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Abstract 

This entry discusses the challenges that proportions pose when including them in an analysis and solutions 

that have been proposed to those challenges. Analyzing a single proportion as a dependent variable is hard 

because the upper and lower bound of the proportion will result in nonlinearity of effects. Moreover, these 

bounds will typically result in heteroscedasticity. Multiple proportions that add to one as dependent variables 

have the additional challenge that these variables are mutually dependent; if you spent an extra minute a 

day watching television, then that minute cannot be spent on other activities. So the proportions tend to 

be negatively correlated. The mutual dependence of proportions also poses a challenge when proportions 

are added as explanatory variables. Effects of explanatory variables are often interpreted as the expected 

change in the explained variable for a unit change in the explanatory variable while keeping all other variables 

constant. This latter part is logically impossible when adding multiple proportions as explanatory variables. 

Introduction 

The purpose of using proportions is to make observations comparable by standardizing them. Consider the 

expenditure of municipalities on law enforcement, for example. In this case, it makes sense to compare the 

proportion of the total budget spent on law enforcement, in order to more meaningfully compare large and 

small cities. Proportions can enter an analysis as dependent or independent variables. An analysis may 

involve a single proportion (e.g., the proportion of a municipal budget spent on law enforcement) or multiple 

proportions (e.g., the proportions of a municipal budget spent on law enforcement, urban planning, social 

work, and other). 

A single proportion as a dependent variable is hard to analyze using linear regression, as the upper and lower 

bound of the proportion will result in nonlinearity of effects. Moreover, these bounds will typically result in 

heteroscedasticity. There are two main strategies for modeling proportions. The first strategy uses maximum 

likelihood to model the proportion as a beta distribution, whereby the conditional mean and variance depends 

on the explanatory variables using link functions, like the logit link function. The second strategy dispenses 

with the necessity to specify a distribution for the proportion, by maximizing the quasi-likelihood and only 

model the conditional mean using a link function. 

Multiple proportions that add to one as dependent variables have the additional challenge that these variables 

are mutually dependent; if you spent an extra minute a day watching television, then that minute cannot 

be spent on other activities. So the proportions tend to be negatively correlated. Both solutions to single 

proportion problem can be generalized to the multiple proportion case: The multivariate generalization of 

the beta distribution is the Dirichlet distribution, and one can use quasi-likelihood with a multinomial logit 

link function to let the conditional means depend on explanatory variables. Dirichlet regression implies the 

negative correlation between the dependent variables under independence, while quasi-likelihood models 
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treat the correlation as a nuisance parameter. So both classes of models may work well when one is 

interested in the influence of other explanatory variables. For example, how does the political orientation 

of the city council influence the proportions of the budget spent on various categories. However, these two 

classes of models are less suited when one is interested in the correlation between the proportions. For 

example, can a city spend a smaller part of its budget on policing if it spends a larger part of its budget 

on social projects. A common strategy for such problems is to use a multivariate normal distribution on a 

transformation of the proportions. 

The mutual dependence of proportions also poses a challenge when proportions are added as explanatory 

variables. Effects of explanatory variables are often interpreted as the expected change in the explained 

variable for a unit change in the explanatory variable while keeping all other variables constant. This latter 

part is logically impossible when adding multiple proportions as explanatory variables. 

Proportions 

The purpose of a proportion is to make observations comparable, even when there are wild differences in 

their base. For example, 10 employees participating in a firm’s pension plan means something very different 

when the firm has 10 employees than when it has 1,000 employees. To make these firms comparable, the 

number of employees participating is divided by the total number of employees to create a proportion. Such 

a proportion has a logical lower bound of zero, as it is impossible that less than nobody participates in the 

pension plan. Similarly, there is the logical upper bound of one, as it is impossible that more than everybody 

participates. Moreover, for a set of mutually exclusive and exhaustive categories—for example, the firm’s 

pension plan, any other pension plan, no pension plan—the proportions in each of these categories have to 

add to one. 

Sometimes variables are explicitly defined as proportions but sometimes that is more implicit. For example, 

consider the following survey question from the General Social Survey: “On the average day, about how many 

hours do you personally watch television?” The variable that results from such a survey question will have 

many of the same properties and challenges as a proportion. It would have a lower bound (zero hours per 

day) and an upper bound (24 hours per day). If we have a set of mutually exclusive and exhaustive activities, 

then the number of hours per day spent on these activities would have to add up to 24. 

Proportions often happen at an aggregate level, for example, the proportion of non-Western immigrants in a 

neighborhood. When analyzing these proportions, one has to be careful to remain on that aggregate level. If 

one finds a positive association between the number of cheap houses in a neighborhood and the proportion of 

non-Western immigrants, then it can be very tempting to conclude that non-Western immigrants are attracted 

to cheap houses, that is, make a statement on the individual level rather than the neighborhood level. This 

would be an ecological fallacy (Robinson, 1950). Association on the individual level can be very different from 

the association on the aggregate level, even with a different sign. If one is interested in the lower level effects, 

then the best solution is to get lower level data. If that is not an option, then one can look into ecological 
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inference (King, 1997; King, Tanner, & Rosen, 2004). 

