant. Suppose we could frame our interest not as whether 

the absolute effect of x2 differed across groups, but rather as whether the impact of x2 relative to 

x1 differs across groups. To answer this question, we compare the ratio β2/β1 (Train 1998:237). If 

this ratio were 2 for Group 0 and 3 for Group 1 it would mean that a “unit” of x2 has twice the 

effect of a unit of x1 for Group 0 and thrice the effect of a unit of x1 for Group 1. Relative to x1, x2 

has a stronger effect on Group 1.  

When this sort of comparison is sensible and theoretically interesting, the nature of ratios 

provides us a powerful benefit. Since β is the underlying coefficient, α, divided by the scale of 

the residual variation, σ, we find that 

1

2

1

2

1

2

1

2

α
α

α
σ

σ
α

σ
α
σ

α

β
β

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== . (15) 

By taking a ratio, we have removed the impact of residual variation and are left with a ratio 

of the underlying effects of x2 and x1. We can compare this ratio across groups, since it is no 

longer confounded by differences in residual variation.  

The statistical significance of the difference in the ratios across groups can be computed with 

a Wald chi-squared test (Greene 2000).15 Unfortunately, even large differences in ratios may not 

be statistically significant, especially if one or more terms are estimated with poor precision. To 

demonstrate this, I generated data according to Equation 14 above and then compared the ratio of 

β2 to β1 resulting from estimating 

                                                 
14 It is also possible to deal with unequal residual variation more directly via double generalized linear models 
(DGLMs) and mean and dispersion additive models (MADAMs).  See Liao (2002:91-92) for further information 
and references to the necessary code in S and Glim respectively. 
15 Code necessary to carry this test, and the others discussed in this paper, is available from the author. 
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separately for each group. 

Table 5 shows the results given sample sizes of 100 and 1000. When the true coefficient of x2 

is 2.4 for Group 1 versus 2.0 for Group 0, the difference in the ratio β2/β1 across groups is 

statistically significant in 614 of 1000 simulated datasets of 1000 observations. With only 100 

observations, however, we detect the difference in only 411 of 1000 datasets. The difference 

becomes more extreme when the true value of x2 rises to 2.8 for Group 1. With 1000 

observations, we detect the difference in β2/β1 across groups in almost every case, 983 out of 

1000. With only 100 observations, however, we detect the difference in only 590 out of 1000 

cases. Clearly, we need more precise estimates and thus more observations to apply this 

technique than we need to compare individual coefficients. 

To provide concrete examples of how one might apply this technique, I draw upon three 

articles from recent issues of the American Journal of Sociology. While the articles did not 

necessarily apply the logit model, they illustrate the potential application of this technique in 

settings of interest to sociological researchers.   

Simon and Nath (2004) model the expression of negative or positive emotion as a function of 

covariates including having children and household income. Differences in social expectations 

might suggest a difference in the relative importance of each factor for men and women, which 

could be tested by comparing the ratio of the corresponding coefficients.  

Zeng and Xie (2004) model the earnings of U.S. and foreign-educated Asian-Americans as a 

function of covariates including job experience and years of education on earnings. One might 

hypothesize that, relative to job experience, employers value U.S. education more than foreign 

education, since they are less familiar with the reputations of foreign educational institutions, 

while job experience is more easily understood. This hypothesis could be easily tested by 

comparing the ratio of the coefficients for education and job experience for U.S-educated and 

foreign educated Asian-Americans.  
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Lastly, Gangl (2004) studied the probability that unemployment would lead to a significant 

loss of earnings in subsequent jobs in the U.S. and former West Germany. Cross-national 

differences in the relative importance of years of education and the availability of unemployment 

insurance has immediate policy implications in terms of the most effective response to large-

scale unemployment—should displaced textile workers be retrained or should they be given 

extra support to extend the period of time they can search for the optimal replacement job?  

Because of differences in labor market rigidity, the optimal policy response could well vary 

across nations. 

