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LOGISTIC REGRESSION: 
A PRIMER 

FRED C. PAMPEL 
University of Colorado, Boulder 

1. THE LOGIC OF WGISTIC REGRESSION 

Many social phenomena are discrete or qualitative rather than contin­
uous or quantitative in nature-an event occurs or it does not occur, 
a person makes one choice but not the other, an individual or group 
passes from one state to another. A person can have a child, die, 
move (either within or across national borders), marry, divorce, enter 
or exit the labor force, receive welfare benefits, have their income fall 
below the poverty level, vote for one candidate, favor or oppose an 
issue, commit a crime, be arrested, quit school, enter college, join an 
organization, get sick, belong to a religion, or act in myriad ways that 
either involve a characteristic, event, or choice. Likewise, large social 
units---groups, organizations, and nations--can emerge, break up, go 
bankrupt, face rebellion, join larger groups, or pass from one type of 
discrete state into another. 

Binary discrete phenomena usually take the form of a dichotomous 
indicator or dummy variable. Although it is possible to represent the 
two values with any numbers, employing variables with values of 1 
and O has advantages. The mean of a dummy variable equals the 
proportion of cases with a value of 1, and can be interpreted as a 
probability. 

Regression With a Dummy Dependent Variable 

A binary qualitative dependent variable with values of O and 1 
seems suitable on the surface for use with multiple regression. Re­
gression coefficients have a useful interpretation with a dummy de­
pendent variable-they show the increase or decrease in the predicted 
probability of having a characteristic or experiencing an event due to a 
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one-unit change in the independent variables. Equivalently, they show 
the change in the predicted proportion of respondents with a value 
of 1 due to a one-unit change in the independent variables. Given 
familiarity with proportions and probabilities, researchers should feel 
comfortable with such interpretations. 

The dependent variable itself only takes values of O and 1, but the 
predicted values for regression take the form of mean proportions 
or probabilities conditional on the values of the independent vari­
ables. The higher the predicted value or conditional mean, the more 
likely that any individual with particular scores on the independent 
variables will have a characteristic or experience the event. Linear 
regression assumes that the conditional proportions or probabilities 
define a straight line for values of X. 

To give a simple example, the 1994 General Social Survey (GSS) 
of the National Opinion Research Corporation asked respondents if 
they smoke. Assigning those who smoke a score of 1 and those who 
do not a score of O creates a dichotomous dependent variable. Taking 
smoking (S) as a function of years of completed education (£) and 
a dummy variable for gender ( G) with females coded 1 produces the 
regression equation: 

S = .661- .029 *E + .004 * G. 

The coefficient for education indicates that for a 1-year increase in 
education, the probability of smoking goes down by .029, the propor­
tion smoking goes down by .029, or the percent smoking goes down 
by 2.9. Male respondents with no education have a predicted proba­
bility of smoking of .661 (the intercept). A male with 10 years of edu­
cation has a predicted probability of smoking of .371 ( .661- .029 * 10). 
One could also say that the model predicts 37% of such respondents 
smoke. The dummy variable coefficient shows females have a prob­
ability of smoking .004 higher than for males. With no education, 
women have a predicted probability of smoking of .665 (.661 + .004). 

Despite the uncomplicated interpretation of the coefficients for re­
gression with a dummy dependent variable, the regression estimates 
face two sorts of problems. One type of problem is conceptual in na­
ture, while the other type is statistical in nature. Together, the prob­
lems prove serious enough to require use of an alternative to ordina:ty 
regression with qualitative dependent variables. 
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Problems of Functional Form 

The conceptual problem with linear regression with a dichoto­
mous dependent variable stems from the fact that probabilities have 
maximum and minimum values of 1 and 0. By definition, probabili­
ties and proportions cannot exceed 1 or fall below 0. Yet, the linear 
regression line can extend upward toward positive infinity as the val­
ues of the independent variables increase indefinitely, and extend 
downward toward negative infinity as the values of the independent 
variables decrease indefinitely. Depending on the slope of the line 
and the observed X values, a model can give predicted values of the 
dependent variable above 1 and below 0. Such values make no sense, 
and have little predictive use. 

A few charts can illustrate the problem. The normal scatterplot of 
two continuous variables shows a cloud of points as in Figure l.l(a). 
Here, a line through the middle of the cloud of points would mini­
mize the sum of squared deviations. Further, at least theoretically, as 
X extends on to higher or lower levels, so does Y. The same straight 
line can predict large Y values associated with large X values as it 
can for medium or small values. The scatterplot of a relationship of 
a continuous independent variable to a dummy dependent variable 
in Figure 1.l(b), however, does not portray a cloud of points. It in­
stead shows two parallel sets of points. Fitting a straight line seems 
less appropriate here. Any line (except one with a slope of zero) will 
eventually exceed 1 and fall below 0. 

Some parts of the two parallel sets of points may contain more 
cases than others, and certain graphing techniques reveal the density 
of cases along the two Jines. Jittering reduces overlap of the scatter-

/ plot points by adding random variation to each case. In Figure 1.2, 
the jittered distribution for a bina:ty dependent variable-smokes or 
does not smoke-by years of education suggests a slight relationship. 
Cases with higher education appear less likely to smoke than cases 
with lower education. Still, Figure 1.2 differs from plots between con­
tinuous variables. 

The risk of predicted probabilities below O or above 1 can, depend­
ing also on the range of values of the independent variable, increase 
With the skew of the dichotomous dependent variable. With a split of 
around 50:50, predicted values tend to fall toward the center of the 
probability distribution. In the previous example of smoking (where 
the split equals 28:72), the lowest predicted value of .081 occurs for 
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Figure 1.1. (a) Scatterplot, continuous variables, (b) scatterplot, dummy de­

pendent variable. 

males with the maximum education of 20; the highest predicted value 
of .665 occurs for females with the minimum education of 0. A more 
skewed dependent variable from the GSS asks respondents if they 
are a member of any group that aims to protect or preserve the 
environment. With the 10% saying yes coded 1 and others coded 0, a 

regression on education and gender gives 

B = -.024 + .008*£- .006 * G. 
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Figure 1.2. littered scatterplot for a binary dependent variable, smoking or 
nonsmoking by years of education. 