Explaining a Single Proportion 

A proportion is a continuous variable. So it makes sense to start with what for many researchers is the 

default method for explaining continuous variables: linear regression. However, in that case, two problems 

are likely to occur. First, the lower and upper bounds are likely to impose a pattern on the residuals, leading 

to heteroscedasticity. Second, linear regression does not enforce the lower and upper bounds, making it 

possible to get impossible predictions, that is, predicted proportions less than zero or more than one. 

These problems are illustrated using an example analysis of 2017 American Time Use Survey (U.S. Bureau 

of Labor Statistics, 2017). Respondents are asked to report the activities they performed in the previous day. 

The sample is restricted to respondents who work and were asked to report on a nonholiday weekday. In 

this example analysis, we are trying to explain the minutes spent on unpaid household work (e.g., cleaning, 

cooking, childcare, care for adults in the household). This variable has a lower bound of zero, and upper 

bound of 24 × 60 = 1,440 min, and when one adds the times spent on all the activities, then that adds 

up to 1,440 for each respondent. So even though it is not explicitly called a proportion, it has all the main 

characteristics of a proportion. This variable is explained with a linear regression model with the variables, 

usual hours per week doing paid work, the respondents sex and marital status, the work status of the partner, 

age and age squared. These results are not shown, but instead, a plot of the residuals versus the fitted values 

is shown in Figure 1, as this is a clear illustration of the problems that often occur when using linear regression 

on a proportion. 

Ideally, there should be no pattern in this graph. This is clearly not the case: There is a clear downward sloping 

lower bound visible. This can be explained by the fact that no observations can have a negative value on 

the number of minutes spent on household work, so if one predicts 10 min spent on household work, then 

the residual cannot be less than −10. Figure 1 also shows heteroscedasticity; the variance of the residuals is 

much larger at higher predicted values. If the predicted values would have started to approach the maximum, 

the variance would have decreased again. This heteroscedasticity is a consequence of these lower and upper 

bounds. The second problem can be seen by looking at the predicted values: Some of them are negative, 

which is impossible. 

Figure 1. Residual versus predicted value plot for a linear regression. 
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Source: Data from U.S. Bureau of Labor Statistics (2017). 

Maximum Likelihood 

One common way of analyzing proportions is to do a regression analysis while assuming that the proportion 

follows a beta distribution. The beta distribution is a fairly flexible distribution for variables bounded between 

zero and one. It can be parameterized in terms of a location parameter μ and a scale parameter φ. The 

probability density function is: 

f(y | μ, φ) =
Γ(φ)

Γ(μφ)Γ((1 − μ)φ)
yμφ − 1(1 − y)(1 − μ)φ − 1

The Γ( • ) is the gamma function, which can be thought of as a generalization of the factorial function for 

nonintegers. The mean of this distribution is the parameter μ and must thus remain between zero and one. 

The parameter φ is one of the determinants of the variance and must be larger than zero. The variance of 

the beta distribution is μ(1 − μ) 1
1 + φ , and consequently the standard deviation is √μ(1 − μ) 1

1 + φ . This means 

that the variance is both a function of the predicted mean and the parameter φ. The variance decreases 

as φ increases. Also, the variance increases as the predicted mean gets closer to 0.5 and decreases as 

mean approaches either the upper or lower bound. The different shapes possible with a beta distribution are 

illustrated in Figure 2. This figure also shows how the standard deviation (σ) depends on both the μ and the 

φ. 

Figure 2. Various shapes for the beta distribution. 
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A regression type model is created by replacing the parameter μ by a function of the explanatory variables 

and their effects like in linear regression, the so-called linear predictor. To make sure that the predicted means 

respect the lower and upper bounds, the linear predictor is usually transformed with a link function (Ferrari & 

Cribari-Neto, 2004; Kieschnick & McCullough, 2003; Paolino, 2001; Smithson & Verkuilen, 2006). Common 

choices for the link function are the logit and the probit, but others are possible as well (Simas, Barreto-Souza, 

& Rocha, 2010). 

In this model, the variance also changes when the explanatory variables change, as the variance is a function 

of that mean. The variance will decline as the mean approaches either the upper or lower bound. This is in 

line with the pattern of heteroscedasticity commonly found in proportions. One can further improve the model 

for the heteroscedasticity by also replacing φ with a function of explanatory variables (Smithson & Verkuilen, 

2006), typically using a log link function as φ must be larger than 0. This is often advisable because if one 

does not do that the model for μ tries to do two things: Model how the conditional mean depends on the 

explanatory variables and how the conditional variance depends on the explanatory variables. If there is some 

heteroscedasticity that is not captured by the variance function of the beta distribution, then that will introduce 

bias in the estimates (Meaney & Moineddin, 2014). 

