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ECONOMETRIC METHODS FOR FRACTIONAL RESPONSE 
VARIABLES WITH AN APPLICATION TO 401 (K) PLAN 

PARTICIPATION RATES 

LESLIE E. PAPKE AND JEFFREY M. WOOLDRIDGE 

Department of Economics, Michigan State University, Marshall Hall, East Lansing, MI 48824-1038, USA 

SUMMARY 

We develop attractive functional forms and simple quasi-likelihood estimation methods for regression 
models with a fractional dependent variable. Compared with log-odds type procedures, there is no 
difficulty in recovering the regression function for the fractional variable, and there is no need to use ad 
hoc transformations to handle data at the extreme values of zero and one. We also offer some new, robust 
specification tests by nesting the logit or probit function in a more general functional form. We apply these 
methods to a data set of employee participation rates in 401 (k) pension plans. 

1. INTRODUCTION 

Fractional response variables arise naturally in many economic settings. The fraction of total 

weekly hours spent working, the proportion of income spent on charitable contributions, and 

participation rates in voluntary pension plans are just a few examples of economic variables 
bounded between zero and one. The bounded nature of such variables and the possibility of 

observing values at the boundaries raise interesting functional form and inference issues. In this 

paper we specify and analyse a class of functional forms with satisfying econometric properties. 
We also synthesize and expand on the generalized linear models (GLM) literature from statistics 
and the quasi-likelihood literature from econometrics to obtain robust methods for estimation 
and inference with fractional response variables. 

We apply the methods to estimate a model of employee participation rates in 401 (k) pension 
plans. The key explanatory variable of interest is the plan's 'match rate,' the rate at which a firm 
matches a dollar of employee contributions. The empirical work extends that of Papke (1995), 
who studied this problem using linear spline methods. Spline methods are flexible, but they do 
not ensure that predicted values lie in the unit interval. 

To illustrate the methodological issues that arise with fractional dependent variables, suppose 
that a variable y, 0 < y < 1, is to be explained by a 1 x K vector of explanatory variables 
x a (xI, x2, ..., XK), with the convention that x 1. The population model 

E(y I x)= fl + 42X2+ '+ x + PKXK (1) 

where fi is a Kx 1 vector, rarely provides the best description of E( y I x). The primary reason 
is that y is bounded between 0 and 1, and so the effect of any particular xj cannot be constant 

throughout the range of x (unless the range of xj is very limited). To some extent this problem 
can be overcome by augmenting a linear model with non-linear functions of x, but the predicted 
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values from an OLS regression can never be guaranteed to lie in the unit interval. Thus, the 
drawbacks of linear models for fractional data are analogous to the drawbacks of the linear 
probability model for binary data. 

The most common alternative to equation (1) has been to model the log-odds ratio as a linear 
function. If y is strictly between zero and one then a linear model for the log-odds ratio is 

E(log[y/(1 - y)] I x) = x/ (2) 

Equation (2) is attractive because log[y/(l - y)] can take on any real value as y varies between 
0 and 1, so it is natural to model its population regression as a linear function. Nevertheless, 
there are two potential problems with equation (2). First, the equation cannot be true if y takes 
on the values 0 or 1 with positive probability. Consequently, given a set of data, if any 
observation yi equals 0 or 1 then an djustment must be made before computing the log-odds 
ratio. When the yi are proportions from a fixed number of groups with known group sizes, 
adjustments are ae vailable in the literature-see, for example, Maddala (1983, p. 30). Estimation 
of the log-odds model then corresponds to Berkson's minimum chi-square method. 

Unfortunately, the minimum chi-square method for a fixed number of categories is not 
applicable to certain economic problems. First, the fraction y may not be a proportion from a 
discrete group size-for example, yi could be the fraction of county land area containing toxic 
waste dumps, or the proportion of income given in charitable contributions. Second, one may be 
hesitant to adjust the extreme values in the data if a large percentage is at the extremes. In our 
application to 401(k) plan participation rates, about 40% of the yi takes on the value unity. It 
seems more natural to treat such examples in a regression-type framework. 

Even when model (2) is well defined, there is still a problem. Without further assumptions, 
we cannot recover E( y I x), which is our primary interest. Under model (2) the expected value 
of y given x is 

x r( 1 + exp(xf + v) 

where f( | x) denotes the conditional density of u _log[y/(l - y)] -x/f given x and v is a 
dummy argument of integration. Even if u and x are assumed to be independent, 
E( y Ix) * exp(xfS)]/[l + exp(xfl)], although E( y Ix) can be estimated using, for example, 
Duan's (1983) smearing method. If u and x are not independent, model (3) cannot be estimated 
without estimating f(- I x). This is either difficult or non-robust, depending on whether a 
non-parametric or a parametric approach is adopted. Instead, we prefer to specify models for 
E( y I x) directly, without having to estimate the density of u given x. 

Naturally, it is always possible to estimate E( y I x) by assuming a particular distribution for y 
given x and estimating the parameters of the conditional distribution by maximum likelihood. 
One plausible distribution for fractional y is the beta distribution; Mullahy (1990) suggests this 
as one possible approach. Unfortunately, the estimates of E( y I x) that one obtains are known 
not to be robust to distributional failure (this follows from Gourieroux, Monfort, and 
Trognon(1984); more on this below). Clearly, standard distributional assumptions can fail in 
certain applications. One important limitation of the beta distribution is that it implies that each 
value in [0, 1 ] is taken on with probability zero. Thus, the beta distribution is difficult to justify 
in applications where at least some portion of the sample is at the extreme values of zero or one. 