The intercept shows the nonsensical probability that a male with no 
education will have a predicted probability of belonging below zero. 
Although a problem in general, reliance on the assumption of linearity 
in this particular model proves particularly inappropriate.1 

One solution to the boundary problem would assume that any value 
equal to or above 1 should be truncated to the maximum value of 1. 
The regression line would be straight until this maximum value, but 
afterward changes in X would have no influence on the dependent 
variable. The same would hold for small values, which could be trun­
cated at 0. Such a pattern would define sudden discontinuities in the 
relationship, whereby at certain points the effect of X on Y would 
change immediately to O (see Figure 1.3(a)). 

However, another functional form of the relationship might make 
more theoretical sense than truncated linearity. With a floor and a 
ceiling, it seems likely that the effect of a unit change in the inde­
pendent variable on the predicted probability would be smaller near 
the floor or ceiling than near the middle. Toward the middle of a re­
lationship, the nonlinear curve may approximate linearity, but rather 
than continuing upward or downward indefinitely, the nonlinear curve 
bends slowly and smoothly so as to approach O and 1. As values get 
closer and closer to O or 1, the relationship requires a larger and 
larger change in the independent variable to have the same impact 
as a smaller change in the independent variable at the middle of the 
curve. To produce a change in the probability of experiencing an event 
from .95 to .96 requires a larger change in X than it does to produce 
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Figure 1.3. (a) Truncated linear relationship, (b) $-shaped curve. 

a change in the probability from .45 to .46. The general principle is 
that the same additional input has less impact on the outcome near 
the ceiling or floor, and that increasingly larger inputs are needed to 
have the same impact on the outcome near the ceiling or floor. 

Several examples illustrate the nonlinear relationship. If income in­
creases the likelihood of owning a home, an increase of 10 thou­
sand dollars of income from $40,000 · to $50,000 would increase that 
likelihood more than an increase from $200,000 to $210,000. High­
income persons would no doubt already have a high probability of 
home ownership, and a $10,000 increase would do little to increase 

7 

their already high probability. The same would hold for an increase 
in income from $0 to $10,000: since neither income is likely to be suf­
ficient to purchase a house, the increase in income has little impact 
on ownership. In the middle-range, however, the additional $10,000 
may make the difference between being able to afford a house and 
not being able to afford a house. 

Similarly, an increase of 1 year in age on the likelihood of first 
marriage may have much stronger effects during the late teens and 
early twenties than at younger or older ages. Few will marry under 
age 15 despite growing a year older, and few unmarried by 50 will 
likely many by age 51. However, the change from age 21 to 22 may 
result in a substantial increase in the likelihood of marriage. The same 
kind of reasoning would apply in numerous other instances: the effect 
of the number of delinquent peers on the likelihood of committing a 
serious crime, the effect of the hours worked by women on the likeli­
hood of having a child, the effect of the degree of party identification 
on the support for a political candidate, and the effect of drinking be­
havior on premature death are all likely stronger at the midrange of 
the independent variables than the extremes. 

A more appropriate nonlinear relationship would look like that in 
Figure 1.3(b ), where the cuive levels off and approaches the ceil­
ing of 1 and the floor of 0. Approximating the cuive would require 
a succession of straight lines, each with different slopes. The lines 
nearer the ceiling and floor would have smaller slopes than those in 
the middle. However, a constantly changing curve more smoothly and 
adequately represents the relationship. Conceptually, the S-shaped 
cuive makes better sense than the straight line. 

Within a range of a sample, the linear regression line may approx­
imate a curvilinear relationship by taking the average of the diverse 
slopes implied by the curve. However, the linear relationship still un­
derstates the actual relationships in the middle, and overstates the re­
lationship at the extremes (unless the independent variable has values 
only in a region where the curve is nearly linear). Figure 1.4 com­
pares the S-shaped cuive with the straight line; the gap between the 
two illustrates the nature of the error, and the potential inaccuracy of 
linear regression. 

The ceiling and floor create another conceptual problem besides 
nonlinearity in regression models of a dichotomous response. Re­
gression typically assumes additivity-that the effect of one variable 
on the dependent variable stays the same regardless of the levels of 
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Figure 1.4. Linear versus curvilinear relationship. 

the other independent variables. Models can include selected prod­
uct terms to account for nonadditivity, but a dichotomous dependent 
variable likely violates the additivity assumption for all combinations 
of the independent variables. If the value of one independent variable 
reaches a sufficiently high level to push the probability of the depqn­
dent variable to near 1 ( or to near 0), then the effects of other vari­
ables cannot have much influence. Thus, the ceiling and floor make 
the influence of all the independent variables inherently nonadditive 

and interactive. 
To return to the smoking example, those persons with 20 years of 

education have such a low probability of smoking that only a small 
difference can exist between men and women; in other words, sex 
can have little effect on smoking at high levels of education. In con­
trast, larger sex differences likely exist when education is lower and 
the probability of smoking is higher. Although the effect of sex on 
smoking likely varies with the level of education, additive regression 
models incorrectly assume that the effect of sex on smoking is identi­
cal for all levels of education (and the effect of education is identical 

for both sexes). 

Problems of Statistical Inference 

Even if a straight line approximates the nonlinear relationship in 
some instances, some problems emerge that, despite leaving the es-
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timates unbiased, reduce their efficiency. The problems involve the 
fact that regression with a dummy dependent variable violates the 
assumptions of normality and homoscedasticity. Both these problems 
stem from the existence of only two observed values for the dependent 
variable. Linear regression assumes that in the population a normal 
distribution of error values around the predicted Y is associated with 
each X value, and that the dispersion of the error values for each X 
value is the same. The assumptions imply normal and similarly dis­
persed error distributions. 

Yet, with a dummy variable, only two Y values and only two residu­
als exist for any single X value. For any value Xi, the predicted prob­
ability equals b0 + b1X;. Therefore, the residuals take the value of 

1 - (b0 + b1X;) when Yi equals 1, 

and 

0 - (b0 + b1X;} when Y; equals 0. 