A more formal representation of this model is given in Equations (1) through (3). Equation (1) specifies that 

some dependent variable yi, which is bounded between 0 and 1, follows a beta distribution. However, the 

subscript i for the parameters indicate that the parameters differ from observation to observation. Equation 

(2) determines how the parameter μi depends on the explanatory variables xi, and Equation (3) determines 
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how the parameter φi depends on the explanatory variables zi. The functions f( · ) and g( · ) are link functions. 

The argument of the function f( · ) is bounded between zero and one, and the argument of the function g( · ) is 

bounded to be larger than zero. Both functions will turn its argument into a number that can take any value on 

the real number line. A typical example of f( · ) would be the logit link function f(μi) = ln( μi
1 − μi ), while a typical 

example of g( · ) would be the log link function g(φi) = ln(φi). Common link functions for the mean are given 

in Table 1. The sets of explanatory variables xi and zi could be the same variables, partially the same, or 

completely different. 

(1) 

yi~Beta(μi, φi)
(2) 

f(μi) = β0 + β1x1i + β2x2i + … + βkxki = xiβ

(3) 

g(φi) = θ0 + θ1z1i + θ2z2i + … + θkzki = ziθ

One of the nice properties of the logit link function is that the exponentiated coefficients can be interpreted 

directly. Continuing the example, an exponentiated coefficient shows the factor by which the relative 

proportion of time spent on doing household work changes for a unit change in the explanatory variable. The 

relative proportion is the proportion of time spent on household work divided by one minus the proportion of 

time spent on household work. In other words, the proportion of time spent on household work divided by the 

proportion of time spent on other things. As the total is the same for both the numerator and the denominator, 

it drops out, and one can also interpret it as the expected number of minutes doing household work for every 

minute doing something else. 

Regardless of the link function, one can interpret the model by computing marginal effects after estimating the 

model. A marginal effect tells us by how much the mean changes for a unit change in an explanatory variable, 

that is, it is a slope or first derivative. The formula for the marginal effect depends on the link function. To 

get the marginal effect (∂μ / ∂x), one can use the chain rule: ∂μ / ∂x = ∂μ / ∂xβ × ∂xβ / ∂x . The first part is 

given in the last column of Table 1. If the explanatory variable is added linearly, then the latter part is just β

. One complication is that the marginal effect depends on the values on all explanatory variables, so each 

observation in the data will have its own marginal effect. In order to still be able to report “the” marginal 

effect as one number, one typically computes the marginal effect for each observation in the data and reports 

the mean of these marginal effects. This is typically referred to as the average marginal effect. Another 

complication is that the slope at one point on the regression line is not the best description of the effect 

of a categorical variable. Instead, one typically reports discrete differences. Say the categorical explanatory 

variable is the respondent’s biological sex, then one would compute for each observation the predicted 

proportions assuming that person was male and the predicted proportion assuming that person was female. 

The difference between these two is the effect of being female, which differs from person to person depending 

on the other explanatory variables. So to report one effect, one reports the average of these effects. 
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Table 1. Common link functions for the mean in beta regression, the corresponding inverse link function, and 

the first derivative of the inverse link function with respect to xiβ. 

Link Function Name Link Function g(μi) = xiβ 
Inverse Link Function μi = g − 1(xiβ) First Derivative ∂μi / ∂xiβ 

Logit ln( μi
1 − μi ) 

e
xiβ

1 + e
xiβ  

μi(1 − μi) 

Probit Φ − 1(μi) Φ(xiβ) ϕ(xiβ) 

Log-log − ln( − ln(μi)) exp( − exp( − xiβ)) − μiln(μi) 

Complementary log-log ln( − ln(1 − μi)) 1 − exp( − exp(xiβ)) (μi − 1)ln(1 − μi) 

Note. Φ − 1( · ) is the inverse cumulative distribution function or quantile function of the standard normal 

distribution, Φ( · ) is the cumulative distribution function of the standard normal distribution, and ϕ( · ) is the 

probability density function of the standard normal distribution. 

Just as one can look at the marginal effect on the average proportion, one can also look at the marginal 

effect on the standard deviation. The standard deviation of the beta distribution was √μi(1 − μi) 1
1 + φi

, so to 

get the effect of an explanatory variable on the standard deviation, one computes the first derivative of that 

function with respect to that explanatory variable. In general, the marginal effect on the standard deviation 

is then: 1

2sdi(1 + φi) [(1 − 2μi)
∂μi
∂x +

μi(1 − μi)
1 + φi

∂φi
∂x ], where 

∂μi
∂x  and 

∂φi
∂x  depend on the link functions chosen for the 

mean and the scale parameter. For example, if we use the logit link function for the mean and the log link 

function for the scale parameter, then the marginal effect of an explanatory variable on the standard deviation 

is 
vari
2sdi [(1 − 2μi)β − θ

(1 + φi)ziθ ], where vari is the predicted variance for observation i, and sdi is the square 

root of that predicted variance. However, most statistical packages have dedicated commands for computing 

marginal effects such as the margins command in Stata, the margins macro in SAS, or the margins() library 

in R. So usually one uses those commands rather than deriving these formulas and filling them out by hand. 