In the next section we specify a reasonable class of functional forms for E( y I x) and show 
how to estimate the parameters using Bernoulli quasi-likelihood methods. These functional 
forms and estimators circumvent the problems raised above and are easily implemented. Some 
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new specification tests are offered in Section 3, and Section 4 contains the empirical application 
relating 401 (k) plan participation rates to the plan's matching rate and other plan characteristics. 

2. FUNCTIONAL FORMS AND QUASI-LIKELIHOOD METHODS 

We assume the availability of an independent (though not necessarily identically distributed) 
sequence of observations { (x, y,) : i = 1,2, ..., N}, where 0 < yi s 1 and N is the sample size. 
The asymptotic analysis is carried out as N--oo. Our maintained assumption is that, for all i, 

E( yi I xi) = G(xfl) (4) 

where G(-) is a known function satisfying 0< G(z)< 1 for all zER. This ensures that the 
predicted values of y lie in the interval (0, 1). Equation (4) is well defined even if yi can take on 
0 or 1 with positive probability. Typically, G(.) is chosen to be a cumulative distribution 
function (cdf), with the two most popular examples being G(z) A(z) exp(z)/ 
[1 + exp(z)]-the logistic function-and G(z) -¢(z), where <(D) is the standard normal cdf. 
However, G(-) need not even be a cdf in what follows. 

In stating equation (4) we make no assumption about an underlying structure used to obtain 
Yi. In the special case that y, is a proportion from a group of known size ni, the methods in this 
paper ignore the information on n,. There are some advantages to ignoring ni. First, one does not 
always want to condition on n n, in which case y contains all relevant information. Second, the 
methods here are computationally simple. Third, under the assumptions we impose, the method 
suggested here need not be less efficient than methods that use information on group size. (See 
Papke and Wooldridge (1993) for methods that incorporate information on ni in a similar 
framework.) 

We have stated the functional form directly in terms of E( yi I xi), where xi is observable. 
Stating the model of interest in terms of E( y, Ixi, 0,), where Oi is unobserved heterogeneity 
independent of xi, requires one to specify a distribution for i0 in order to obtain E( yi I xi) (which 
is ultimately of interest in any case). Generally, although not always, this will lead to a different 
functional form from equation (4). Allowing for functional forms other than the index structure 
in equation (4) may be worth-while, but it is not within the scope of this paper. In Section 3 we 

present a general functional form test that has power against a variety of functional form 
misspecifications, including those that arise from models of unobserved heterogeneity. 

Under equation (4), j8 can be consistently estimated by non-linear least squares (NLS). The 
fact that equation (4) is non-linear in fi is perhaps the leading reason a linear model for yi or for 
the log-odds ratio is used in applied work. Further, heteroscedasticity is likely to be present 
since Var( yi I xi) is unlikely to be constant when '0<yi < I. Obtaining the NLS estimates and 
heteroscedasticity-robust standard errors and test statistics requires special programming, and 
the NLS estimator will not have any efficiency properties when Var( yi I x) is not constant. Still, 
the motivation underlying NLS is sound because it directly estimates E( y I x). See also Mullahy 
(1990), who suggests NLS for continuously distributed outcomes on a bounded interval. 

The estimation procedure we propose is a particular quasi-likelihood method, as in 
Gourieroux, Monfort, and Trognon (1984) (hereafter GMT) and McCullagh and Nelder (1989) 
(hereafter MN). The Bernoulli log-likelihood function, given by 

l,(b) yi log[G(x.b)] + (1 - yi)log[l1 - G(x,b)] (5) 

is well defined for 0< G( )<1 and is attractive for several reasons. First, maximizing the 
Bernoulli log-likelihood is easy. Second, because equation (5) is a member of the linear 

exponential family (LEF), the quasi-maximum likelihood estimator (QMLE) of 16, obtained 

621 



L. E. PAPKE AND J. M. WOOLDRIDGE 

from the maximization problem 
N 

max li(b) 
b 

is consistent for f provided that equation (4) holds. (This follows from GMT (1984) and is also 
easily seen by computing the score si(b) Vp/l(b)' and showing that E[si(,8)|x] =0 under 
equation (4).) In other words, the Bernoulli, QMLE /3 is consistent and IN-asymptotically 
normal regardless of the distribution of yi conditional on xi; yi could be a continuous variable, a 
discrete variable, or have both continuous and discrete characteristics. As we will see below, in 
some cases for fractional data the Bernoulli QMLE is efficient in a class of estimators containing 
all QMLEs in the LEF and weighted NLS estimators. 

