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LOGISTIC REGRESSION:
A PRIMER

FRED C. PAMPEL
University of Colorado, Boulder

1. THE LOGIC OF LOGISTIC REGRESSION

Many social phenomena are discrete or qualitative rather than contin-
uous or quantitative in nature—an event occurs or it does not occur,
a person makes one choice but not the other, an individual or group
passes from one state to another. A person can have a child, die,
move (either within or across national borders), marry, divorce, enter
or exit the labor force, receive welfare benefits, have their income fall
below the poverty level, vote for one candidate, favor or oppose an
issue, commit a crime, be arrested, quit school, enter college, join an
organization, get sick, belong to a religion, or act in myriad ways that
either involve a characteristic, event, or choice. Likewise, large social
units—groups, organizations, and nations—can emerge, break up, go
bankrupt, face rebellion, join larger groups, or pass from one type of
discrete state into another.

Binary discrete phenomena usually take the form of a dichotomous
indicator or dummy variable. Although it is possible to represent the
two values with any numbers, employing variables with values of 1
and 0 has advantages. The mean of a dummy variable equals the
proportion of cases with a value of 1, and can be interpreted as a
probability.

Regression With a Dummy Dependent Variable

A binary qualitative dependent variable with values of 0 and 1
seems suitable on the surface for use with multiple regression. Re-
gression coefficients have a useful interpretation with a dummy de-
pendent variable—they show the increase or decrease in the predicted
probability of having a characteristic or experiencing an event due to a

1



one-unit change in the independent variables. Equivalently, they show
the change in the predicted proportion of respondents with a value
of 1 due to a one-unit change in the independent variables. Given
familiarity with proportions and probabilities, researchers should feel
comfortable with such interpretations.

The dependent variable itself only takes values of 0 and 1, but the
predicted values for regression take the form of mean proportions
or probabilities conditional on the values of the independent vari-
ables. The higher the predicted value or conditional mean, the more
likely that any individual with particular scores on the independent
variables will have a characteristic or experience the event. Linear
regression assumes that the conditional proportions or probabilities
define a straight line for values of X.

To give a simple example, the 1994 General Social Survey (GSS)
of the National Opinion Research Corporation asked respondents if
they smoke. Assigning those who smoke a score of 1 and those who
do not a score of O creates a dichotomous dependent variable. Taking
smoking (S) as a function of years of completed education (E) and
a dummy variable for gender (G) with females coded 1 produces the

regression equation:

§ =.661 —.029 x E + .004 % G.

The coefficient for education indicates that for a 1-year increase in
education, the probability of smoking goes down by .029, the propor-
tion smoking goes down by .029, or the percent smoking goes down
by 2.9. Male respondents with no education have a predicted proba-
bility of smoking of .661 (the intercept). A male with 10 years of edu-
cation has a predicted probability of smoking of .371 (.661 —.029%10).
One could also say that the model predicts 37% of such respondents
smoke. The dummy variable coefficient shows females have a prob-
ability of smoking .004 higher than for males. With no education,
women have a predicted probability of smoking of .665 (.661 + .004).
Despite the uncomplicated interpretation of the coefficients for re-
gression with a dummy dependent variable, the regression estimates
face two sorts of problems. One type of problem is conceptual in na-
ture, while the other type is statistical in nature. Together, the prob-
lems prove serious enough to require use of an alternative to ordinary

regression with qualitative dependent variables.

Problems of Functional Form
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Figure 1.2. Jittered scatterplot for a binary dependent variable, smoking or
nonsmoking by years of education.

The intercept shows the nonsensical probability that a male with no
education will have a predicted probability of belonging below zero.
Although a problem in general, reliance on the assumption of linearity
in this particular model proves particularly inappropriate.!

One solution to the boundary problem would assume that any value
equal to or above 1 should be truncated to the maximum value of 1.
The regression line would be straight until this maximum value, but
afterward changes in X would have no influence on the dependent
variable. The same would hold for small values, which could be trun-
cated at 0. Such a pattern would define sudden discontinuities in the
relationship, whereby at certain points the effect of X on Y would
change immediately to O (see Figure 1.3(a)).

However, another functional form of the relationship might make
more theoretical sense than truncated linearity. With a floor and a
ceiling, it seems likely that the effect of a unit change in the inde-
pendent variable on the predicted probability would be smaller near
the floor or ceiling than near the middle. Toward the middle of a re-
lationship, the nonlinear curve may approximate linearity, but rather
than continuing upward or downward indefinitely, the nonlinear curve
bends slowly and smoothly so as to approach 0 and 1. As values get
closer and closer to 0 or 1, the relationship requires a larger and
larger change in the independent variable to have the same impact
as a smaller change in the independent variable at the middle of the
curve. To produce a change in the probability of experiencing an event
from .95 to .96 requires a larger change in X than it does to produce
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Figure 1.3. (a) Truncated linear relationship, (b) S-shaped curve.
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their already high probability. The same would hold for an increase
in income from $0 to $10,000: since neither income is likely to be suf-
ficient to purchase a house, the increase in income has little impact
on ownership. In the middle-range, however, the additional $10,000
may make the difference between being able to afford a house and
not being able to afford a house.

Similarly, an increase of 1 year in age on the likelihood of first
marriage may have much stronger effects during the late teens and
early twenties than at younger or older ages. Few will marry under
age 15 despite growing a year older, and few unmarried by 50 will
likely marry by age 51. However, the change from age 21 to 22 may
result in a substantial increase in the likelihood of marriage. The same
kind of reasoning would apply in numerous other instances: the effect
of the number of delinquent peers on the likelihood of committing a
serious crime, the effect of the hours worked by women on the likeli-
hood of having a child, the effect of the degree of party identification
on the support for a political candidate, and the effect of drinking be-
havior on premature death are all likely stronger at the midrange of
the independent variables than the extremes.