Table 2 shows an example analysis of the time spent on household work to illustrate how to interpret the 

results from such a model. The dependent variable is the proportion of time in a day spent on doing household 

work. It is the number of minutes spent doing household work divided by 1,440 (the number of minutes in a 

day). The model uses the logit link for the mean function and the log link for the scale function. This means 

that the exponentiated parameters can be interpreted directly. For the mean equation, the constant is the 

relative proportion for the group that has the value zero on all explanatory variables. The usual hours per 

week worked was centered at 40, so the constant refers to men who work 40 hr per week. This group is 

expected to have spent 0.08 min on household work for every minute they spent on other things. Working an 
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hour per week longer decreases the minutes spent on household work per minute spent on other things by a 

factor of 0.99 or (0.99−1) × 100% = −1%. Being a female increases the relative proportion 71%. 

The third column in Table 2 shows the average marginal effects on the time spent doing household work. 

In this case, it makes sense to multiply the marginal effects by 1,440 to get the marginal effects in terms of 

minutes per day. So working 1 hr per week more reduces the time spent on household work by 1.3 min per 

day, and women tend to do 67 min per day more household work than men. 

The exponentiated parameters for the φ equation represent the factor by which this parameter changes for 

a unit change in the explanatory variable. So for a men working 40 hr a week predicts a φ of 6, and this φ

increases by 1% for every hour per week a person works longer. A larger φ means a lower standard deviation, 

so the group of people working long hours are more homogenous (smaller standard deviation) than the group 

of people working short hours. The φ also increases by 1% if someone is a female, but this change is far 

from significant. The marginal effect on the standard deviation (σ) is shown in the last column. The standard 

deviation decreases by 1 min for every hour per week a person works longer. This is due to two effects: First, 

the negative effect of working hours on the mean proportion spent on household work means that people 

working long hours will be closer to the lower bound, and this will reduce the standard deviation. Second, 

the positive effect of working hours on φ will reduce that variance even more for people with longer working 

hours. The standard deviation is substantially larger for women than for men, but this difference in standard 

deviation is almost entirely driven by the difference in mean. 

Table 2. Results from a beta regression explaining the proportion of a day spent on household work. 

exp(β) Marginal effecta (in minutes per day) 

μ φ μ σ 

Usual hours per week work 

0.99*** 1.01* −1.30*** −1.12*** 

(0.00) (0.01) (0.00) (0.00) 

Respondent’s gender male (reference) (reference) (reference) (reference) 

female 1.71*** 1.01 67.18*** 33.47*** 

(0.00) (0.88) (0.00) (0.00) 

Constant 0.08*** 6.10*** 

(0.00) (0.00) 
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exp(β) Marginal effecta (in minutes per day) 

μ φ μ σ 

Observations 2,784 

Source: Data from U.S. Bureau of Labor Statistics (2017). 

Note. p values in parentheses. 

a Discrete changes are used for categorical variables. 

*p < .05. **p < .01. ***p < .001. 

A key issue with beta regression is that it is only defined for values between but not including zero and one. 

So this model cannot handle proportions of exactly zero or one. In the earlier example, there are a substantial 

number of respondents who did not do any household work the previous day. The example actually used a 

transformed proportion suggested by M. Smithson and J. Verkuilen (2006) to “nudge” those zeros a bit in. 

If y is the original proportions with zeros and/or ones, and N is the total number of observations, then the 

transformed proportion is 
y(N − 1) + 0.5

N . 

An alternative way of dealing with exact zeros and ones is to estimate a zero one inflated beta regression 

(Cook, Kieschnick, & McCullough, 2008; Ospina & Ferrari, 2010, 2012). This will estimate the probabilities of 

having the value zero and/or one as separate processes. The logic is that we can often think of proportions 

of zeros or ones as being qualitatively different and generated through a different process as the other 

proportions. For example, we can think of doing no household work at all as something very different from 

doing a tiny bit of household work. 

The zero one inflated beta distribution consists of three parts: 

• a probability that the dependent variable is zero, Pr(y = 0). This probability could be made dependent 

on explanatory variables using any model for a binary dependent variable. For example, it can be 

modeled as a logistic regression. 

• a probability that the dependent variable is one, Pr(y = 1). This probability can be modeled in the 

same way as the Pr(y = 0). 