A special case of equation (5)-namely, when G(.) is the logistic function-has been 
suggested in the GLM framework by MN (1989). The GLM approach has two drawbacks for 
economic applications. First, for the logit QMLE it assumes that 

Var(yi I x) = a2G(xifi)[l - G(xifi)] for some a2>0 (6) 

where G(.)=A(.). While we prefer equation (6) as a nominal variance assumption to the 
nominal NLS homoscedasticity assumption Var(Yil xi) = a2, imposing any particular 
conditional variance when performing inference is too restrictive. Mechanisms for which 
equation (6) fails are common and are related to the literature on binary choice models with 
over-dispersion; see, for example, MN (1989, section 4.5). Briefly, if each yi is computed as the 
average of ni independent binary variables, say yi, such that P( y,i = 1 I xi, ni) = G(xfi,), then it 
can be shown that 

Var( yi I xi) = E(ni-l I x)G(x,if)[l - G(xii)] 

Unless ni and xi are independent, equation (6) generally fails. In our application, where yij is a 
binary indicator for whether worker j at firm i contributes to a 401 (k) plan, ni is the number of 
workers at firm i, and xi contains firm characteristics, ni and xi are unlikely to be independent in 
the population. In addition, equation (6) can fail if there are unobserved group effects. Notice, 
however, that neither of these situations invalidates equation (4), which is all that is needed to 
consistently estimate /, using the Bernoulli QMLE. 

The second drawback to the GLM approach is related to the first: if the variance assumption 
(6) fails, MN (1989, p. 330) reject the logit quasi-likelihood approach and suggest a more 
complicated quasi-likelihood. But this begs the issue of whether the conditional mean model (4) 
is appropriate. Here, we are primarily interested in the conditional mean. Rather than 
abandoning the Bernoulli QMLE because equation (6) might fail, we propose asymptotically 
robust inference for the conditional mean parameters. 

To find the asymptotic variance of the Bernoulli QMLE, define g(z) dG(z)/dz, 
Gi - G(xfi) - Yi, and gi = g(xif). Then the estimated information matrix is 

A N ,^2x 

A - A gi X (7) 
·i= [Gi (1 -Gi)] 

The standard error of Bi reported from standard binary response analysis (regardless of the 
nature of yi) would be obtained as the square root of the jth diagonal element of A-1. Under 
equation (4) only, this is not a consistent estimator of the true asymptotic standard error; we 
also need the outer product of the score. Let ui yi-G(xfi,) be the residuals (deviations 
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between Yi and its estimated conditional expectation), and define 
N 2A2 2 

B = uig i Xi 
(8) 

i=1 [Gi(1-Gi)]2 

Then a valid estimate of the asymptotic variance of / is 

_1BA_-1 (9) 

The standard errors are obtained as the square roots of the diagonal elements of equation (9); see 
GMT (1984) and Wooldridge (1991b) for general treatments. 

Interestingly, the robust standard errors from equation (9) in the context of ordinary logit 
and probit are computed almost routinely by certain statistics and econometrics packages, 
such as STATA® and SST®. Unfortunately, the packages with which we are familiar 
automatically transform the dependent variable used in logit or probit into a binary variable 
before estimation, or do not allow non-binary variables at all (STATA® and SST® fall into 
the first category). With the minor change of allowing for fractional y in so-called binary 
response analysis, standard software packages could be used to estimate the parameters in 
equation (4) and to perform asymptotically valid inference. Alternatively, programming the 
estimator in a language such as GAUSS®, as we do for our application in Section 4, is fairly 
straightforward. 

If the GLM assumption (6) is maintained in addition to (4) then a2 is consistently estimated 
by 

N 

d2=(N-K)-'1Eui (10) 
i=1 

where ai are the weighted residuals (sometimes called the Pearson residuals): 

ai- ,[Gi(1 - )]1/2 (11) 

(It is standard practice in the GLM literature to use the degrees-of-freedom adjustment in 
equation (10) in estimating a2.) Then the asymptotic variance of / is estimated as o2A-1; see 
also MN (1989, p. 327). In addition, under equation (6) Var(yilxi) is proportional to the 
variance in the Bernoulli distribution, and so by the results of GMT (1984), the Bernoulli 
QMLE is efficient in the class of QMLEs in the LEF. This is essentially the same as the class of 
all weighted NLS estimators, and so it is a non-trivial efficiency result. 

To summarize, we have chosen a functional form that ensures estimates of E(ylx) are 
between zero and one, and a quasi-likelihood function that leads to a relatively efficient QMLE 
under a popular auxiliary assumption-namely, equation (6). In addition, we guard against 
failure of this variance assumption by using equation (9) as the variance estimator. In the next 
section we suggest specification tests that are valid with and without equation (6). 

3. SPECIFICATION TESTING 

Specification testing in this framework can be carried out by applying the results of Wooldridge 
(1991a,b). We discuss two forms of the test. The first is valid under equations (4) and (6); these 
are non-robust tests because they maintain the GLM variance assumption. The second, robust 
form of the test requires only equation (4). 