A more appropriate nonlinear relationship would look like that in
Figure 1.3(b), where the curve levels off and approaches the ceil-
ing of 1 and the floor of 0. Approximating the curve would require
a succession of straight lines, each with different slopes. The lines
nearer the ceiling and floor would have smaller slopes than those in -
the middle. However, a constantly changing curve more smoothly and
adequately represents the relationship. Conceptually, the S-shaped
curve makes better sense than the straight line.

Within a range of a sample, the linear regression line may approx-
imate a curvilinear relationship by taking the average of the diverse
slopes implied by the curve. However, the linear relationship still un-
derstates the actual relationships in the middle, and overstates the re-
lationship at the extremes (unless the independent variable has values
only in a region where the curve is nearly linear). Figure 1.4 com-
pares the S-shaped curve with the straight line; the gap between the
two illustrates the nature of the error, and the potential inaccuracy of
linear regression.

The ceiling and floor create another conceptual problem besides
nonlinearity in regression models of a dichotomous response. Re-
gression typically assumes additivity—that the effect of one variable
on the dependent variable stays the same regardless of the levels of



Figure 1.4. Linear versus curvilinear relationship.

independent variables. Models can include selected prod-
gﬁ :)etrtirel; :gdaclc):ount for nonadditivity, but a fiichotomous de;_)enc;ent
variable likely violates the additivity assumptlon'for all combma’flc;rlls
of the independent variables. If the value of one md.e_pendent vgna le
reaches a sufficiently high level to push the probability of the depen-
dent variable to near 1 (or to near 0), then the 'et"fccts of other vag-
ables cannot have much influence. Thus., the c.cxlmg and floor make
the influence of all the independent variables inherently nonadditive
i ctive. '
an’cll‘;nrteetl:n: to the smoking example, those persons with 20 years 0{
education have such a low probability of smokmg that only a smal
difference can exist between men and women,; In other‘ words, sex
can have little effect on smoking at high levels of ed'uca'flon. In con(;
trast, larger sex differences likely exist when education 18 lo;ver an
the probability of smoking is higher. Although the e'ff.ect of sex on
smoking likely varies with the level of education, addmvs: re.gr.czlssmﬁn
models incorrectly assume that the effect of sex on smqkmg is i eptli
cal for all levels of education (and the effect of education is identica

for both sexes).

Problems of Statistical Inference

Even if a straight line approximates the nonlinear relat'ionship in
some instances, some problems €merge that, despite leaving the es-

timates unbiased, reduce their efficiency. The problems involve the
fact that regression with a dummy dependent variable violates the
assumptions of normality and homoscedasticity. Both these problems
stem from the existence of only two observed values for the dependent
variable. Linear regression assumes that in the population a normal
distribution of error values around the predicted Y is associated with
each X value, and that the dispersion of the error values for each X
value is the same. The assumptions imply normal and similarly dis-
persed error distributions. ’

Yet, with a dummy variable, only two Y values and only two residu-
als exist for any single X value. For any value X, the predicted prob-
ability equals by + b X;. Therefore, the residuals take the value of

1 — (by + b;X;) when Y; equals 1,
and
0 — (bg + b, X;) when Y; equals 0.

Even in the population, the distribution of errors for any X value
cannot be normal when the distribution has only two values.

e error term also violates the assumption of homoscedasticity
or equal variances because the regression error term varies with the
value of X.2 To illustrate this graphically, review Figure 1.1(b), which
plots the relationship between X and a dichotomous dependent vari-
able.[Fitting a straight line that goes from the lower left to the upper
right'of the figure would define residuals as the vertical distance from
the points to the line. Near the lower and upper extremes of X, where
the line comes close to the floor of 0 and the ceiling of 1, the residu-
als are relatively small. Near the middle values of X, where the line
falls halfway between the ceiling and floor, the residuals are relatively
large. As a result, the variance of the errors is not constant.

While normality creates few problems with large samfiples, het-
eroscedasticity has more serious implications. The sample estimates
of the population regression coefficients are unbiased, but they no
longer have the smallest variance and the sample estimates of the
standard errors are biased. Thus,{even with large samples, the stan-
dard errors in the presence of heteroscedasticity will be incorrect,
and tests of significance will be inv‘a@l’echnical means of weighing
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least squares estimates can deal with this problem, but more im-
portantly do not solve the conceptual problems of nonlinearity and
nonadditivity. Use of regression with a dummy dependent variable
consequently remains inappropriate.

Transforming Probabilities into Logits

Linear regression faces a problem in dealing with a dependent vari-
able with a ceiling and a floor: the same change in X has a different
effect on Y depending on how close the curve corresponding to any
X value comes to the maximum or minimum Y value. We need a
transformation of the dependent variable to allow for the decreasing
effects of X on Y as the predicted Y value approaches the floor or
ceiling. We need, in other words, to eliminate the floor and ceiling
inherent in probabilities.

Although many nonlinear functions can represent the S-shaped
curve, the logistic or logit transformation, because of its desirable
properties and relative simplicity, has become popular. To illustrate
the logit transformation, assume that each case has a probability of
having a characteristic or experiencing an event, defined as P;. Since
the dependent variable has values of only 0 and 1, this P; must be
estimated, but it helps to treat the outcome in terms of probabilities
for now. Given this probability, the logit transformation involves two
steps. First, take the ratio of P; to 1 — P;, or the odds of experiencing
the event. Second, take the natural logarithm of the odds. The logit
thus equals ?