These examples demonstrate the range of issues that can be investigated by comparing ratios 

of coefficients.  Of course, researchers are responsible for making sure that the scales involved 

make sense.   Comparisons across studies are especially likely to be vulnerable to differences in 

measurement scales. 

Alternative 2: Abandon direct comparisons 

Given these challenges, a researcher may wish to simply abandon direct comparisons of 

coefficients across groups. Even in this case, we can often make some analytical progress.  

If we model the two groups separately, the coefficients and standard errors are consistent 

within each group. The pattern of coefficient significance between the two models may provide 

some information. If β1 were positive and highly significant for Group 0 and far from significant 

for Group 1, it would be informative to report that x1 was significant for Group 0, but not for 

Group 1.  Obviously, this statement is more informative if the samples are of roughly the same 

size, the model appears well specified and the p-values do not straddle a particular significance 

level. For example, it would be foolish to claim strong implications from one p-value being .09 

and the other .11, even though the latter does fall outside of the conventional 10% level of 

significance.16  

                                                 
16 Note that the differences in unobserved heterogeneity mean that, although the significance of the coefficients in 
each group is informative, the relative magnitude of the coefficients across groups is uninformative. 
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Of course, if a coefficient is (in)significant for both groups, this approach does not provide 

insight into relative effects. However, the researcher can at least report that, for example, x1 has a 

significantly positive impact for both groups. 

 

IMPLICATIONS FOR RESEARCH 

The implications for research using the logit or probit model are profound. Conclusions 

drawn from comparing coefficients across groups while ignoring the possibility of coefficients 

being confounded with residual variation are meaningless. The simulations in this paper have 

shown that in the presence of even fairly small differences in residual variation, naïve 

comparisons of coefficients can indicate differences where none exist, hide differences that do 

exist, and even show differences in the opposite direction of what actually exists.  The 

substantive importance of this theoretical concern has implications for both gathering data and 

carrying out statistical testing. 

Gathering as complete a set of covariates as possible is more important when using logit or 

probit than when using linear regression. In the linear case, omitted variables are only significant 

if they are correlated with included variables. However, in the logit or probit case, any variable 

that helps explain the outcome variable is useful and should be gathered. The more variation we 

control for, the less residual variation there is and the less it can vary across groups. We also 

need a sizable sample to apply the ratio of coefficients technique. 

Econometric theory and simulation results suggest that tests interacting coefficients with a 

dummy variable for group membership in a single equation are particularly misleading. Forcing 

observations from both groups to have the same residual variation yields coefficients that tell us 

nothing about how a covariate’s impact varies across groups. 

Estimating separate equations for each group at least offers the advantage of accurate 

estimation within each group. However, before attempting to compare coefficients, researchers 

must test for differences in residual variation. This will require a change in current practice, but 

the test is simple to run in any statistical package with programming capabilities.  
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If a difference in residual variation is found, the researcher has several options. Allison’s test 

for determining if at least one coefficient differs between groups is powerful and makes few 

assumptions. It will lead to more conservative results and may reveal that apparent differences 

are not actually significant. If it reveals differences, the researcher can then test that a specific 

coefficient differs. However, this test has a stringent assumption: the other coefficients must be 

equal across the groups. Since it is not possible to test this, the researcher must judge the 

probability of this assumption holding on theoretical grounds.  

If it is theoretically relevant to compare the relative effects of two covariates across groups, 

the researcher can compare the ratio of coefficients across groups. This has the advantage of 

making no assumptions about the residual variation across groups. Offsetting this advantage are 

two facts. First, an answer in terms of relative effects may not satisfy the theoretical question at 

hand. Second, even large differences between ratios may not be statistically significant, 

particularly if one or more terms are poorly estimated. This makes it more difficult, perhaps 

artificially so, to identify cross-group differences.  