~ in the population, the distribution of errors for any X value 
ot be normal when the distribution has only two values. 
e error term also violates the assumption of homoscedasticity 

or equal variances because the regression error term varies with the 
value of X.2 To illustrate this graphically, review Figure l.l(b), which 
plots the relationship between X and a dichotomous dependent vari­
able{!;~ing a straight line that goes from the lower left to the upper 
right he figure would define residuals as the vertical distance from 
the points to the line. Near the lower and upper extremes of X, where 
the line comes close to the floor of O and the ceiling of 1, the residu­
als are relatively small. Near the middle values of X, where the line 
falls halfway between the ceiling and floor, the residuals are relatively 
large. As a result, the variance of the errors is not constant7 

While normality creates few problems with large samples, het­
eroscedasticity has more serious implications. The sample estimates 
of the population regression coefficients are unbiased, but they no 
longer have the smallest variance and the sample estimates of the 
standard errors are biased. Thus,~n with large samples, the stan­
dard errors in the presence of heteroscedasticity will be incorrect, 
and tests of significance will be inv~echnical means of weighing 
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least squares estimates can deal with this problem, but more im­
portantly do not solve the conceptual problems of nonlinearity and 
nonadditivity. Use of regression with a dummy dependent variable 
consequently remains inappropriate. 

Transforming Probabilities into Logits 

Linear regression faces a problem in dealing with a dependent vari­
able with a ceiling and a floor: the same change in X has a different 
effect on Y depending on how close the curve corresponding to any 
X value comes to the maximum or minimum Y value. We need a 
transformation of the dependent variable to allow for the decreasing 
effects of X on Y as the predicted Y value approaches the floor or 
ceiling. We need, in other words, to eliminate the floor and ceiling 
inherent in probabilities. 

Although many nonlinear functions can represent the $-shaped 
curve, the logistic or logit transformation, because of its desirable 
properties and relative simplicity, has become popular. To illustrate 
the logit transformation, assume that each case has a probability of 
having a characteristic or experiencing an event, defined as P;. Since 
the dependent variable has values of only O and 1, this P; must be 
estimated, but it helps to treat the outcome in terms of probabili~es 
for now. Given this probability, the logit transformation involves two 
steps. First, take the ratio of P; to 1 - P;, or the odds of experiencing 
the event. Second, take the natural logarithm of the odds. The logit 
thus equals · 

L; = ln[P;/(1 -P;)], 

or, in short, the logged odds. 
For example, if P; equals .2 for the first case, its odds equals .25 

or .2/.8, and its logit equals -1.386, the natural log of the odds. If 
P; for the second case equals .7, its odds equal 2.33 or .7/.3, and its 
Jogit equals 0.847. If P; equals .9 for the third case, its odds equals 9 
or .9/.1, and its logit equals 2.197. Although the computational for­
mula to transform probabilities into logits i~raightforward, it re­
quires some explanation to show its usefulnesl.!!_'turns out to describe 
the relationship between independent variables and a distribution of 
probabilities defined by a dichotomous dependent variab§) 

... ~ 
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Meaning of Odds 

The logit begins by transforming probabilities into odds. Probabil­
ities vary between O and 1, and express the likelihood of an event 
as a proportion of both occurrences and nonoccurrences. Odds ex­
press the likelihood of an occurrence relative to the likelihood of a 
nonoccurrence. Both probabilities and odds have a lower limit of zero, 
and both express the increasing likelihood of an event with increasing 
large positive numbers, but otherwise they differ. 

Unlike a probability, odds have no upper bound or ceiling. As a 
probability gets closer to 1, the numerator of the odds becomes larger 
relative to the denominator, and the odds become an increasingly 
large number. The odds thus increase greatly when the probabilities 
change only slightly near their upper boundary of 1. For example, 
probabilities of .99, .999, .9999, .99999, and so on result in odds of 99, 
999, 9999, 99999, and so on. Tiny changes in probabilities result in 
huge changes in the odds, and show that the odds increase toward 
infinity as the probabilities come closer and closer to 1. 

To illustrate the relationship between probabilities and odds, exam­
ine the values 

P; .01 .1 .2 .3 .4 .5 .6 
1-P; .99 .9 .8 .7 .6 .5 .4 
Odds .01 .111 .25 .429 .667 1 1.5 

.7 .8 .9 .99 

.3 .2 .1 .01 
2.33 4 9 99. 

Note that when the probability equals .5, the odds equal 1 or are even. 
As the probabilities increase toward one, the odds no longer have the 
ceiling of the probabilities. As the probabilities decrease toward zero, 
however, the odds still approach zero. At least at one end, then, the 
transformation allows values to extend linearly beyond the previous 
limit. 

Manipulating the formula for odds gives further insight into their 
relationship to probabilities. Beginning with the definition of odds 
(O;) as the ratio of the probability to one minus the probability, we 
can with simple algebra express the probability in terms of odds: 

P;/(1 - P;) = O; implies that P; = OJ(1 + O;)-

The probability equals the odds divided by one plus the odds.3 

(!ased on this formula, the probability can never equal or exceed 
one: no matter how large the odds become in the numerator, they 
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will always be smaller by one than the denomina~Of course, as 
the odds become large, the gap between the odds:;;;{he odds plus 1 
will become relatively small and the probability will approach (but not 
reach) one. Conversely, the probability can never fall below 0. As long 
as the odds equal or exceed 0, the probability must equal or exceed 
zero. The smaller the odds in the numerator become, the larger the 
relative size of the 1 in the denominator. The probability comes closer 
and closer to zero as the odds come closer and closer to 0. 
QJsually, the odds are expressed as a single number, taken implicitly 
as a ratio to_Dfbus, odds of 10 imply an event will occur 10 times for 
each time it does not occur. Since the single number can be a fraction, 
there is no need to keep both the numerator or denominator as a 
whole number. The odds of 7 to 3 can be expressed equally well as a 
single number of 2.33 (to 1). Thus, even odds equal 1 (1 occurrence 
to 1 nonoccurrence ). Odds below 1 mean the event is less li~ely to 
occur than it is to not occur. If the probability equals .3, the odds 
are .3/.7 or .429. This means the event occurs .429 times per each 
time it does not occur. It could also be expressed as 42.9 occurrences 
per 100 nonoccurrences. 