We focus primarily on Lagrange multiplier or score tests that nest E(y I x) = G(x/l) within a 
more general model. Let m(x, z,/8, y) be a model for E( y x, z), where z is a 1 x J vector of 
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additional variables; the elements of z can be non-linear functions of x (in which case 
E( y I x) = E( y I x, z)), or variables not functionally related to x, or both. The vector y is a Q x I 
vector of additional parameters. The null is assumed to be Ho: y= yo for a specified vector yo 
(often yo = 0). Then, by definition, 

G(x,8) - m(x, z, y, Yo) (12) 

Given the estimates under the null, /B, define the 1 x K vector V i, - am(x,, z,/ , 7o)//fi = gix 
and the 1 x Q vector Vyri ,mi (x,,z1,,, yo)/~y; these are the gradients of the regression 
function with respect to / and y, respectively, evaluated under the null hypothesis. Define the 
weighted residuals ii as in equation (11) and the weighted gradients as 

Vf,ri = VA,in/[Gi(1 - Gi)]1/2= i/[Gi(1 - Gi)]112 (13) 

V7i -3 V y7 /[G(i(1 - Gi)]1/2 (14) 

As in equation (11), the weights are proportional to the inverse of the estimated nominal 
standard deviation (see equation (6)). A valid test of Ho: y= Yo depends on what is maintained 
under the null hypothesis. Under the assumptions 

E( Yi I xi, zi) = G(xifi) (15) 

and 

Var( y,i xi, zi) = a2G(xil,)[1 - G(x,if)] (16) 

a valid statistic is obtained as NR 2 from the OLS regression 

uii on Vwrhi, Vrhi i = 1,2, ..., N (17) 

where Ru2 is the constant-unadjusted r-squared. Under equations (15) and (16), NRu2 is 
distributed asymptotically as 2 -see Wooldridge (199 a). 

For binary choice models, Engle (1984) and Davidson and MacKinnon (1984) suggest a test 
based on regression (17) for logit and probit. Gurmu and Trivedi (1993) present results for a 
class of models that allows testing the logit function against a more general index function. But 
for fractional dependent variables it is important to use the NRu2 form rather than the explained 
sum of squares form suggested in Davidson and MacKinnon (1984): the latter test requires 
a2 = 1, which is always the case for binary response variables but is too restrictive for fractional 
response variables. Alternatively, as in Gurmu and Trivedi (1993), each term in regression (17) 
can be divided by 6 and then the explained sum of squares can be used. This is essentially the 
same as the NR2 statistic (although they will differ if 6 is estimated with the degrees-of-freedom 
adjustment in equation (10)). 

It is often useful to have a likelihood-based statistic, especially for testing exclusion 
restrictions. Under the same two assumptions (15) and (16), a quasi-likelihood ratio (QLR) 
statistic has a limiting chi-square distribution. Let N(f, Yo) denote the log-likelihood 
evaluated under the null, and let 4N(P, 5) denote the log-likelihood from the unrestricted 
model (that is, the Bernoulli log-likelihood with m(x,z, f, y) used in place of G(xi/f)). 
Further, define rmi m(xi, Zi, Bf, )), and let the variance estimator based on the unrestricted 
estimates be 

N 

2 - (N- K - Q)-' (yi- mi)2/[Im(1 - 
ii)] (18) 

i= 

(note that the summation is simply the sum of weighted squared residuals from the unrestricted 

624 



ECONOMETRIC METHODS FOR FRACTIONAL RESPONSE VARIABLES 

model). Then the QLR statistic, defined by 

QLR - 2[~N(P, Y) - £N(f, yo) ]/d2 (19) 

is distributed asymptotically as x2 under the null hypothesis, provided equation (16) holds in 
addition to (15). The validity of this statistic follows because the usual information matrix 
equality holds up to the scalar a2 when the conditional mean and conditional variance are 
correctly specified. 

A form of the LM statistic that is valid under equation (15) alone can be computed from an 
additional regression. First, regress V^ hi on Vrhii and save the 1 x Q residuals, 

r = (fl, i2, ..., ri), i = 1,2,..., N. (This is the same as regressing each element of V^hi on the 
entire vector V rhi, and collecting the residuals.) Next, obtain the 1 x Q vector 

iiri = (,,fil, uii, ..., uriiQ). The robust LM statistic is obtained as N - SSR, where SSR is the 
usual sum of squared residuals from the auxiliary regression of unity on ii'r: 

1 on uiri i= 1l,...,N (20) 

Under Ho, which is equation (16) in this case, N - SSR 2 
%X2. The validity of this procedure is 

discussed further in Wooldridge (1991a,b). Briefly, N- SSR from equation (20) is a quadratic 
form in the vector N-1/2 EiN1 r'ii, with a weighting matrix that is the inverse of a consistent 
estimator of its asymptotic variance whether or not equation (16) holds. 

In testing for omitted variables, one can use the QLR statistic or the usual LM statistic under 
equations (15) and (16), or the robust LM statistic under equation (15) only. (Of course, Wald 
statistics can also be defined for these two cases, but they are computationally more 
cumbersome than the QLR and LM statistics.) For omitted variables tests, 
m(xi, zi, , y) = G(xfi + ziy), V,mi = g,zi = g(Xif) zi, and V,mi = gizi/[Gi(1 - Gi)]1/2. One 
way to test for functional form is to define zi as polynomials, interactions, or other functions of 

i·. 
A general functional form diagnostic is obtained by extending Ramsey's (1969) RESET 

procedure to index models. For example, let the alternative model be 

E( yi | xi) = G(xfi + Y7 (xi)2 + y2(Xi.)3) (21) 

where, again, G(.) is typically the logistic function or the standard normal cdf. This alternative 
functional form (or including even higher powers of xfi) can be motivated quite generally. 
Since G(.) is a strictly increasing function in most applications, any index model of the form 
E( yi I xi) = H(xi/i) for unknown H can be arbitrarily well approximated by G(h_=1 Yj(xi/)j) for 
J large enough (by standard approximation results for polynomials). Since models with 
unobserved heterogeneity of the form E( yi I xi, ,i) = G(x,fi + Oi), where i is independent of xi, 
have an index structure, a test of the null model against equation (21) should have power for 
alternatives that can be derived explicitly from models of unobserved heterogeneity. In practice, 
the first few terms in the expansion are the most important, and we use only the quadratic and 
cubic terms. 