L =n[P;/(1 - P)],

or, in short, the logged odds.

For example, if P; equals .2 for the first case, its odds equals .25
or .2/.8, and its logit equals —1.386, the natural log of the odds. If
P, for the second case equals .7, its odds equal 2.33 or .7/.3, and its
logit equals 0.847. If P; equals .9 for the third case, its odds equals 9
or .9/.1, and its logit equals 2.197. Although the computational for-
mula to transform probabilities into logits is_straightforward, it re-
quires some explanation to show its usefulnes@‘tums out to describe
the relationship between independent variables and a distribution of
probabilities defined by a dichotomous dependent variab@

11

Meaning of Odds

The logit begins by transforming probabilities into odds. Probabil-
ities vary between 0 and 1, and express the likelihood of an event
as a proportion of both occurrences and nonoccurrences. Odds ex-
press the likelihood of an occurrence relative to the likelihood of a
nonoccurrence. Both probabilities and odds have a lower limit of zero,
and both express the increasing likelihood of an event with increasing
large positive numbers, but otherwise they differ.

Unlike a probability, odds have no upper bound or ceiling. As a
probability gets closer to 1, the numerator of the odds becomes larger
relative to the denominator, and the odds become an increasingly
large number. The odds thus increase greatly when the probabilities
change only slightly near their upper boundary of 1. For example,
probabilities of .99, .999, .9999, .99999, and so on result in odds of 99,
999, 9999, 99999, and so on. Tiny changes in probabilities result in
huge changes in the odds, and show that the odds increase toward
infinity as the probabilities come closer and closer to 1.

To illustrate the relationship between probabilities and odds, exam-
ine the values

P, 011 2 3 4 5 6 7 8.9 .9
1-P, 99 9 B8 7 6 5 4 3 2.1 .01
Odds .01 .111 25 429 667 1 15 233 4 9 99.

Note that when the probability equals .5, the odds equal 1 or are even.
As the probabilities increase toward one, the odds no longer have the
ceiling of the probabilities. As the probabilities decrease toward zero,
however, the odds still approach zero. At least at one end, then, the
transformation allows values to extend linearly beyond the previous
limit.

Manipulating the formula for odds gives further insight into their
relationship to probabilities. Beginning with the definition of odds
(0;) as the ratio of the probability to one minus the probability, we
can with simple algebra express the probability in terms of odds:

P;/(1 — P;) = O; implies that P; = O0,;/(1 + O;).

The probability equals the odds divided by one plus the odds.
ased on this formula, the probability can never equal or exceed
one: no matter how large the odds become in the numerator, they
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will always be smaller by one than the denomin;@Of course, as
the odds become large, the gap between the odds the odds plus 1
will become relatively small and the probability will approach (but not
reach) one. Conversely, the probability can never fall below 0. As long
as the odds equal or exceed 0, the probability must equal or exceed
zero. The smaller the odds in the numerator become, the larger the
relative size of the 1 in the denominator. The probability comes closer
and closer to zero as the odds come closer and closer to 0.

/\ Usually, the odds are expressed as a single number, taken implicitly
as a ratio toDThus, odds of 10 imply an event will occur 10 times for
each time it does not occur. Since the single number can be a fraction,
there is no need to keep both the numerator or denominator as a
whole number. The odds of 7 to 3 can be expressed equally well as a
single number of 2.33 (to 1). Thus, even odds equal 1 (1 occurrence
to 1 nonoccurrence). Odds below 1 mean the event is less likely to
occur than it is to not occur. If the probability equals .3, the odds
are .3/.7 or .429. This means the event occurs .429 times per each
time it does not occur. It could also be expressed as 42.9 occurrences
per 100 nonoccurrences.

Expressed as a single number, any odds can be compared to another
odds. Odds of 9 to 1 are three times higher than odds of 3. Odds of 3
are one-third the size of odds of 9. Odds of .429 are .429 the size of
even odds of 1, or half the size of odds of .858. In each example, one
odds is expressed as a multiple of the other.

Qltis often useful to compare two different odds as a ra;iaj The ratio
of odds of 8 and 2 equals 4, which shows that the odds of the former
group are four times (or 400%) larger than for the latter group. If
the odds ratio is below 1, then the odds of the first group are lower
than the second group. An odds ratio of .5 means the odds of the
first group are only half or 50% the size of the second group. The
closer the odds ratio to zero, the lower the odds of the first group to
the second. An odds ratio of one means the odds of both groups are
identical. Finally, if the odds ratio is above one, the odds of the first
group are higher than the second group. The greater the odds ratio,
the higher the odds of the first group to the second.

Cl‘o prevent confusion, keep in mind the distinction between odds
and odds ratios. Odds refer to a ratio of probabilities, w/tli\le odds ra-
tios refer to ratios of odds (or a ratio of probability ratios). JAccording
to the 1994 GSS, for example, 29.5% of men and 13.T% of women
own a gun, Since the odds of gun ownership for men equal .418 (.295:
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.705), it indicates that around 4 men own a gun for 10 who do not.
The odds of gun ownership for women equal .151 or about 1.5 women
own a gun for 10 who do not. The ratio of odds of men to women
equal .418: .151 or 2.77, which means thaf_the odds of gun ownership
are nearly three times higher for men than women.)