Expressed as a single number, any odds can be compared to another 
odds. Odds of 9 to 1 are three times higher than odds of 3. Odds of 3 
are one-third the size of odds of 9. Odds of .429 are .429 the size of 
even odds of 1, or half the size of odds of .858. In each example, one 
odds is expressed as a multiple of the other. 
Cit is often useful to compare two different odds as a ratio) The ratio 
of odds of 8 and 2 equals 4, which shows that the odds of"the former 
group are four times (or 400%) larger than for the latter group. If 
the odds ratio is below 1, then the odds of the first group are lower 
than the second group. An odds ratio of .5 means the odds of the 
first group are only half or 50% the size of the second group. The 
closer the odds ratio to zero, the lower the odds of the first group to 
the second. An odds ratio of one means the odds of both groups are 
identical. Finally, if the odds ratio is above one, the odds of the first 
group are higher than the second group. The greater the odds ratio, 
the higher the odds of the first group to the second. 
Qo prevent confusion, keep in mind the distinction between odds 
and odds ratios. Odds refer to a ratio of probabilities, while odds ra­
tios refer to ratios of odds ( or a ratio of probability ratiosf)ACC9rding 
to the 1994 GSS, for example, 29.5% of men and 13~ of women 
own a gun, Since the odds of gun ownership for men equal .418 (.295: 

-~i"i 
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.705), it indicates that around 4 men own a gun for 10 who do not. 
The odds of gun ownership for women equal .151 or about 1.5 women 
own a gun for 10 who do not. The ratio of odds of men to women 
equal .418: .151 or 2.77, which means thalih_e odds of gun ownership 
are nearly three times higher for men than women.J 

In summary, reliance on odds rather than probabilities provides for 
meaningful interpretation of the likelihood of events, but eliminates 
the upper boundary. Odds will prove useful later in interpreting co­
efficients, but note now that creating odds represents the first step of 
the logit transformation. 

Logged Odds 

Taking the natural log of the odds eliminates the floor of O much as 
transforming probabilities into odds eliminates the ceiling of 1. Taking 
the natural log of: 

odds above 0, but below 1 produces negative numbers; 
odds equal to 1 produces O; and 
odds above 1 produces positive numbers. 

(The logs of values equal to or below zero do not exist; see the Ap­
pendix for an introduction to logarithms and their properties.) 

The first property of the logit, then, is that, unlike a probability, 
it has no upper or lower boundary. The odds eliminate the upper 
boundary of probabilities, and the logged odds eliminate the lower 
bound of probabilities as well. To see this, if P; = 1, the logit is 
undefined because the odds of 1/0 do not exist As the probability 
comes closer and closer to 1, however, the logit moves toward positive 
infinity. If P; = 0, the logit is undefined because the log of the odds 
of 0/1 or O does not exist. As the probability comes closer and closer 
to 0, however, the logit proceeds toward negative infinity. Thm(Ilie 
logits vary from negative infinity to positive infinity. The problem of 
a ceiling and floor in the probabilities (or a floor in odds) disapp~"" 
@e second property is that the ~ogit transformation is symmetric 
around the midpoint probability of~e logit when P; = .5 is 0 
(.5: .5 = 1, and the log of 1 equalslJ). Probabilities below .5 result 
in negative Iogits because the odds fall below 1 and above O; P; is 
smaller than 1 - P;, thereby resulting in a fraction, and the log of a 
fraction results in a negative number (see the Appendix). Probabilities 
above .5 result in positive logits because the odds exceed one (P; is 
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larger than 1 - P;). Further, probabilities the same distance above 
and below .5 (e.g., .6 and .4, .7 and .3, .8 and .2) have the same logits, 
but different signs (e.g., the logits for the probabilities listed above 
equal, in order, .405 and -.405, .847 and -.847, 1.386 and -1.386). 
The distance of the logit from O reflects the distance of the probability 
from .5 ( again noting, however, that the logits do not have boundaries 

as do the probabilities). 
rrlie third property is that the same change in probabilities trans-
1'ates into different changes in the logits. The simple principle is that 
as P; comes closer to O and 1, the same change in the probability 
translates into a greater change in the logged o~ou can see this 

by example, 

P; .1 .2 .3 .4 .5 .6 .7 .8) .9 

1-P; .9 .8 .7 .6 .5 .4 .3 .2 .1 

Odds .111 .25 .429 .667 1 1.5 2.33 4 9 

Logit -2.20 -1.39 -.847 -.405 0 .405 .847 1.39 2.20 . 

A change in probabilities of .1 from .5 to .6 (or from .5 to .4) results 
in a change of .405 in the logit, whereas the same probability change 
of .1 from .8 to .9 (or from .2 to .1) results in a change of .810 in the 
logit. The change in the logit for the same change in the probability is 
twice as large at this extreme as in the middle. To repeat, the general 
principle is that small differences in probabilities result in increasingly 
larger differences in logits when the probabilities are near the bounds 

of O and 1. 

Linearizing the Nonlinear 

c::.ithelps to view the logit transformation as linearizin_&_!hc inherent 
nonlinear relationship between X and the probability of 1":-iWe would 
expect the same change in X to have a smaller impactonthe proba­
bility of Y near the floor or ceiling than near the midpoint. Because 
the logit expands or stretches the probabilities of Y at extreme values 
relative to the values near the midpoint, the same change in X comes 
to have similar effects throughout the range of the logit transforma­
tion of the probability of Y. Without a floor or ceiling, in other words, 
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the logit can relate linearly to changes in X. One can now compute a 
linear relationship between X and the logit transformation. The logit 
transformation straightens out the nonlinear relationship between X 
and the original probabilities. 

Conversely, the linear relationship between X and the logit im­
plies a nonlinear relationship between X and the original probabili­
ties. A unit change in the logit results in smaller differences in prob­
abilities at high and low levels than at levels in the middle. Just as we 
translate probabilities into logits, we can translate logits into proba­
bilities (the formula to do this is discussed shortly), 

Logit -3 
P; .047 
Change 

-2 -1 
.119 .269 
.072 .150 

0 
.5 
.231 

1 2 3 
. 731 .881 .953 
.231 .150 .072 . 