In the context of equation (21), the hypothesis that equation (15) holds (with zi = x,) is 
stated as Ho: Yi = 0, Y2 = 0. This is easily tested using the LM procedures outlined above. 

(By contrast, the QLR statistic is computationally difficult as well as nonrobust.) First, 
estimate the model under the assumption Y7 = Y2 = 0, as is always done. Define /, Gi, gi,ui, 

Vrhi, and ii as before. The gradient with respect to Y-(7Y, 72)' is Vyri= g' (xj)2, 
gi (xi])3}, and V hi is defined in equation (14). The statistic obtained from regression (17) 
is distributed approximately as x2 under (15) and (16). The robust form is obtained from 

regression (20). 
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4. EMPIRICAL APPLICATION: PARTICIPATION IN 401 (k) PENSION PLANS 

401(k) plans differ from traditional employer-sponsored pension plans in that employees are 

permitted to make pre-tax contributions and the employer may match part of the contribution. 
Since participation in these plans is voluntary, the sensitivity of participation to plan 
characteristics-specifically the employer matching rate-will play a critical role in retirement 

saving. 
Pension plan administrators are required to file Form 5500 annually with the Internal Revenue 

Service, describing participation and contribution behavior for each plan offered. Papke (1995) 
uses the plan level data to study, among other things, the relationship between the participation 
rate and various plan characteristics, including the rate at which a firm matches employee 
contributions. Papke (1995) also contains a discussion of the theoretical underpinnings relating 
participation and the size of the match rate. Not surprisingly, under standard assumptions on the 
utility function, participation is positively related to the match rate. 

The participation rate (PRATE) is constructed as the number of active accounts divided by the 
number of employees eligible to participate. An active account is any existing 401(k) 
account-a contribution need not have been made that plan year. The plan match rate (MRATE) 
is not reported directly on Form 5500, but can be approximated by the ratio of employer to 
employee contributions for plans that provide some matching. This calculated match rate may 
exceed the plan's marginal rate because employer contributions include any flat per participant 
contribution or any helper contribution made to pass anti-discrimination tests. While the 
calculated match rate exceeds the marginal incentive facing each saver, it may be a better 
indicator of overall plan generosity. See Papke (1995) for additional discussion. 

Papke (1995) uses a spline method to estimate models with the participation rate, PRATE, as 
the dependent variable. She finds a statistically significant positive relationship between PRATE 
and MRATE, with some evidence of a diminishing marginal effect. Here, we allow for a 
diminishing marginal effect of MRATE on PRATE by using a conditional mean of the form (4) 
with G(.) taken to be the logit function. We compare this directly with linear models where 
PRATE is the dependent variable. 

Table I presents summary statistics for the sample of 401 (k) plans from the 1987 plan year. 
Statistics are presented separately for the 80% of the plans with match rates less than or equal to 
one. Match rates well above one likely indicate end-of-plan year employer contributions made to 
avoid IRS disqualification; see Papke (1995) for further discussion. Initially, we focus on the 
subsample with MRATE 6 1. 

Participation rates in 401 (k) plans are high-averaging about 85% in our sample. Over 40% 
of the plans (42-73) have a participation proportion of exactly unity-all eligible employees 
have an active account. This characteristic of the data would make a log-odds approach 
especially awkward because an adjustment would have to be made to 40% of the observations. 

The plan match rate averages about 41 cents on the dollar. Other explanatory variables include 
total firm employment (EMP) which averages 4,622 across the plans. The plans average 12 
years in age (AGE). SOLE is a binary indicator for whether the 401 (k) plan is the only pension 
plan offered by the employer. Sole plans comprise about 37% of the sample. 

We begin with the linear model 

E(PRATE I x) = #, + B2MRATE + f3 log(EMP) + ,4 log(EMP)2 + f5AGE + B6AGE2 + ,7SOLE 
(22) 

which we estimate by ordinary least squares (OLS), initially using the subsample for which 
MRATE< 1. The results are given in the first column of Table II. Because of the anticipated 
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Table I. Summary statistics 

Standard 
Variable Mean deviation Minimum Maximum 

Full sample 
Number of observations = 4734 

PRATE 0.869 0.167 0.023 1 
MRATE 0.746 0.844 0.011 5 
EMPLOYMENT 4621.01 16299.64 53 443040 
AGE 13-14 9.63 4 76 
SOLE 0.415 0.493 0 1 

Restricted sample (MRATE < 1) 
Number of observations = 3874 

PRATE 0.848 0.170 0.023 1 
MRATE 0.408 0.228 0.011 1 
EMPLOYMENT 4621.91 17037.11 53 443040 
AGE 12.24 8.91 4 76 
SOLE 0.373 0.484 0 1 

heteroscedasticity in this equation, the heteroscedasticity-robust standard errors are reported in 
brackets below the usual OLS standard errors. 