In summary, reliance on odds rather than proba‘bx/lities provides for
meaningful interpretation of the likelihood of events, but eliminates
the upper boundary. Odds will prove useful later in interpreting co-
efficients, but note now that creating odds represents the first step of
the logit transformation.

Logged Odds

Taking Fhe natural log of the odds eliminates the floor of 0 much as
transforming probabilities into odds eliminates the ceiling of 1. Taking
the natural log of:

odds above 0, but below 1 produces negative numbers;
odds equal to 1 produces 0; and
odds above 1 produces positive numbers.

(The logs of values equal to or below zero do not exist; see the Ap-
pendix for an introduction to logarithms and their properties.)
. The first property of the logit, then, is that, unlike a probability,
it has no upper or lower boundary. The odds eliminate the upper
boundary of probabilities, and the logged odds eliminate the lower
bound of probabilities as well. To see this, if P; = 1, the logit is
undefined because the odds of 1/0 do not exist. As the probability
comes closer and closer to 1, however, the logit moves toward positive
infinity. If P, = 0, the logit is undefined because the log of the odds
of 0/1 or 0 does not exist. As the probability comes closer and closer
to Q, however, the logit proceeds toward negative infinity. Thusthe
10g1t.s‘vary from negative infinity to positive infinity. The proble;ﬁlof
a ceiling and floor in the probabilities (or a floor in odds) disappears>
mc second property is that the logit transformation is symn'i?t_ri/c/
around the midpoint probability olf:(?'he logit when P, = 5is 0
(.5: 5 =1, and the log of 1 equal§ ). Probabilities below .5 result
In negative logits because the odds fall below 1 and above 0; P, is
Smal!er than 1 — P;, thereby resulting in a fraction, and the log o‘f a
fraction results in a negative number (see the Appendix). Probabilities
above .5 result in positive logits because the odds exceed one (P; is
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larger than 1 — P;). Further, probabilities the same distance above
and below .5 (e.g., .6 and .4, .7 and .3, .8 and .2) have the same logits,
but different signs (e.g., the logits for the probabilities listed above
equal, in order, 405 and —.405, .847 and —.847, 1.386 and —1.386).
The distance of the logit from 0 reflects the distance of the probability
from .5 (again noting, however, that the logits do not have boundaries
as do the probabilities).

"The third property is that the same change in probabilities trans-
13Tes into different changes in the logits. The simple principle is that
as P, comes closer to 0 and 1, the same change in the probability
translates into a greater change in the logged Q(lC_i_SJYOu can see this
by example,

P, 4y 2 3 4 5 6 a1 8,9
\p o 8 1 6 5 4 3 2/
Odds 111 25 429 6671 15 233 4 9
Logit —220 —139 —847 —405 0 405 847 139 2.20.

A change in probabilities of .1 from .5 to .6 (or from .5 to .4) results
in a change of .405 in the logit, whereas the same probability change
of .1 from .8 to .9 (or from .2 to .1) results in a change of .810 in the
logit. The change in the logit for the same change in the probability is
twice as large at this extreme as in the middle. To repeat, the general
principle is that small differences in probabilities result in increasingly
larger differences in logits when the probabilities are near the bounds

of 0 and 1.

Linearizing the Nonlinear

nonlinear relationship between X and the probability of Y >We would
expect the same change in X to have a smaller impact™©on the proba-
bility of Y near the floor or ceiling than near the midpoint. Because
the logit expands or stretches the probabilities of Y at extreme values
relative to the values near the midpoint, the same change in X comes
to have similar effects throughout the range of the logit transforma-
tion of the probability of Y. Without a floor or ceiling, in other words,

Qhelps to view the logit transformation as lineariziréthe inherent
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the logit can relate linearly to changes in X. One can now compute a
linear relationship between X and the logit transformation. The logit
transformation straightens out the nonlinear relationship between X
and the original probabilities.

Conversely, the linear relationship between X and the logit im-
plies a nonlinear relationship between X and the original probabili-
ties. A unit change in the logit results in smaller differences in prob-
abilities at high and low levels than at levels in the middle. Just as we
translate probabilities into logits, we can translate logits into proba-
bilities (the formula to do this is discussed shortly),

Logt -3 -2 -1 0 1 2 3
P, 047 119 269 5 731 .881 .953
Change — .072 .150 231 231 .150 .072.

A one-unit change in the logit translates into a greater change in prob-
abilities near the midpoint than near the extremes. In other words,
linearity in logits defines a theoretically meaningful nonlinear rela-
tionship with the probabilities.

Obtaining Probabilities from Logits

The linear relationships between the independent variables and the
!o'glt depeqdent variable imply nonlinear relationships with probabil-
ities. The linear relationship of X to the predicted logit appears in

ln(P,/l "Pl) = bO +b1Xi.

To express the probabilities rather than the logit as a function of X,
ﬁfSt take each side of the equation as an exponent. Since the loga-
rithm of a number as an exponent equals the number itself (e of the
In X equals X), exponentiation or taking the exponential eliminates
the logarithm on the left side of the equation:

P,/l — Pi — ebo-)'le,- — ebo % eb;X,-.

Further, the equation can be presented in multiplicative form because
the exponential of X +Y equals the exponential of X times the expo-
nential of Y. Thus, the odds change as a function of the coefficients
treated as exponents.
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Solving for P; gives the formula*:
P, = (ebthiXi) /(1 4 ebottiXi),

Since the logit L; equals by + b, X;, we can replace the longer for-
mula by L; in the equation, remembering that L; is the logged odds
predicted by the value of X; and the coefficients by and b,. Then

‘\ Pi=ebi[(1+ eL").\j
A

This formula takes the probability as a ratio of the exponential of the logit

to 1 plus the exponential of the logit. Given that e* produces odds, the

formula corresponds to the equation P; = O;/(1+ O;) presented earlier.
Moving from logits to exponents of logits to probabilities shows

L —4.61 —-2.30 -—-1.61 -.2230 1.61 230 4.61 6.91
et .01 d 2 8 1 5 10 100 1000
1+¢f 101 11 1.2 1.8 2 6 11 101 1001
P 010 091 167 .4445 .833 .909 .990 .999.