A one-unit change in the logit translates into a greater change in prob­
abilities near the midpoint than near the extremes. In other words, 
linearity in logits defines a theoretically meaningful nonlinear rela­
tionship with the probabilities. 

Obtaining Probabilities from Logits 

The linear relationships between the independent variables and the 
logit dependent variable imply nonlinear relationships with probabil­
ities. The linear relationship of X to the predicted logit appears in 

ln(P;/1 -P;) = b0 + b1X;. 

To express the probabilities rather than the logit as a function of X, 
first take each side of the equation as an exponent. Since the loga­
rithm of a number as an exponent equals the number itself (e of the 
ln X equals X), exponentiation or taking the exponential eliminates 
the logarithm on the left side of the equation: 

P;/1 - P; = ebo+b1X; = ebo * eb1X;. 

Further, the equation can be presented in multiplicative form because 
the exponential of X + Y equals the exponential of X times the expo­
nential of Y. Thus, the odds change as a function of the coefficients 
treated as exponents. 
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Solving for P; gives the formula4 : 

P; = (ebu+b1X,)j(l + ebo+b1X,). 

Since the logit L; equals b0 + b1X;, we can replace the longer for­
mula by L; in the equation, remembering that L; is the logged odds 
predicted by the value of X; and the coefficients b0 and b1• Then 

. '~ 

\ P; = eL, /(1 + eL')·J· . 
\.__., 

This formula takes the probability as a ratio of the exponential of the logit 
to 1 plus the exponential of the logit. Given that eL, produces odds, the 
formula corresponds to the equation P; = O;/(1 + O;) presented earlier. 

Moving from logits to exponents of logits to probabilities shows 

L -4.61 -2.30 -1.61 -.223 0 1.61 2.30 4.61 6.91 
eL .01 .1 .2 .8 1 5 10 100 1000 
1 +eL 1.01 1.1 1.2 1.8 2 6 11 101 1001 
p .010 .091 .167 .444.5 .833 .909 .990 .999. 

Note first that the exponentials of the negative logits fall between 0 
and 1, and that the exponentials of the positive logits exceed one. 
Note also that the ratio of the exponential to the exponential plus 1 
will always fall below one-the denominator will always exceed the 
numerator by 1. However, as the exponential gets larger, the differ­
ence between the numerator and the denominator declines (in other 
words, the extra one unit in the denominator becomes increasingly 
small relative to the other value in the numerator). Further, the ratio 
can never fall below zero since the exponentials of both negative and 
positive numbers end up positive and since the ratio of two positive 
numbers always ends up positive. Given the boundaries of the prob­
abilities, the example shows that the larger L, the larger eL, and the 
larger P. 

This transformation also demonstrates nonlinearity. For a one-unit 
change in X, L changes by a constant amount, but P does not. The 
exponents in the formula for P; makes the relationship nonlinear. 
Consider an example. If L; = 2 + .3X;, the logged odds change by .3 
for a one-unit change in X regardless of the level of X. If X changes 
from 1 to 2, L changes from 2 + .3 or 2.3 to 2 + .3 * 2 or 2.6. If X 
changes from 11 to 12, L changes from 5.3 to 5.6. In both cases, the 
change in L is identical. This defines linearity. 
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Take the same values of X, and the L values they give, and note 
the changes they imply in the probabilities: 

X 1 2 11 12 L 2.3 2.6 5.3 5.6 eL 9.97 13.46 200.3 270.4 
1 + eL 10.97 14.46 201.3 271.4 p .909 .931 .995 .996 
Change .022 .001. 

Hence, the same change in L due to a unit change in X results in a 
greater change in the probabilities at lower levels of X and P than at 
higher levels. The same would show at the other end of the probability 
distribution. 

This nonlinearity between the logit and the probability creates a 
fundamental problem of interpretation. ~ can summarize the effect 
of X on the logit simply in terms of a smgle linear coefficient, but 
we cannot do the same with the probabilities: the effect of X on the 
probability varies with the value of X and the level of probability. 
The complications in interpreting the effects on probabilities require \., 
a separate chapter on the meaning of logistic regression coefficients. 
However, dealing with problems of interpretation proves easier having 
fully discussed the logic of the logit transformatio.9 

An Alternative Formula 

For purposes of calculation, the formula for probabilities as a func­
tion of the independent variables and coefficients takes a somewhat 
simpler, but less intuitive form: 

P; = eb0+b1X, / ( 1 + ebu+b1X1 ), 

P;=l/(1 + e-(bo+b1X;)), 
L_P; = 1/(1 + e-L; o 

ln this formula, you need to take the exponential after taking the 
negative of the logit. The probability then equals 1 divided by 1 plus 
the exponential of the negative of the logit. This gives exactly the 
same result as the other formula. 5 

Either formula works to translate logits into probabilities. If the 
logit equals -2.302, then we must solve for P = e-2302 /1 + e-2302 or 
1/1 + e-<-2-302>. The exponential of -2.302 equals approximately .1, 
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and the exponential of the negative of -2.302 or 2.302 equals 9.994. 
Thus, the probability equals .1/1.1 or .091, or calculated alternatively 
equals 1/1 + 9.994 or .091. The same calculations can be done for any 

other logit value to get probabilities. 

Summary 
This chapter reviews how the logit transforms a dependent vari­

able having inherent nonlinear relationships with a set of independent 
variables into a dependent variable having linear relationships with a 
set of independent variables.6 Logistic regression models (sometimes 
also called logit models) thus estimate the linear determinants of the 
logged odds or logit rather than the nonlinear determinants of proba­
bilities. Obtaining these estimates involves complexities left untj.l later 
chapters. In the meantime, however, it helps to view logistic regression 
in simple terms as regression on a dependent variable that transforms 
nonlinear relationships into linear relationships. 