• the distribution of the dependent variable given that it is between zero and one, which is modeled as 

a beta distribution as in Equations (1) through (3). 

This means that yiis assumed to be distributed as: 

f(yi) = Pr(yi = 0) + Pr(yi = 1) + (1 − Pr(yi = 0)) × (1 − Pr(yi = 1)) × Beta(μi, φi)
If there are no exact ones in the data, then this model simplifies to a zero-inflated beta: 
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f(yi) = Pr(yi = 0) + (1 − Pr(yi = 0)) × Beta(μi, φi)
Similarly, if there are no exact zeros in the data, the model simplifies to a one inflated beta: 

f(yi) = Pr(yi = 1) + (1 − Pr(yi = 1)) × Beta(μi, φi)
Continuing the example started earlier, Table 3 shows the results of modeling the proportion of the day spent 

on household work as a zero-inflated beta. The beta part is modeled as before, that is, a logit link function 

for μi and a log link function for φi. The probability of a zero—that is, spending no time at all on household 

work—is also modeled with a logit link function. There are now three sets of parameters: one for the mean, 

one for the probability of choosing zero, and one for the scale parameter φi. When exponentiated, all three 

sets of parameters can be interpreted directly. Starting with the μ equation: The constant means that a male 

who works 40 hr per week and does some household work is expected to spend 0.10 min on household work 

for every minute he spends on something else. This ratio decreases by 1% for every hour the person works 

longer and increases by 47% if the respondent is female. The second column of Table 3 gives the odds and 

odds ratios for doing no household work at all. The odds of doing no household work for men who work 40 

hr per week is 0.24 (the constant), that is, we expect in that group to find 0.24 persons who have done no 

household work for every person who has done some household work. This odds increases (a nonsignificant) 

1% for every hour one works longer and decreases by 68% if the respondent is a female. The φ parameter 

for men who work 40 hr per week is 11 and increases by 1% for every hour someone works longer and 

decreases a nonsignificant 16% when the respondent is female. 

Table 3. Exponentiated parameters for a zero-inflated beta model on the proportion of time spent on 

household work. 

μ Pr(y = 0) φ 

Usual hours per week work 0.99*** 1.01 1.01** 

(0.00) (0.20) (0.01) 

Respondent’s gender male (reference) (reference) (reference) 

female 1.47*** 0.32*** 0.84 

(0.00) (0.00) (0.06) 

Constant 0.10*** 0.24*** 11.48*** 

(0.00) (0.00) (0.00) 
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μ Pr(y = 0) φ 

Observations 2,784 

Source: Data from U.S. Bureau of Labor Statistics (2017). 

Note. Exponentiated coefficients; p values in parentheses. 

*p < .05. **p < .01. *** p < .001. 

Instead of the coefficients, one can also look at the marginal effects. Now different marginal effects can 

be of interest. Table 4 shows three of these: the effect on the overall mean (including zero), the effect on 

the probability of doing no household work, and the effect on the mean given that one does at least some 

household work. These are shown in Table 4. Working an hour longer reduces the average time spent on 

household work by 1.3 min, has no noticeable effect on the probability of doing no household work, and the 

average time spent on household work given that one does some household work also increases by 1.3 min. 

Overall females spend 68 min more on household work than men, they are 12 percentage points less likely to 

do no household work, and if they do at least some household work, then they spend 55 min more than men. 

Table 4. Marginal effects (the means are in minutes per day) for zero-inflated beta model. 

Overall mean Pr (y = 0) Mean if y > 0 

Usual hours per week work −1.28*** 0.00 −1.31*** 

(0.00) (0.20) (0.00) 

Respondent’s gender male (reference) (reference) (reference) 

female 68.04*** −0.12*** 55.49*** 

(0.00) (0.00) (0.00) 

Observations 2,784 

Source: Data from U.S. Bureau of Labor Statistics (2017). 

Note. p values in parentheses. 

*p < .05. **p < .01. ***p < .001. 
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Quasi-Likelihood 

A major alternative to models based on the beta distribution are models estimated by maximizing a quasi-

likelihood function. Quasi-likelihood models for proportions have been around for a long time (Wedderburn, 

1974) but have been popularized more recently by Leslie E. Papke and Jeffrey M. Wooldridge (1996). For 

creating a quasi-likelihood function, we need a so-called mean function and a variance function. The mean 

function relates the predicted mean to the explanatory variables. Any inverse link function that can be used for 

the beta distribution can also be used as a mean function for a quasi-likelihood function. The variance function 

captures how the variance depends on the predicted mean. These two functions are combined to form the 

quasi-likelihood function. The strength of these models is that they do not require a correct specification of 

the entire distribution but only require a correct specification of the mean function. Even the variance function 

does not have to be correct. 