Note first that the exponentials of the negative logits fall between 0
and 1, and that the exponentials of the positive logits exceed one.
Note also that the ratio of the exponential to the exponential plus 1
will always fall below one—the denominator will always exceed the
numerator by 1. However, as the exponential gets larger, the differ-
ence between the numerator and the denominator declines (in other
words, the extra one unit in the denominator becomes increasingly
small relative to the other value in the numerator). Further, the ratio
can never fall below zero since the exponentials of both negative and
positive numbers end up positive and since the ratio of two positive
numbers always ends up positive. Given the boundaries of the prob-
abilities, the example shows that the larger L, the larger el, and the
larger P.

This transformation also demonstrates nonlinearity. For a one-unit
change in X, L changes by a constant amount, but P does not. The
exponents in the formula for P; makes the relationship nonlinear.
Consider an example. If L; =2 + .3X;, the logged odds change by .3
for a one-unit change in X regardless of the level of X. If X changes
from 1 to 2, L changes from 2+ .3 0or 23t0 24+ 3x2 0or 2.6. If X
changes from 11 to 12, L changes from 5.3 to 5.6. In both cases, the
change in L is identical. This defines linearity.
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Take the same values of X, and the L valu .
. ’ es they give, and not
the changes they imply in the probabilities: Y give, and note

b'¢ 1 2 11 12

L 23 2.6 53 5.6

e 9.97  13.46 200.3 270.4
l+el 1097 1446 201.3 271.4

P 1909 931 995 996
Change 022 .001.

Hence, the same change in L due to a unit change in X results in a
lg:e}z:ter change in the probabilities at lower levels of X and P than at
d;gtrf:br ulz\(l)c;ls The same would show at the other end of the probability
This nonlinearity between the logit and the probability creates a
fundamental problem of interpretation. We can summarize the effect
of X on the logit simply in terms of a single linear coefficient, but
we cannot do the same with the probabilities: the effect of X on the
probablllty.var.ies with the value of X and the level of probability.
The complications in interpreting the effects on probabilities rcquiré
a separate chaPter on the meaning of logistic regression coefficients
Howe\fer, dealing with problems of interpretation proves easier havin :
fully discussed the logic of the logit transformation. ©

An Alternative Formula

. For purposes of calculation, the formula for probabilities as a func-
ion of the mdependent variables and coefficients takes a somewhat
simpler, but less intuitive form:

P= eb°+blxi/(1 + ebo-f-le,-)’
P = 1/(1 + e—(bo“‘bJX,-))

ZPi‘—‘l/(l + e“Lf)j

In this formula you need to take i
' » YO the exponential after taking the
?hegatlve of th.e logit. The probability then equals 1 divided by lgplus
¢ exponential of the negative of the logit. This gives exactly the
Same result as the other formula.’ ’
: Ijllther formula works to translate logits into probabilities. If the
O8It equals —2.302, then we must solve for P — ¢-2302 /14 €723 or

1/1 + €~(=230) The exponential of —2.302 equals approximately .1,

b
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al of the negative of _2.302 or 2.302 equals 9.994.
091, or calculated alternatively

ulations can be done for any

and the exponenti
Thus, the probability equals .1/1.1 or
equals 1/1 4+9.994 or .091. The same calc

other logit value to get probabilities.

Summary

ews how the logit transforms a dependent vari-
h a set of independent

able having inherent sonlinear relationships wit

variables into a dependent yariable having linear relationships with a

set of independent variables.® Logistic regression models (sometimes

also called logit models) thus estimate the linear determinants of the
logged odds or Jogit rather than the nonlinear determinants of proba-

bilities. Obtaining these estimates involves complexities left untjl later

chapters. In the meantime, however, it helps to view logistic regression

in simple terms as regression on a dependent variable that transforms
linear relationships.

nonlinear relationships into
inear relationships, logistic regression also

In linearizing the nonl
rom changes in probabilities

shifts the interpretation of coefficients f
to less intuitive changes in logged odds. The loss of interpretabil-
ity with the logistic coefficients, however, is balanced by the gain in

parsimony: the linear relationship with the logged odds can be sum-
marized with a single coefficient, but the nonlinear relationship with
the probabilities cannot be so simply summarized. Efforts to interpret
logistic regression coefficients in a meaningful, yet relatively simple

way define the topic of the next chapter.