In linearizing the nonlinear relationships, logistic regression also 
shifts the interpretation of coefficients from changes in probabilities 
to less intuitive changes in logged odds. The loss of interpretabil­
ity with the logistic coefficients, however, is balanced by the gain in 
parsimony: the linear relationship with the logged odds can be sum­
marized with a single coefficient, but the nonlinear relationship with 
the probabilities cannot be so simply summarized. Efforts to interpret 
logistic regression coefficients in a meaningful, yet relatively simple 

way define the topic of the next chapter. 

2. INTERPRETING LOGISTIC REGRESSION 
COEFFICIENTS 

Although it simplifies the estimation issues to come, treating logistic 
regression as a form of regression on a dependent variable trans­
formed into logged odds helps describe the underlying logic of the 
procedure. However, as is true for nonlinear transformations more 
generally, the effects of the independent variables in logistic regres­
sion have multiple interpretations. Effects exist for probabilities, odds, 
and logged odds, and the interpretations of each effect have both ad-

vantages and disadvantages. 
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,r--
( To preview, the effects of the independent variables on the logged 
'octets are linear and additive--each X variable has the same effect 
on the logged odds regardless of its level or the level of other X 
variables-but the units of the dependent variable, logged odds, have 
little intuitive meanin~he effects of the independent variables 
on the probabilities ~tuitive meaning, but are nonlinear and 
nonadditive-each X variable has a different effect on the proba­
bility depending on its level and the level of the other independent 
variables. Despite the interpretable units, the effects on probabilities 
cannot be simply summarized in the form of a single coeffici~nl. 
~e interpretation of the effects of the independent vanaETes on 
'tne odds offers a compromise between the previous alternatives. The 
odds have more intuitive appeal than the logged odds, and can express 
effects in single coefficients. The effects on odds are multiplicative 
rather than additive, but still have a straightfoiward interpretation. 
Other ways to interpret the effects of the independent variables exist. 
The ratios of the coefficients to their standard errors obviously have 
importance in interpreting sample results. Also, various attempts to 
standardize the coefficients for the ind~ndent variables and com­
pare their relative size may prove hel~ 

This chapter examines each of these ways to interpret effects in 
logistic regression. Further, it examines the variations in each inter­
pretation for continuous and dummy independent variables. 

Logged Odds 

The first interpretation directly uses the coefficients obtained 
from the estimates of the logistic regression. The logistic regression 
coefficients simply show the change in the predicted logged odds of 
experiencing an event or havi~ characteristic for a one-unit change 
~n the independent variables~ coefficients have exactly the same 
mterpretation as the coefficients in regression except that the units 
of the dependent variable represent the logged ocfcis)For example, 
Browne (1997, p. 246) uses logistic regression to pretuc't participation 
in the labor force of 922 female heads of household between ages 
18 and 54 in 1989. The logistic regression coefficient of .13 for years 
employed shows that each additional year of employment increases 
the logged odds of current participation in the labor force by .13. 

For dummy variables, a change in one unit implicitly compares 
the indicator group to the reference or omitted group. Browne uses 
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dummy variables for high school dropouts and high school graduates 
to compare their labor force participation to those women with some 
college education ( the reference group). The coefficients of -1.29 and 
-.68 for these two dummy variables indicate that the logged odds of 
being in the labor force are 1.29 lower for high school dropouts than 
for those with some college, and are .68 lower for high school grad­
uates than for those with some college. Excepting the metric of the 
dependent variable, this interpretation represents nothing different 
from that used for dummy variables in ordinary regression. 

These coefficients represent th~ationship, as in ordinary re­
gression, with a single coefficient. Regardless of the value of X -
small, medium, or large-or the values of the other independent 
variables a one-unit change has the same effect on the dependent 
variao~ording to the model, the difference in the logged odds 
of -participation between a woman with 1 year of experience I and 
a woman with 2 years of experience equals the difference in the 
logged odds of participation between a woman with 21 years of ex­
perience and a woman with 22 years of experience. Similarly, the ef­
fect of years employed in the model docs not differ between high 
school dropouts, high school graduates, and those with some col­
lege. All one needs to do is copy the coefficient from the printout. 
Indeed, logistic regression aims to simplify the nonlinear and non­
additive relationships inherent in treating probabilities as dependent 
variables. 

Note also that logistic regression, as in linear regression, can in­
clude product terms to represent interactive relationships and poly­
nomial terms to represent curvilinear relationships. The product and 
squared terms in logistic regression have much the same interpre­
tation as in linear regression, except that the units of the dependent 
variable take the form of logged odds. Logistic regression already con­
tains nonadditivity and nonlinearity in the relationships between the 
independent variables and probabilities, but can further model nonad­
ditivity and nonlinearity in the relationship between the independent 
variables and the logged odds (DeMaris, 1992). 

,,/Despite the simplicity of their interpretation, the logistic regres­
~ncoefficients, as mentioned, lack a meaningful met~tatements 
about the effects of variables on changes in logged odds reveal little 
about the relationships and do little to help explain the substantive 
results. Researchers need means to interpret the substantive meaning 
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or importance of the coefficients other than merely reporting the ex­
pected changes in logged odds. 

Odds 

The second interpretation comes from transforming the logistic re­
gression coefficients so that the independent variables affect the odds 
rather than the logged odds of the dependent variable.@ find the 
effects on the odds, simply take the exponent or antilogarithm of 
the logistic regression coefficients. As in the two variable model that 
follows, exponentiating both sides of the logistic regression equation 
eliminates the log of the odds and shows the influences of the vari­ables on the odds, 

ln(P/1 - P) = b0 + b1X1 + b2X2, 
eln(P/1-P) = eho+b1X 1+b2X 2 , 

P/1 - P=ebo * eb1X1 * ebzXz. 

As noted in the last chapter, the antilog of the Jog of a value equals 
the value itself, and the left side of the equation equals the odds. In 
addition, since the exponent of (X + Y) equals the exponent of X 
times the exponent of Y, the right-hand side of the equation becomes 
multiplicative rather than additive. 

The odds are a function of the exponentiated constant ( ebo) mul­
tiplied by the exponentiated product of the coefficient and X

1 
( eb1X

1
) 

and the exponentiated product of the coefficient and X
2 

( eb2X2 ). In 
simple terms, the effect of each variable on the odds (rather than 
the logged odds) comes from taking the antilog of the coefficients. 