The most common quasi-likelihood model for fractional data is the fractional logit model. It uses the logit 

inverse link function (see Table 1) for the mean function and the variance function is var(μi) = μi(1 − μi). A 

convenient feature of this model is that it can be estimated using regular logistic regression models with robust 

standard errors (Papke & Wooldridge, 1996). Fractional logit models have two advantages over the models 

based on the beta distribution. 

First, it is more robust than the beta distribution. In a beta regression, an error in the specification of the 

φ part will also result in a bias of the estimates in the μ part of the model. For a fractional logit, only a 

correctly specified conditional mean is necessary (Meaney & Moineddin, 2014; Papke & Wooldridge, 1996). 

However, the fractional logit only models the conditional mean. As a consequence, it cannot answer questions 

about other characteristics, like men are more homogenous (smaller variance) than women when it comes 

to the amount of time spent on household work. If that is the question of interest, then a model for the entire 

distribution, like a beta regression model, is necessary (Smithson & Verkuilen, 2006). 

Second, a fractional logit model can include observations with exact zeros or ones. The predicted mean 

cannot become zero or one but the observations can. The logic used to include such observations is very 

different from the logic used in a zero one inflated beta. In a fractional logit model, a zero proportion is just 

an indication of a small conditional mean. Applied to the example used thus far: If one usually spends a 

very small fraction of the day on household work, then it can happen that on a day one spends no time on 

household work. So the difference between a zero and a small proportion is assumed to be gradual rather 

than a completely different process. 

Table 5 shows the results of a fractional logit model on the proportion of the day spent on household work, 

that is, the explanatory variables determine the conditional mean via the logit link function from Table 1. The 

results are very similar to the beta regression model from Table 2. A male working 40 hr is expected to 

spend 0.08 min on household work for every minute spent on other things; this ratio increases by 1% if the 

respondent works 1 hr longer and increases by 75% when the respondent is female. This corresponds to 1.3 

min less time for household work for every hour the respondent works longer and 71 min more household 
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work per day for women compared to men. 

Table 5. Exponentiated coefficients and marginal effects (in terms of minutes per day) of a fractional logit 

model. 

exp(β) Marginal Effect 

Usual hours per week work 0.99*** −1.34*** 

(0.00) (0.00) 

Respondent’s gender male (reference) (reference) 

female 1.75*** 70.65*** 

(0.00) (0.00) 

Constant 0.08*** 

(0.00) 

Observations 2,784 

Source: Data from U.S. Bureau of Labor Statistics (2017). 

Note. p values in parentheses. 

*p < .05. **p < .01. ***p < .001. 

Explaining Multiple Proportions 

The model becomes more complex when there are multiple proportions that all add up to one—for example, 

the composition of neighborhoods in terms of the immigration background of the residents. Before one 

starts modeling, it is a good idea to first look at the distribution in the data. The challenge is that more 

variables means a higher dimensional graph. However, one of the proportions is redundant: If we have three 

proportions adding up to one, and we know two of those, then we also know the third. So three proportions 

can be plotted in two dimensions. This gives rise to a common graph for plotting three proportions: the 

triangular plot. An example is Figure 3, which shows the compositions of different neighborhoods in the 

city of Amsterdam in the Netherlands. There are three sets of grid lines. To find which grid line belongs to 

which axis, one looks at the axis that crosses it at the value zero. The grid lines parallel to this crossing 

axis are the relevant grid lines. So if one is looking for the proportion of Western non-Dutch migrants in a 
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neighborhood, then the axis crossing it at zero is the upward sloping axis (non-Western immigrant), so the 

upward sloping grid lines are the relevant grid lines for Western non-Dutch migrants. The horizontal grid 

lines are relevant to the proportion of non-Western immigrants and the downward sloping grid lines for the 

proportion of nonimmigrants (Dutch). It shows that the proportion of Western non-Dutch immigrants remains 

between about 10% and a bit less than 40%, the proportion of Dutch residents remains between a bit less 

than 20% and a bit more than 80%, and the proportion of non-Western immigrants between less than 10% 

and a bit less than 80%. 

Figure 3. Proportions of residents with non-Western, Western but non-Dutch, and Dutch backgrounds in 

different neighborhoods in Amsterdam. 

Source: Data from OIS Amsterdam (2017). 