All variables are highly statistically significant except for the sole plan indicator. 
Interestingly, there is very little difference between the usual OLS standard errors and the 
heteroscedasticity-robust ones. The key variable MRATE has a t-statistic well over 10. Its 
coefficient of 0.156 implies that if the match rate increases by 10 cents on the dollar, the 
participation rate would increase on average by almost 1.6 percentage points. This is not a small 
effect considering that the average participation rate is about 85% in the subsample. The linear 
model implies a constant marginal effect throughout the range of MRATE that cannot literally be 
true. 

That the linear model does not fit as well as it should can be seen by computing Ramsey's 
(1969) RESET (and its heteroscedasticity-robust version). Let u^i be the OLS residuals and let ,Yi 
be the OLS fitted values. Then, the LM version of RESET is obtained as NR2 from the 
regression 

ui on x, y2, i= 1,2,...,N 

Under the null that equation (22) is true, NR2 a x2 (homoscedasticity is also maintained). The 
heteroscedasticity-robust version is obtained as N - SSR from regression (20) given the proper 
definitions: let uii = ui and let ri be the 1 x 2 residuals from the regression of (y2, y3) on xi; see 
Wooldridge (1991a) for more details. Using either non-robust RESET or its robust form, 
equation (22) is strongly rejected (the 1% critical value for a x2 is 9.21). Because RESET is a 
test of functional form, we conclude that equation (22) misses some potentially important non- 
linearities. (As usual, there is a potential difference between a statistical rejection of a model and 
the economic importance of any misspecification.) 

We next use the logit QMLE analysed in Section 2 to estimate the non-linear model 

E(PRATE I x) = G(,1 + B2MRATE + 83 log(EMP) + 84 log(EMP)2 + 15AGE + f6AGE2 + B7SOLE) 
(23) 
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Table II. Results for the restricted sample 

(1) (2) (3) (4) 
Variable OLS QMLE OLS QMLE 

MRATE 

MRATE2 

log(EMP) 

log(EMP)2 

AGE 

AGE2 

SOLE 

ONE 

Observations: 
SSR: 
SER: 
R-squared: 
RESET: 

Robust RESET: 

0-156 
(0-012) 
[0-011] 

-0-112 
(0-014) 
[0-013] 
0.0057 

(0-0009) 
[0-0009] 
0-0060 

(0-0010) 
[0-0009] 

-0-00007 
(0-00002) 
[0-00002] 

-0-0001 
(0-0058) 
[0-0060] 
1-213 

(0-051) 
[0-048] 

3784 
93-67 
0-157 
0-143 

39-55 
(0-000) 
45-36 
(0-000) 

1-390 
(0-100) 
[0-1081 

-1-002 
(0.111) 
[0-110] 
0*052 

(0-0071) 
[0-0071 
0-0501 

(0-0087) 
[0-0089] 

-0-00052 
(0-00021) 
[0-00021] 
0.0080 

(0-0468) 
[0-0502] 
5.058 

(0-427) 
[0-4211] 

3784 
92-70 
0.438 
0-152 
0-606 

(0-738) 
0*782 

(0-676) 

0-239 
(0-042) 
[0-046] 

-0-087 
(0-043) 
[0-044] 

-0-112 
(0-014) 
[0.013] 
0-0057 

(0-0009) 
[0-0009] 
0.0059 

(0-0010) 
[0-0009] 

-0-00007 
(0-00002) 
[0-00002] 
0*0008 

(0-0058) 
[0-0060] 
1-198 

(0-052) 
[0-049] 

3784 
93-56 
0-157 
0-144 

35-06 
(0-000) 
40-08 
(0-000) 

1.218 
(0-342) 
[0-378] 
0.196 

(0-373) 
[0-425] 

-1-002 
(0-111) 
[0-110] 
0.0522 

(0-0071) 
[0-0071] 
0.0503 

(0-0087) 
[0-0088] 

-0-00052 
(0-00021) 
[0-00021] 
0-0061 

(0-0470) 
[0-0504] 
5-085 

(0-430) 
[0-423] 

3784 
92-69 
0.438 
0-152 
0-732 

(0-693) 
0-836 

(0-658) 

Notes: The quantities in (*) below estimates are the OLS standard errors or, for QMLE, the GLM standard errors; the 
quantities in [-] are the standard errors robust to variance misspecification. SSR is the sum of squared residuals and 
SER is the standard error of the regression; for QMLE, the SER is defined in terms of the weighted residuals. The 
values in parentheses below the RESET statistics are p-values; these are obtained from a chi-square distribution with 
two degrees-of-freedom. 

where G(.) is the logistic function. (The GAUSS® code used for the estimation and testing is 
available on request from the authors.) The partial effect of MRATE on E(PRATElx) is 
aE(PRATE | x)/9MRATE, or, for specification (23), g(xfi)B2, where g(z)= dG(z)/dz = exp(z)/ 
[1 + exp(z)]2. Because g(z)--*O as z-- oo, the marginal effect falls to zero as MRATE becomes 
large, holding other variables fixed. 

Column (2) of Table II contains the results of estimating equation (23). The variable MRATE 
is highly statistically significant and, with the exception of SOLE (which is still not significant), 
the directions of effects of all other variables are the same as in the linear model. Unlike the 
linear model, the RESET statistic reveals no misspecification in equation (23); the p-value for 
the robust statistic is 0.676, and it is even larger for the non-robust statistic. Based on this 
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RESET analog, equation (23) appears to capture the non-linear relationship between PRATE 
and the explanatory variables for MRATE < 1. 