-1! not already presented in the computer output, the exponentiated 
coefficients can be obtained from most any calculator by typing the 
coefficient and then the ex fun~he exponentiated coefficients 
of .13, -1.29, and -.68 from Browne's study of women's labor force 
participation equal 1.14, .28, and .51. 

The fact that the equation determining the odds is multiplicative 
rather than,-4dditive affects the interpretation of the exponentiated 
coefficients!~ an ;i.,dditive equation, a variable has no effect when its 
COefficient equal0 The predicted value of the dependent variable 
sums the values of the variables times the coefficients; when adding 
0, the predicted value does not change<!!La multiplicative equation, 
the predicted value of the dependent variable does not change when 
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multiplied by a coefficient of 1. Therefore, 0 in the additive equation 
corresponds to 1 in the multiplicative equati~urther, the exponen­
tial of a positive number exceeds 1 and the exponential of a negative 
number falls below 1 (but above zero, as the exponential of any num­
ber is always greater than zero). 

For the exponentiated coefficients, then, a coefficient of 1 leaves 
the odds unchanged, a coefficient greater than 1 increases the odds, 
and a coefficient smaller than 1 decreases the odds. Moreover, the 
more distant the coefficient from 1 in either direction, the greater the 
effect in changing the odds. For example, the exponentiated coeffi­
cient for years of employment, 1.14, indicates that a 1-year increase 
in employment multiplies the odds of labor force participation by 1.14 
or increases the odds by a factor of 1.14. If the odds of participation 
for someone employed 12 years equals 4.88, the odds of participa­
tion for someone employed 13 years equals 4.88 * 1.14 or 5.56. The 
odds of participation for someone employed 14 years in tum equ~ls 
5.56 * 1.14 or 6.34.7 , 

In terms of odds ratios, dividing the odds of someone with 13 years 
of experience by the odds of someone with 12 years of experience 
gives the exponentiated logistic regression coefficient: 5.56/4.48 = 
1.14. Thus, the coefficient shows the ratio of odds for a one-unit in­
crease in the independent variable. 

For dummy variables, a similar interpretation follows. The expo­
nentiated coefficient for the high school dropout dummy variable, .28, 
indicates that a one-unit increase in the variable multiplies the odds of 
labor force participation by .28. Of course, a one-unit increase com­
pares high school dropouts to the reference group of those with some 
college. In either case, multiplying by .28 substantially lowers the odds. 
If the odds of participation for those with some college equal 15.6, 
the odds of participation for high school dropouts equal 15.6 * .28 or 
4.37. For high school graduates, the exponentiated coefficient of .51 
indicates that the odds of participation are .51 times smaller than for 
those with some college. Their odds would equal 15.6 * .51 or 7.96. 
In terms of odds ratios, the exponentiated coefficient for the dummy 
variable equals the ratio of odds for the dummy variable group to the 
odds for the reference group. 

Since the distance of an exponentiated coefficient from 1 indicates 
the size of the effect, a simple calculation can further aid in inter­
pretation. The difference of a coefficient from 1 exhibits the increase 
or decrease in the odds for a unit change in the independent vari-
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ab]e[~terms of a formula, the exponentiated coefficient minus 1 
and times 100 gives the percentage increase or decrease due to a 
one-unit change in the independent variabl~ 

__/ 

%L\ = (eb - 1) * 100. 

For years of employment, the exponentiated coefficient says that 
the odds of participating in the labor force increase by 14% for an in­
crease of 1 year of employment experience. This appears more mean­
ingful than to say the logged odds increase by .13.8 The size of the 
effect on the odds also depends on the units of measurement of the 
independent variables-the change in odds for variables measured in 
different units do not warrant direct comparison. Still, the interpreta­
tion of percentage change in the odds has intuitive appeal. 

Turning to the dummy variables, the percentage change of the ex­
ponentiated logistic regression coefficient for high school dropouts 
equals (.28 - 1) * 100 or -72. This means that the odds of partic­
ipating are 72% lower for high school dropouts than for those with 
some college. The exponentiated coefficient for high school graduates 
of .51 indicates that their odds of participating are 49% lower than 
for those with some college. 

In interpreting the exponentiated coefficients, remember that they 
refer to multiplicative changes in the odds rather than probabilities. 
It is easy to say that an additional year of work experience makes par­
ticipation 1.14 times more probable or otherwise imply probabilities 
rather than odds (DeMaris, 1995, p. 1960). More precisely, the odds 
of participation are 1.14 times as large or 14% larger for an additional 
year of work. 

Probabilities 

The third strategy of interpreting the logistic regression coefficients 
involves translating the effects on logged odds or odds into the ef­
fects on probabilities. Since the relationships between the indepen­
dent variables and probabilities are nonlinear and nonadditive, they 
cannot be fully represented by a single coefficient. The effect on the 
probabilities has to be identified at a particular value or set of val­
ues. The choice of values to use in evaluating the effect of variables 
on the probabilities depends on the concerns of the researcher and 
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the nature of the data, but an initial strategy has the advantage of 
simplicity: examine the effect on the probability for a typical case. 

Continuous Independent Variables 
One quick way to gauge the influence of a continuous variable on 

probabilities involves calculating the linear slope of the tangent of the 
nonlinear curve at any single point. The slope of the tangent line is 
defined by the partial derivative of the nonlinear equation relating 
the independent variables to the probabilities, but more intuitively 
represents a straight line that meets the logistic curve at a single point 
without crossing to the other side of the curve. Figure 2.1 depicts 
the tangent line where the logistic cuxve intersects Y == P = .16. 
The tangent line identifies the slope only at that particular point, but 
allows for easy interpretation. Its slope shows the linear change in the 
probability for a one-unit change in the independent variable de~ed 

at a single point on the logistic curve. 
The change in probability or the linear slope of the tangent line 

comes from a simple equation for the partial derivative. The partial 
derivative reveals the change in the probability for an infinitely small 
change in X, but also defines the slope of the tangent line or the 
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Figure 2.1. Tangent line of logistic curve at Y = P = .76. 
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change in the tangent line due to a one-unit change in X at that 
value (as discussed shortly, it does not equal the actual ch~ange in the 
logistic regression curve due to a one-unit change in X)J The partial 
derivative, also referred to as the marginal or instantaneous effect, 
equals 

fj_;axk = bk * P * (1 -~ 

Simply multiply the logistic regression coefficient by the selected prob­
ability P and 1 minus the probability. 