This chapter revi

2. INTERPRETING LOGISTIC REGRESSION
COEFFICIENTS

Although it simplifies the estimation issues to cOme, treating logistic
regression as a form of regression on 2 dependent variable trans-
formed into logged odds helps describe the underlying logic of the

is true for nonlinear transformations more

procedure. However, as
generally, the effects of the independent variables in logistic regres-
sion have multiple interpretations. Effects exist for probabilities, odds,

and logged odds, and the interpretations of each effect have both ad-
vantages and disadvantages.
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jp—

To previ :

&od‘ds I;re lii::a ;hznszegt;. of the independent variables on the logged
on the logged odds a 1t1ve—~each. X variable has the same effect
variables—but the un?tesg?);dtl};azsdglf) elltlsd fie\t/el or btlhe level of other X
little intuiti i nt variable, logged odd
on the prl;g’:biﬁlgzmﬂge 'effects of the indcpei%ent vasr,i:bal‘é:
' onadditive—each SX g intuitive meaning, but are nonlinear and
bility depending on it vlarlable has a different effect on the proba-
variables, Despite thl s evel and the level of the other independent
e ot be sl e mt?trpre.table units, the effects on probabilities

he interprre)tztigrrln mfa rized in the form of a single coefficiciit
gz—gdds offers a como th‘.” effects of the independent varia és on
odds have more intuit'p romise between the previous alternatives. The

Ctfots in single 06 f;ivg appeal than the logged odds, and can express
rather than additiv bmems: The effects on odds are multiplicative
Other ways to inte e, but still have a straightforward interpretation
The ratios of the crgégf; t-h ¢ effects O.f the independent variables exist.
importance in inte ,et(-nems to their standard errors obviously have
standardize the cogﬁci;z%ss?gﬁf r.esults. Also, various attempts to
Pa'r;h.thei}: relative size may prove ﬁell;?,:l/endem veriables and com-

is ¢ i >

logistic rezf:::ioe: agu?;)s each of these ways to interpret effects in
pretation £ - Further, it examines the variations in each i

or continuous and dummy independent variables inter-

Logged Odds

The . . .
roh mgr:tstiigigre;anon d{ref:tly uses the coefficients obtained
o, the estimat (})] the logistic regression. The logistic regression
ctioncing ahpez show the’change in the predicted logged odds of
oxpor 1'ndependen:ent or hav1€ characteristic for a one-unit change
inlormretaty o thvanables. Thc‘ coefficients have exactly the san%
of i doventont e Foefﬁments in regression except that the un'te
Browne (1997 zzznable rep'res.ent the logged odds.)For exam ]les
i f,o ﬁ;e of) ;Zses logistic regression to predict participat[i)on’
18 an oo fores o l2 fprpale heads of household between ages
employed shows that cach wdditonsl year of cmployment ins o
" ear of em i
F(l)(;g(giz(lin cr):dsv of. cll)llrrent participatiofx in the lablc))lr0 }flgzgtb;fnclrgases
the indicatory ariables, a change in one unit implicitly coin :
group to the reference or omitted group Brownepf:;:
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dummy variables for high school dropouts and high school graduates
to compare their labor force participation to those women with some
college education (the reference group). The coefficients of —1.29 and
—.68 for these two dummy variables indicate that the logged odds of
being in the labor force are 1.29 lower for high school dropouts than
for those with some college, and are .68 lower for high school grad-
uates than for those with some college. Excepting the metric of the
dependent variable, this interpretation represents nothing different
from that used for dummy variables in ordinary regression.

These coefficients represent the relationship, as in ordinary re-
gression, with a single coefficien{. Regardless of the value of X—
small, medium, or large—or the values of the other independent
variables, a one-unit change has the same effect on the dependent
variamccording to the model, the difference in the logged odds
of f)‘axﬁc‘ffmtion between a woman with 1 year of experiencez and
a woman with 2 years of experience equals the difference in the
logged odds of participation between a woman with 21 years of ex-
perience and a woman with 22 years of experience. Similarly, the ef-
fect of years employed in the model does not differ between high
school dropouts, high school graduates, and those with some col-
lege. All one needs to do is copy the coefficient from the printout.
Indeed, logistic regression aims to simplify the nonlinear and non-
additive relationships inherent in treating probabilities as dependent
variables.

Note also that logistic regression, as in linear regression, can in-
clude product terms to represent interactive relationships and poly-
nomial terms to represent curvilinear relationships. The product and
squared terms in logistic regression have much the same interpre-
tation as in linear regression, except that the units of the dependent
variable take the form of logged odds. Logistic regression already con-
tains nonadditivity and nonlinearity in the relationships between the
independent variables and probabilities, but can further model nonad-
ditivity and nonlinearity in the relationship between the independent
variables and the logged odds (DeMaris, 1992).

s S . P P . L)
- _Despite the simplicity of their interpretation, the logistic regres-

sion coefficients, as mentioned, lack a meaningful metiic. Statements
about the effects of variables on changes in logged odds reveal little
about the relationships and do little to help explain the substantive
results. Researchers need means to interpret the substantive meaning

o importance of the coeffici
c
pected changes jp logged odl(‘issl.1  other than

In(P/1 - py=p
=0y + b, X,
ehen’e) Z 8 H oK+ b,

b
P/l — P=ebo y ob1x, * eba X

. , since the €xponent of
times the €xponent of ¥, the n'ghﬁf e s the sation perer &

multiplicative rather than additive el side of the auation becomes

The odds are a functj
T nction of the e i
tiplied by the eXponentiated productx of the coqennstant ) mat

: f ;
ntiated product of thz the coefficient anqg X, (ebhi)

ny calculator by typing the
€ exponentiated coefficients

H, ~1 om B ’
Participation equal 1.14, 28, angogl o

The fact that the equat
Tfather than [zgdditive affec

% 3 1 S n

equals'(; Th i
Sums gy (Tf/the 53 predicted valye of the d
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merely reporting the ex-
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multiplied by a coefficient of 1. Therefore, 0 in the additive equation
corresponds to 1 in the multiplicative equatiofizyFurther, the exponen-
tial of a positive number exceeds 1 and the exponential of a negative
number falis below 1 (but above zero, as the exponential of any num-
ber is always greater than zero).