There is other evidence that equation (23) fits better than (22). Table II also contains an r- 
squared for each model, which in either case is defined as 1 - SSR/SST, where SST is the total 
sun of squares of the yi. The SSRs, reported in Table II, are based on the unweighted residuals, 
ui y -yi for OLS and QMLE. Thus, the r-squareds are comparable across any model for 
E(PRATE I x) and for any estimation methods. From Table II we see that the r-squared from the 
logit model is about 6% higher than the r-squared for the linear model. Also, while OLS chooses 
/5 to maximize the r-squared over all linear functions of x, the logit QMLE does not maximize 
r-squared given the logit functional form; yet the logit model has a higher r-squared than the 
linear model. Since we are only modelling the conditional expectation, with other features of the 
conditional distribution left unspecified, the r-squared is the most appropriate goodness-of-fit 
measure. 

Before directly comparing estimates of the response functions and the marginal effects, some 
other comments are worth making about Table II. First, each method comes with an SER 
(standard error of the regression). These SERs are the estimates of a for the different models, 
and thus are not directly comparable. For OLS, o2 is based on the unweighted OLS residuals, 
while for QMLE, o2 is based on the weighted residuals; see equation (11). Because = 0-438 
for the QMLE, this implies that the usual logit standard errors obtained from the inverse of the 
Hessian, A1-, are over twice as large as the GLM standard errors that are obtained as the 
squared roots of the diagonal elements of 6r2A-. The latter (smaller) standard errors are the 
appropriate ones under the GLM assumption (6) because they do not assume that a = 1. MRATE 
is underdispersed (a2 < 1) relative to the Bernoulli variance (a2 = 1). 

We now turn to a direct comparison of the linear and logistic models. To compare the 
estimated response functions and marginal effects, we need to choose values for MRATE, EMP, 
AGE, and SOLE. Because most 401 (k) plans are accompanied by other pension plans, we set 
SOLE = 0. We also set AGE at roughly its sample average, AGE = 13. To gauge the differences 
across firms of different sizes we choose three firm sizes: small (EMP = 200), average 
(EMP = 4620), and large (EMP = 100,000) The estimated relationships between E(PRATE I x) 
and MRATE for the three different firm sizes are graphed in Figure 1. Interestingly, for a small 
firm the linear and logistic predictions are most different at high match rates; for the average 
sized firm, the difference is largest at low match rates; and for a large firm the largest difference 
is at a match rate between 0 5 and 0.75. 

As is seen from Table II, the marginal effect of MRATE on E(PRATE I x) for the linear model 
is 0 156 for any value of x. For the logistic model, we set SOLE=0, AGE= 13, and 
EMP = 4,620, and compute the estimated partial effect at three different match rates: 
MRATE1 =0, MRATE = 0.50, and MRATE = 1.0. The estimated derivatives are 0.288, 0.197, 
and 0.118, respectively, which illustrates the diminishing marginal effect as MRATE increases. 
Perhaps not surprisingly, the marginal effect estimated from the linear model is bracketed by the 
low and high estimates from the non-linear model. The differences in the estimated marginal 
effects are not trivial; for example, the non-linear model predicts an increase in participation of 

approximately 2.9 percentage points in moving from a zero match rate to MRATE = 0.10, rather 
than the 1 6 percentage point increase obtained from the linear model. Similarly, at high match 
rates the marginal effect from increasing the match rate is estimated to be lower in the non-linear 
model. 

One way to try to salvage the linear model is to use a more flexible functional form in the 
match rate. A popular functional form that allows a diminishing marginal effect is a quadratic. 
Column (3) contains estimates of the linear model that includes a quadratic in MRATE. The 
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Figure 1. PRATE versus MRATE for various fi sizes: (a) EMP=200; (b) MP=4620; (c) 
EMP = 100,000 

squared term is marginally significant (robust t-statistic -1.98), and this does give a 
diminishing marginal effect. But even with this additional regressor the model in column (3) 
does not fit as well as the logistic model without the quadratic term (the r-squared for the linear 
model with the quadratic term is only 0-144). Further, the rejection of the model by RESET is 
almost as strong as it was without the quadratic. Thus, we conclude that simply adding MRATE2 
to equation (22) is not sufficient. (The spline approach used by Papke (1995) is more effective in 
capturing a diminishing effect in this application, but the coefficients are more difficult to 
interpret.) 

When MRATE2 is added to equation (23) it turns out to be insignificant. Thus, the logistic 
functional form, with the term linear in MRATE, appears to be enough to capture the 
diminishing effect, at least for MRATE < 1. This is a useful lesson: a significant quadratic term 
in a linear model might be indicating that an entirely different, more parsimonious, functional 
form can provide a better fit. Model (23) is clearly the preferred specification thus far. 