Maximum Likelihood and Maximum Quasi-Likelihood 

Because the proportions have to add to one, the different proportions are related: If the share of non-Western 

immigrant increase in a neighborhood, then at least one of the other shares has to decrease. A model for 

the entire distribution of these proportions should allow for that correlation. Moreover, this interrelationship 
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between proportions means that an explanatory variable influencing one proportion automatically also 

influences the remaining proportions as well, and a model should take that into account. One candidate for 

such a model is the Dirichlet distribution, which is a multivariate generalization of the beta distribution. For 

three proportions (y1, y2, and y3, where y1 = 1 − y2 − y3), the probability density function is shown as follows: 

it has two (in general: the number of proportions minus one) location parameters μ and one scale parameter 

φ: 

f(y1, y3, y3 | μ, φ) =
Γ(φ)

Γ(μ2φ)Γ(μ3φ)Γ((1 − μ2 − μ3)φ)
y1

(1 − μ2 − μ3)φ − 1y2
μ2φ − 1y3

μ3φ − 1

The means, variances, and covariances are as follows—showing that the means add up to one, the variances 

are very similar to the variances of the beta distribution, and the covariances are all negative. 

mean(yk) = {
μk

1 −

K

∑
k = 2

μk

if k>1

if k = 1

var(yk) = μk(1 − μk) 1
1 + φ

cov(yi, yj) = − μiμj
1

1 + φ
The link function that has mainly been used to include explanatory variables is the multinomial link function 

for the means and the log link function for the scale parameter (φ). The inverse multinomial link function is: 

μk = {
exiβk

1 +∑j = 2

K

exiβj

1

1 +∑j = 2

K

exiβj

if k>1

if k = 1

The multinomial logit link function can be used to create a quasi-likelihood model for multiple proportions. It 

can be estimated by maximizing the log-likelihood function of a regular multinomial logit using the proportions 

as dependent variables and using robust standard errors (Mullahy, 2015). The strengths and weaknesses 

of the multinomial fractional logit compared to the Dirichlet regression are analogous to the strength and 

weaknesses of the fractional logit compared to beta regression: The fractional multinomial logit is a more 

robust than Dirichlet regression because the fractional multinomial logit does not try to model the variances 

and covariances of the proportions. This also means that the fractional multinomial logit can only be used to 

answer questions concerning the conditional means and not about other properties of the distribution like the 

variances. Moreover, the fractional multinomial logit can include fractions of exactly zero or one while Dirichlet 

regression cannot. 

To illustrate the use of these models, Table 6 shows the results from a Dirichlet and fractional multinomial logit 
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model of the composition of Amsterdam’s neighborhoods. They both use the multinomial logit link function 

for the means, and the Dirichlet model used the log link function for the scale parameter. The explanatory 

variable is the average price of a house in thousands of euros per square meter, centered at 4,000 euro per 

square meter (approximately the median price). So the constant refers to a neighborhood with median priced 

houses. The exponentiated coefficients are still interpretable in terms of relative proportion ratios, but now 

they are relative to the baseline proportion; in this case, the non-Western migrants. So, the constant in the 

Western equation means that in such a neighborhood, one expects to find 0.8 (Dirichlet) or 0.7 (fractional 

multinomial logit) Western migrants for every non-Western migrant. This ratio increases by 74% (Dirichlet) or 

82% (fractional multinomial logit), if the average price increases by a 1,000 euros per square meter. Similarly, 

one expects to find 2 (Dirichlet) or 1.9 (fractional multinomial logit) Dutch residents for every non-Western 

resident. This ratio increases by 55% (Dirichlet) or 63% (fractional multinomial logit), if the average price 

increases by a 1,000 euros per square meter. 

The marginal effects in Table 6 show that the percentage of non-Western migrants decrease by 9 (Dirichlet) or 

10 (fractional multinomial logit) percentage points, if the average price increases by a 1,000 euros per square 

meter. The share of Western migrants increases by 4 percentage points if the average price increases by 

a 1,000 euros per square meter, and the share of Dutch residents increases by 5 (Dirichlet) or 6 (fractional 

multinomial logit) for a 1,000 euro increase in average price. Notice that the marginal effects add up to 0. This 

way the predicted proportions will add up to one. 

Table 6. Exponentiated coefficients and marginal effects of a Dirichlet and multinomial fractional logit model. 

Exp(beta) Marginal Effect 

Dirichlet Fractional Multinomial Logit Dirichlet Fractional Multinomial Logit 

Non-Western Price −0.09*** −0.10*** 

(0.00) (0.00) 

Constant 

Western Price 1.74*** 1.82*** 0.04*** 0.04*** 

(0.00) (0.00) (0.00) (0.00) 

Constant 0.79*** 0.72*** 

(0.00) (0.00) 
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Exp(beta) Marginal Effect 

Dirichlet Fractional Multinomial Logit Dirichlet Fractional Multinomial Logit 

Dutch Price 1.55*** 1.63*** 0.05*** 0.06*** 

(0.00) (0.00) (0.00) (0.00) 

Constant 2.03*** 1.94*** 

(0.00) (0.00) 

φ Price 2.05*** 

(0.00) 

Constant 30.99*** 

(0.00) 

N 95 95 95 95 

Source: Data from OIS Amsterdam (2017). 

Note. p values in parentheses. 

*p < .05. **p < .01. ***p < .001. 