Comparing coefficients across groups in logit or probit models requires that the researcher 

apply careful judgment using his or her understanding of both statistical issues and the 

underlying phenomenon. Ultimately, however, researchers may simply not be able to conduct 

some of the comparisons they are accustomed to doing in the linear setting. While this is 

frustrating, no results are surely superior to spurious results.  
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Table 1: Apparent coefficient differences in simulated data 

Group 0 Group 1
X1 0.608*** 0.376*** 

(0.055) (0.032) 
X2 1.379*** 0.775*** 

(0.104) (0.051) 
Intercept -0.482*** -0.599***

(0.127) (0.103) 
  

Log 
likelihood -211.50 -326.14 

N 1,000 1,000 
 

Standard errors in parentheses 
*** p<0.01;** p<0.05; * p<0.1; two-
tailed tests 

 
The equation 
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was estimated on data generated according to the equation: 
 

igiii xxy εσ++= 21
* 2  

x1, x2 ~ N(0, 4) 

σ0=2; σ1=4 
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Table 2: Differences in residual variation drive apparent differences in estimated 
coefficients 

 

Scale of 
residual 

variation for 
Group 1 (σ1) 

Mean 
value of 

estimated 
β2 for 

Group 1 

Number of times β2 
was falsely found 
to differ across 
groups (1000 

simulations, p=.05) 
1.0 2.88 55 
1.2 2.42 223 
1.4 2.07 681 
1.6 1.81 923 
1.8 1.61 988 
2.0 1.45 997 

 
The equation 
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was estimated on data generated according to the equation: 
 

igiii xxy εσ++= 21
* 2  

x1, x2 ~ N(0, 4) 

σ0=1; σ1=1, 1.2, 1.4, 1.6, 1.8, 2.0 
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Table 3: Allison's method accurately detects differences in residual variation and false 
differences in coefficients 

 

Scale of residual 
variation for Group 1 

(σ1) 

Does σ, the scale of residual 
variation, differ across groups?  

 
Number of positive tests out of 

1000 datasets (p=.05) 

Do any of the coefficients 
differ across groups?  

 
 

Number of positive tests 
out of 1000 datasets 

(p=.05) 

 Wald chi-square test
Log-

likelihood test Log-likelihood test 
1.0 70 68 53 
1.2 243 163 54 
1.4 541 414 46 
1.6 805 677 42 
1.8 933 880 45 

 
The equation 
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was estimated separately for Group 0 and Group 1 on data generated by  
 

igiii xxy εσ++= 21
* 2  

x1, x2 ~ N(0, 4) 

σ0=1; σ1=1.0, 1.2, 1.4, 1.6, 1.8 
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Table 4: Allison's method also accurately detects true differences in coefficients 
 

Additional impact 
of x2 on Group 1 

Does σ, the scale of residual 
variation, differ across groups?  

 
Number of positive tests out of 

1000 datasets (p=.05) 

Do any of the coefficients 
differ across groups?  

 
 

Number of positive tests 
out of 1000 datasets 

(p=.05) 

 Wald chi-square test
Log-

likelihood test Log-likelihood test 
0.0 541 414 46 
0.2 383 283 223 
0.4 249 187 619 
0.6 152 142 893 
0.8 103 113 984 
1.0 61 90 998 

 
The equation 
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was estimated separately for Group 0 and Group 1 on data generated by  
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x1, x2 ~ N(0, 4) 

σ0=1; σ1=1.4 

γ ranges from 0 to 1 
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Table 5: Comparing the ratios of coefficients requires precise estimates of each coefficient 
 

Additional impact 
of x2 on Group 1 

Does the ratio 
12 ββ differ across 
groups? 

 
Number of positive 

tests out of 1000 
datasets (p=.05) 

 
N=100 

Does the ratio 
12 ββ differ across 
groups? 

 
Number of positive 

tests out of 1000 
datasets (p=.05) 

 
N=1,000 

0.0 331 41 
0.2 353 219 
0.4 411 614 
0.6 472 886 
0.8 518 983 
1.0 590 999 

  
The equation 

221101
ln xx

p
p

i

i βββ ++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

 

 
was estimated separately for Group 0 and Group 1 on data generated by 
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x1, x2 ~ N(0, 4) 

σ0=1; σ1=1.4 
γ ranges from 0 to 1 
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Figure 1: Estimates using an interaction term are highly misleading 
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