As another test of model (23), we interact log(EMP) with each of MRATE, AGE, AGE2, and 
SOLE and test for exclusion of these four interactions using the LM and QLR tests discussed in 
Section 3. This is similar in spirit to a Chow test where the sample is split based on firm size, but 
here we do not need to make an arbitrary choice about where to split the sample. The LM statistic 
is 16-52, the robust LM statistic is 14-41, and the QLR statistic, computed from equation (19), is 
15-78 (2 = -1547-33, £ = - 1548-84, and 6=2 = 0.1914). The associated p-value for the robust LM 
statistic is 0s006, which rejects equation (23) at the 1% significance level. Thus, equation (23) 
apparently misses some non-linearities, although the significance level is not very small given the 
large sample size (compare the p-value for RESET in the linear model). 

From a practical perspective, the story about the relationship between expected PRATE and 
MRATE does not change: the t-statistic on the term log(EMP)*MRATE is only -1-27 (the 
robust t-statistic is -1-13). In fact, when log(EMP) MRATE is dropped from the more general 
model, the coefficient on MRATE becomes 1*396, which is a trivial change from 1*390, the 
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estimate from equation (23). The most significant interaction term is log(EMP)- SOLE, with a 
t-statistic of -3.48 (robust t-statistic = -3.47). We report only equation (23) because of its 
simplicity and because it captures the economically important relationship between PRATE and 
MRATE. The full set of results is available on request from the authors. 

The basic story does not change when we estimate the models over the entire sample. One 
notable difference is that a quadratic term in MRATE is now significant in equation (23), 
reflecting a faster diminishing effect at high match rates. Table III presents the same models as 
Table II, now estimated over the full sample. First consider the models without MRATE2. The 
discrepancy in r-squareds between equations (23) and (22) is even greater than before, but 
RESET now rejects both equations, although the logistic model is rejected less strongly. In 
columns (3) and (4) we put MRATE2 into each equation. Model (22) is still soundly rejected, 
whereas (23) with MRATE2 passes the RESET test with a p-value above 0.50. For the full 
sample, it seems that a quadratic in MRATE-or some other way to capture additional 
non-linearities- is needed to provide a reasonable fit. 

Table III. Results for the full sample 

(1) (2) (3) (4) 
Variable OLS QMLE OLS QMLE 

MRATE 

MRATE2 

log(EMP) 

log(EMP)2 

AGE 

AGE2 

SOLE 

ONE 

Observations: 
SSR: 
SER: 
R -squared: 
RESET: 

Robust RESET: 

0-034 
(0.003) 
[0-003] 

-0-101 
(0-012) 
[0-012] 
0-0051 

(0-0008) 
[0-0008] 
0.0064 

(0-0008) 
[0-0007] 

-0-00008 
(0-00002) 
[0-00002] 
0*0140 

(0-0050) 
[0.0052] 
1.213 

(0-045) 
[0-044] 

4734 
120-70 

0.154 
0.144 

85-22 
0.000) 

69-15 
(0-000) 

0-542 
(0-045) 
[0-079] 

-1-038 
(0-121) 
[0-110] 
0-0540 

(0-0078) 
[0-0071] 
0-0621 

(0-0089) 
[0-0078] 

-0-00071 
(0-00021) 
[0-00018] 
0-1190 

(0-0510) 
[0-0503] 
5-429 

(0-467) 
[0-422] 

4734 
109-51 

0-502 
0-168 

50-56 
(0-000) 
9-666 

(0-008) 

0-143 
(0.008) 
[0-008] 

-0-029 
(0-002) 
[0-002] 

-0-099 
(0-012) 
[0.012] 
0*0050 

(0-0008) 
[0-0008] 
0-0056 

(0-0008) 
[0-0007] 

-0-00007 
(0-00002) 
[0-00001] 
0-0066 

(0-0049) 
[0-0051 ] 
1.170 

(0-044) 
[0-042] 

4734 
107-76 

0-151 
0-182 

83-80 
(0-000) 
98-51 
(0-000) 

1.665 
(0-089) 
[0-104] 

-0-332 
(0-021) 
[0-026] 

-1-030 
(0-112) 
[0-110] 
0.0536 

(0-0072) 
[0-0071] 
0-0548 

(0-0082) 
[0-0077] 

-0-00063 
(0-00019) 
[0-00018] 
0-0642 

(0-0471) 
[0.0498] 
5.105 

(0.431) 
[0-416] 

4734 
105-73 

0-461 
0-197 
1.370 

(0.504) 
1.275 

(0.529) 

Note: See Table II. 
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Putting MRATE2 into equation (23) has the usual drawback for quadratics: it implies an eventual 
negative marginal effect. In this case, the marginal effect becomes negative at a match rate of about 
2.51. This is a high value for MRATE, but there are some match rates this large in the full sample. 

5. CONCLUSION 

The functional forms offered in this paper are viable alternatives to linear models that use either 
y or the log-odds ratio of y as the dependent variable. No special data adjustments are needed for 
the extreme values of zero and one, and the conditional expectation of y given the explanatory 
variables is estimated directly. The quasi-likelihood method we propose is fully robust and 
relatively efficient under the GLM assumption (6). The empirical application to 401(k) plan 
participation rates illustrates the usefulness of these methods: while a linear model to explain the 
fraction of participants is strongly rejected, the logistic conditional mean specification is not. 

Methods for fractional dependent variables have many applications in economics. For 
example, Hausman and Leonard (1994) have recently applied the methods suggested here to 
estimate a model for Nielsen ratings for telecasts of NBA basketball games. 
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