For the exponentiated coefficients, then, a coefficient of 1 leaves
the odds unchanged, a coefficient greater than 1 increases the odds,
and a coefficient smaller than 1 decreases the odds. Moreover, the
more distant the coefficient from 1 in either direction, the greater the
effect in changing the odds. For example, the exponentiated coeffi-
cient for years of employment, 1.14, indicates that a 1-year increase
in employment multiplies the odds of labor force participation by 1.14
or increases the odds by a factor of 1.14. If the odds of participation
for someone employed 12 years equals 4.88, the odds of participa-
tion for someone employed 13 years equals 4.88 * 1.14 or 5.56. The
odds of participation for someone employed 14 years in turn equals
5.56 % 1.14 or 6.34.7 )

In terms of odds ratios, dividing the odds of someone with 13 years
of experience by the odds of someone with 12 years of experience
gives the exponentiated logistic regression coefficient: 5.56/4.48 =
1.14. Thus, the coefficient shows the ratio of odds for a one-unit in-
crease in the independent variable.

For dummy variables, a similar interpretation follows. The expo-
nentiated coefficient for the high school dropout dummy variable, .28,
indicates that a one-unit increase in the variable multiplies the odds of
labor force participation by .28. Of course, a one-unit increase com-
pares high school dropouts to the reference group of those with some
college. In either case, multiplying by .28 substantially lowers the odds.
If the odds of participation for those with some college equal 15.6,
the odds of participation for high school dropouts equal 15.6 .28 or
4.37. For high school graduates, the exponentiated coefficient of .51
indicates that the odds of participation are .51 times smaller than for
those with some college. Their odds would equal 15.6 x .51 or 7.96.
In terms of odds ratios, the exponentiated coefficient for the dummy
variable equals the ratio of odds for the dummy variable group to the
odds for the reference group.

Since the distance of an exponentiated coefficient from 1 indicates
the size of the effect, a simple calculation can further aid in inter-
pretation. The difference of a coefficient from 1 exhibits the increase
or decrease in the odds for a unit change in the independent vari-
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ble Tn
aole;
bl EI_;Le:erlrg(s) of a formula, the exponentiated coefficient minus 1
gives the percentage increase or decrease due to a

one-unit change in the independent variabje:
_

%A = (e’ — 1) % 100.

F
e (())Ei g:z;spgi&mplgym@th the exponentiated coefficient says that
tpating in the labor force increase b i
y 14% for an in-
crease of 1 year of employment experience. This appears more me;rll-

-13.° The size of the

! - school dro
equals (.28 — 1) % 100 or —72. This means that the odds of pI;;)tlilctf

;p;';:leng :lilre 72% lower for l?igh school dropouts than for those with
some. 121 deifzieThti e:(plclmentlated coefficient for high school graduates
. S that their odd. icipati
for those e~ 12 collegs s of participating are 499 lower than
In interpreting the ex i i
.6 t¢ exponentiated coefficients, remember th
Irtef:re ;o I?ulnphcatlve chaggcs in the odds rather than probal?it]ii?eesy
ticipatj(s)y (1> iiy that an additional year of work experience makes par.
n 1.14 times more probable or otherwise i ;
: se 1mpl iliti
rather than odds (DeMaris, 1995, P- 1960). More prelz:i);gl);o?;: l(l)lctilg:

of participation are 1.14 ¢
year of work. tmes as large or 14% larger for an additional

Probabilities

_ The third strategy of interpretin
Involves translating the effects on logged odds or odds into the ef.
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9 1

} Variables

Continuous Independent | | N
One quick way to gauge the influence of 2 comfm;:o:: nva;x}z:bécf: o
probabi(llities involves calculating ‘fhe lg:r;(l);geo(; t;] ee an ggem of the

i ve at any single point. ; : ine |
ofned & Cuh artial derivative of the nonlinear equation re.t.velg
el eendent bles to the probabilities, but more _mtul ively
rve at a single point

the independent. vari'fl the logistic cu ‘
represents a straight line that meets g Figure 2.1 depicts
= .76.

without crossing to the other sidf: of 311: i;utg;;cts e
i istic cu )

the tangent line where the logis e oular point 2o

the linear change in the

The tangent line identifies the slope only;‘ a; ;
i i sho
allows for easy interpretation. Its slope e e bl deﬁqed

probability for a one-unit cl'lagge in the indepe

i int on the logistic curve. e

" Smg:xeax}:o; in probability or the linear §lope (}f tk.xe tz’}{\}‘g:ntariial
2: gromga simple equation for the partial derivative. P

co :

derivative reveals the change in

change in X, but also defines the slope of th

- e o i
bability for an infinitely sma
e For p e tangent line oOr the

X

isti =P =.76.
Figure 2.1. Tangent line of logistic curve at Y=P=.
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change in the tangent line due to a one-unit change in X at that
value (as discussed shortly, it does not equal the actual change in the
logistic regression curve due to a one-unit change in X).J The partial
derivative, also referred to as the marginal or instantancéous effect,

equals

Simply multiply the logistic regression coefficient by the selected prob-
ability P and 1 minus the probability.

The formula for the partial derivative nicely reveals the nonlinear
effects of an independent variable on probabilities./The effect of b
(in terms of logged odds) translates into a different effect on the
probabilities depending on the level of P.(\l'ﬁé effect will be at its
maximum when P equals .5 since .5%.5 = .25,.6%.4 = 24, .7%.3 = .21
and so on. The closer P comes to the ceiling or floor, the smaller the
value P x (1 — P), and the smaller the effect a unit change in X has
on the probability.