The formula for the partial derivative nicely reveals the nonlinear 
effects of an independent variable on probabilities.(!Ee effect of b 
(in terms of logged odds) translates into a differenteffect on the 
pro~abilities depending on ~he level of P -~ effect will be at its 
maxunum when P equals .5 smce .5*.5 = .25, .6*.4 = .24, .7*.3 = .21 
and so on. The closer P comes to the ceiling or floor, the smaller the 
value P * {l - P), and the smaller the effect a unit change in X has 
on the probabi!!9 

Multiplying the coefficient times .5 * .5 shows the maximum effect 
on the probabilities, but may overstate the influence for a sample in 
which the split on the dependent variable is not so eve~bstituting 
the mean of the dependent variable, P, in the formula gives a more 
typical e§In Browne's example, the logistic regression coefficient 
for years employed equals .13; the mean of the dependent variable, 
the expected probability of participating, equals .83; and the probabil­
ity of not participating equals .17. Multiplying all three gives a value 
of .018. An increase of 1 year of employment increases the probability 
of participation by .018 or almost 2% at the mean. The effect reaches 
its maximum of .032 when P = .5. 
@ an alternative to the mean, we might compute the predicted 

probability for a typical case on the independent variables, and use 
that probability to calculate the partial deriva~ubstituting the 
means of the continuous variables and the value of the modal cate­
gory for dummy variables into the logistic regression equation yields 
the predicted logged odds for that case. Transforming the predicted 
logged odds into a predicted probability allows calculation of the ef­
fects on probabilities for that case. 
~ much the same way, a researcher might compute a predicted 
probability for a range of values on the independent variables and 
present the marginal effects for the extremes as well as the middle 
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of the sample (Long, 1997, p. 64}¾1Jowing all the other variables 
to take their mean values, calcu~he predicted probabilities when 
one variable takes values -2, -1, 0, 1, and 2 standard deviations from 
the mean. Then use these probabilities to calculate marginal effects. 
Alternatively, calculate probabilities and the associated marginal ef­
fects when the independent variable takes its maximum, mean, and 
minimum values. Long (1997) discusses a number of others ways­
including the use of both tables and graphs-to present a more com­
plete summary of the range of influences of a variable on proqabilities. 

The formula for the partial derivative demonstrates the nor\additive 
as well as the nonlinear nature of the relationships with probabilities: 
the effect of one independent variable on the probabilities varies with 
P, and P varies with the values of other independent variables. When 
X2 is at its mean, it might predict P near .5 and X 1 would have a rel­
atively large marginal effect. When X 2 is near its maximum, it might 
predict a P near 1 and X 1 would have a relatively small marginal ef­
fect~ effect of X 1 on the probabilities, in other words, varies with 
the v s of other independent variables and predicted P values. This 
means that the independent variables interact in determining proba­
bilities (remember that the effects of the variables on the logged odds 
are linear and additive).) 

The inherent nonliife:i'r and nonadditive influence of the determi­
nants on probabilities limits the value of any single summary coeffi­
cient. Given the difficulties of describing a nonlinear and nonadditive 
relationship with a single coefficient, analysts disagree over whether 
it is valuable to even calculate a single partial derivative (DeMaris, 
1990, 1993; Roncek, 1993). Critics of the procedure view the resulting 
coefficient as misleading, and little better than using linear regression. 

~ven so, the tendency of researchers to think in terms of proportions 
cir probabilities may warrant use of the slope of the tangent at the 
mean of the dependent variable or other points on the logistic curve 
as a supplement to other interpretati~ 

Dummy Independent Variables 

fThe partial derivative works best with continuous variables for 
~~h small changes in the independent variables that define the tan­
gent have meaning. For dummy variables, the relevant change occurs 
from O to 1, and the tangent line for small changes in X makes less 
~cad, it is possible to compute predicted probabilities for 
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each group, and then subtract the two probabilities to measure the 
group differences in probabili9he partial derivative of the coef­
ficient for a dummy variable may approximate the group difference 
in probabilities, but calculating the predicted probabilities gives the 
exact difference. Remember, however, that the calculated group dif­
ference in probabilities, like the partial derivative, varies with the 
point on the logistic curve, the X values, and the P values. 
(Jo make the calculation, select a starting probability from which to 

evaluate the effect of the dummy variable. With this value serving as 
the probability for the omitted group, calculate the predicted proba­
bility for the dummy variable group. Subtracting these two probabil­
ities shows the difference in the probability between the two groups 
evaluated at the selected starting p~Peterson, 1985). The mean 
of the dependent variable may serve as the probability of the omit­
ted group, but other values of special interest may work equaJiy well 
as the starting point. Choosing other P values for the omitted group, 
although appropriate and useful, wilJ produce different results. 

More precisely, foJiow these steps. (a) Find the logged odds of P 
or the predicted logit for the omitted group. (b) To get the predicted 
logit for the dummy variable group, add the logistic regression coef­
ficient to the predicted logit for the omitted group. (c) Compute the 
probability from the predicted logit for the dummy variable group us­
ing the formula listed below and in Chapter 1. ( d) Subtract P from 
the probability for the dummy variable group to obtain the between­
group difference in probabilities ( or the effect of the dummy variable 
on probabilities). 
-In formula, the steps take the form, 

L 0 = ln(P0 /(l - P0 )) logit for the omitted group, 

Ld = L 0 + bd logit for the dummy variable group, 

Pd = 1/1 + e-Ld probability for the dummy variable group, 
Pd - P0 difference in probabilities. 

In Browne's example, using the mean of the dependent variable or 
.83 as P0 and the b for high school dropouts of -1.29 (with women 
with some college serving as the omitted group), follow the previous 
steps, 

L 0 = ln(P0 /(l - P0 )) = ln(.83/.17) = 1.586 logit for women 
with some coJlege, 