Modeling the Inter-Relationship Between Proportions 

The Dirichlet and fractional multinomial logit models are good for modeling the impact of explanatory variables 

on the proportions, but they are not suitable for investigating the interrelationship between proportions. 

The fractional multinomial logit model ignores that completely by designating that covariance as nuisance 

parameters. The covariance structure in a Dirichlet distribution is best thought of as a structure that is as close 

as possible to independence. Normally, independence implies a covariance of zero, but with proportions, 

all covariances cannot be zero, instead, they would tend to be negative (Aitchison, 1986/2003). More 

precisely, the covariance present in a Dirichlet distribution captures independence in the following sense: If 

for each observation, we draw a value from k independent gamma distributions and transform those draws to 

proportions, then those proportions would follow a Dirichlet distribution. So the covariance structure implicit 

in the Dirichlet distribution is useful as a null hypothesis of independence, but not for studying associations 

between proportions that deviate from independence. 
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One solution that has been proposed by John Aitchison (1986/2003) is to transform the proportions analogous 

to a multinomial link function and assume that those transformed variables have a multivariate normal 

distribution. If we have three proportions y1, y2, and y3, where y1 = 1 − y2 − y3, then the transformation will 

create two new variables z2 and z3 such that z2 = ln(y2
y1 ) and z3 = ln(y3

y1 ). This model has not been used a lot 

in the social sciences. The biggest unsolved hurdle is how to transform the results of that model into a metric 

that is easy to interpret and communicate. 

Proportions as Explanatory Variables 

Multiple proportions can also show up as explanatory variables. For example, one could try to explain the 

gross domestic product (GDP) per capita of countries with the proportion of the workforce employed in 

the primary (agriculture and mining), secondary (industry), and tertiary (service) sector. Often the effects 

of explanatory variables are interpreted as the influence of changing one variable while keeping all other 

variables constant. This cannot be true with multiple proportions: If a larger share of the workforce is 

employed in the tertiary sector, then either the primary sector or the secondary sector or both have to decline. 

In fact, if one tried to add all three proportions to the model, then most statistical software will either drop 

one of these proportions from the model or not estimate the model and return an error message saying that 

there is perfect multicollinearity. This is to be expected. With three proportions adding up to one, one of the 

proportions is redundant. 

Consider the example in Table 7. It shows the result of a quasi-likelihood model with a log link function 

explaining the GDP per capita with the composition of the labor force for non-oil-producing countries in 

2014. The GDP per capita comes from the Penn World Tables (Feenstra, Inklaar, & Timmer, 2015) and 

is measured as purchasing power parities (PPPs) in 2011 U.S. dollars. The composition of the labor force 

originates from the World Development Indicators (World Bank Group, 2017). The proportion of the workforce 

employed in the service sector is excluded from the model. This means that the exponentiated constant is 

the predicted GDP per capita for a country with no one employed in either agriculture or industry, and thus 

everybody employed in services. In such a country, the model predicts a GDP per capita of about US$80,000. 

A percentage point increase in the part of the labor force employed in agriculture and a corresponding 

percentage point decrease in the part of the labor force employed in services leads to a decrease in GDP 

per capita of 5%. Similarly, a percentage point increase in the share working in industry and a corresponding 

percentage point decrease in the share working in services lead to a decrease in GDP per capita of 3%. 

Since the service sector is excluded from the model, the coefficients have to be interpreted as the effect of an 

increase in one sector which is compensated by a corresponding decrease in the service sector alone. The 

model does allow for other scenarios like a percentage point increase in agriculture and half a percentage 

point decrease in industry and services but that is not how the coefficients are be interpreted. If one has only 

three proportions, one can show the complete range effects by plotting predicted outcomes on a triangular 

plot, like in Figure 4. 
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Table 7. The influence of the composition of the labor forces on GDP per capita using a quasi-likelihood model 

with a log link function. 

exp(β) 

Agriculture 0.95*** 

(0.00) 

Industry 0.97** 

(0.00) 

Constant 79,987*** 

(0.00) 

Observations 155 

Source: Data from Feenstra, Inklaar, and Timmer (2015) and World Bank Group (2017). 

Note. Exponentiated coefficients; p values in parentheses. 

*p < .05. **p < .01. ***p < .001. 

Figure 4. Predicted GDP per Capita based on the composition of the labor force. 
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Source: Data from Feenstra, Inklaar, and Timmer (2015) and World Bank Group (2017). 

With more proportions, the triangle plot is not an option. A triangular graph shows lines plotted within 

agriculture, service, and industry. For example, compare the predicted GDP per capita of the United States 

and Germany, as they have similar proportions employed in agriculture but different proportions employed 

in industry and services. Then compare the predicted GDP per capita of Germany with China as they have 

similar proportions employed in industry but different proportions in agriculture and services. That way one 

can create effects that represent more realistic scenarios than the ones where all changes are compensated 

by the service sector alone. 
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