Multiplying the coefficient times .5 % .5 shows the maximum effect
on the probabilities, but may overstate the influence for a sample in
which the split on the dependent variable is not so even¢Substituting
the mean of the dependent variable, P, in the formula ;«;T\'fés a more
typical effect)In Browne’s example, the logistic regression coefficient
for years €mployed equals .13; the mean of the dependent variable,
the expected probability of participating, equals .83; and the probabil-
ity of not participating equals .17. Multiplying all three gives a value
of .018. An increase of 1 year of employment increases the probability
of participation by .018 or almost 2% at the mean. The effect reaches
its maximum of .032 when P = .5.

(ASs an alternative to the mean, we might compute the predicted
probability for a typical case on the independent variables, and use
that probability to calculate the partial derivative_’Substituting the
means of the continuous variables and the valu€ of the modal cate-
gory for dummy variables into the logistic regression equation yields
the predicted logged odds for that case. Transforming the predicted
logged odds into a predicted probability allows calculation of the ef-
fects on probabilities for that case.

In much the same way, a researcher might compute a predicted
probability for a range of values on the independent variables and
Present the marginal effects for the extremes as well as the middle
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of the sample (Long, 1997, p. é@Mlowing all the other variables
to take their mean values, calcutate the predicted probabilities when
one variable takes values —2, —1, 0, 1, and 2 standard deviations from
the mean. Then use these probabilities to calculate marginal effects.
Alternatively, calculate probabilities and the associated marginal ef-
fects when the independent variable takes its maximum, mean, and
minimum values. Long (1997) discusses a number of others ways—
including the use of both tables and graphs—to present a more com-
plete summary of the range of influences of a variable on probabilities.

The formula for the partial derivative demonstrates the nonadditive
as well as the nonlinear nature of the relationships with probabilities:
the effect of one independent variable on the probabilities varies with
P, and P varies with the values of other independent variables. When
X, is at its mean, it might predict P near .5 and X; would have a rel-
atively large marginal effect. When X, is near its maximum, it might
predict a P near 1 and X; would have a relatively small marginal ef-
fect{The effect of X, on the probabilities, in other words, varies with
the vatues of other independent variables and predicted P values. This
means that the independent variables interact in determining proba-
bilities (remember that the effects of the variables on the logged odds

are linear and addit@

The inherent nonlifiear and nonadditive influence of the determi-
nants on probabilities limits the value of any single summary coeffi-
cient. Given the difficulties of describing a nonlinear and nonadditive
relationship with a single coefficient, analysts disagree over whether
it is valuable to even calculate a single partial derivative (DeMaris,
1990, 1993; Roncek, 1993). Critics of the procedure view the resulting
coefficient as misleading, and little better than using linear regression.
‘Even so, the tendency of researchers to think in terms of proportions
or probabilities may warrant use of the slope of the tangent at the
mean of the dependent variable or other points on the logistic curve
as a supplement to other interpretati@

Dummy Independent Variables

gfhe partial derivative works best with continuous variables for
which small changes in the independent variables that define the tan-
gent have meaning. For dummy variables, the relevant change occurs
from 0 to 1, and the tangent line for small changes in X makes less
sense Jlnstead, it is possible to compute predicted probabilities for
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each group, and then subtract the two probabilities to measure th
group differences in probabilities. The partial derivative of the coefﬁf
ﬁment for.z'i.dummy variable May approximate the group differenc
in prob‘ablhtles, but calculating the predicted probabilities gives th?
exact dlfference. Remember, however, that the calculated rgou d'fL
fer.ence In probabilities, like the partial derivative variesgwitlll) tlll~
point on the logistic curve, the X values, and the P’values )
To make the calculation, sclect a starting probability frox.n which t
evaluate thft.effect of the dummy variable. With this value servin .
tl'u*j probability for the omitted group, calculate the predicted rogb:f
!){lxty for the dummy variable group. Subtracting these two r(]))bab'l
ities shows the difference in the probability between the twg s
evaluated at the selected starting point \Peterson 1985) Thegroups
ofdthe dependent variable may serve as the prob:;bility 6f the ?Ifl?tl}
;Z , hg;osxg)r,nl;ugt I;)(t)}ilrcl:tr x(f:at:ues ‘of spc}:]cial interest may work equally well
- Lhoosing other P value i
although appropriate and useful, will produces cfl(i)f}et:]een? I::;:j;js soup
More pr§c1sely, fgllow these steps. (a) Find the logged odds of P
;);g::xef:olla’rteﬁielc:;goglt fOl“ tbhle omitted group. (b) To get the predicted
: my variable group, add the logistic regressi f-
ficient to the predicted logit for the omitted Compate 1
probabihty from the predicted logit for the dugnrl‘r)rlll)lr) ;lzg(r:i)abclzmlr):ée Lh?
ing the forfr}ula listed below and in Chapter 1. (d) Subtrac% P ?rori
the prol?ablllty for the dummy variable group to obtain the betwe
group difference in probabilities (or the effect of the dummy variaeblllt;

|.on probabilities).

In formula, the steps take the form,

Lo, =In(P,/(1~-P,)) logit for the omitted group,
Ly =L, + b, logit for the dummy variable group,

Py=1/1+¢La probability for the dummy variable group
P; — P, difference in probabilities. ,

1;3 Brol\;vne’s example, usipg the mean of the dependent variable or
69 as P, and the b for high school dropouts of —1.29 (with women

with some coll i i
steps, Cge serving as the omitted group), follow the previous

L,=In(P,/(1-P )) = In(.83/.17 ‘
with some Co?lege, /-17) logit for women



