
~1 Hypothesis Testing and Goodness of Fit 

This chapter begins by reviewing tests of hypothesis that can' be used 
with any model estimated by maximum likelihood. Next, meth'ods for 
detecting outliers and influential obseivations for the binary logit and 
probit models are examined; comparable methods for ordinal and nomi­
nal outcomes are not available. The chapter ends with a review of scalar 
measures for assessing the overall goodness of fit of a model. While 
some of these measures apply only to the binary response model, most 
can be adapted to the models in later chapters. 

4.1. Hypothesis Tusting 

GML estimators are distnbuted asymptotically normally. This means 
t as the sample size increases, the sampling distnbution of an ML 
1mator becomes approximately normal. For an individual parameter, 

Pk ~ K(/3*' Var(Pk)) 

where "~" reads "is distributed asymptotically as." For a vector of pa­
rameters, 

j ~ .K(p, Var(P)) 
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where Var(P) is the covariance matrix for ,i. For example, with three 
coefficients: 

(
Po) ( ul Clio, Pt D''A,, i2 ) 

Var !_1 ;,, "i,, ~o u¾, _ "i,, Pz 
/32 "i2, /Jo "i2, /l, <7i 

The off-diagonal elements are the covariances between the estimates of 
two parameters. 

Consider the simple hypothesis H0: /31c = 13•, where 13• is the hypothe­
sized value, often equal to O. Since "i. is unknown, it must be estimated, 
which results in the test: 

[4.1] 

Under the assumptions justifying ML, if H0 is true, then z is distributed 
approximately normally with a mean of O and a variance of 1 for large 
samples. The sampling distnbution for z, drawn in Figure 4.1, shows 
the probability of various values of z when H0 is true. For example, 
the shaded region for z > 1.96 indicates that values of z greater than 
1.96 will occur due to sampling variation 2.5% of the time. Similarly, the 
shaded region on the left indicates how frequently values l~ than -1. 96 
will occur. For a two-tailed test, H0 is rejected at the .05 level when z falls 
in the shaded region of either tail. If past research or theory suggests the 
sign of the coefficient, a one-tailed test is used and the null hypothesis 
would only be rejected when z is in the expected tail. 

The test statistic in Equation 4.1 is sometimes considered to have an 
asymptotic !-distribution, and the test is referred to as a t-test or a quasi­
t-test. When N is large, which is required-for the asymptotic justification 
of the test, it makes little difference whether a t-distribution or a normal 
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Figure 4.1. Sampling Distribution for a z-Statistic 
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distribution is used. Accordingly, some programs label this statistic a 
z-test, while other programs label it a t-test. 

ExiJmple of the z-Test: l.Abor Force Participation 

To test the hypothesis that having young children affects a woman's 
probability of working, we can use the z-statistic in Tobi~ 3.3 fo! the 
logit model. Since prior research suggests that the effect IS negatiVe, a 
one-tailed test is used. We conclude that: 

• Having young children bas a significant effect on the probability of working 
(z = -7.43, p < .01 for a one-tailed test). 

4.1.1. Wald, Likelihood Ratio, and Lagrange Multiplier Tests 

G is often useful to test complex hypotheses. For example, you might 
want to test that several coefficients are simultaneously equal_ to 0, or 
that two coefficients are equal. Such hypotheses can be tested with Wald, 
likelihood ratio (LR), or Lagrange multiplier (1:-M) tes~ese tests can 
be thought of as a comparison between the es~atesobtained ~er the 
constraints implied by the hypothesis have been unl'<:>sed to the ~t~ates 
obtained without the constraints. This is illustrated m panel A oh.Figure 
4.2, which is based on a figure from Buse (19~2). . 
(!iie log likelihood ~ction J_or ~a.ting f3 is dra~ ~s a sohd cu~e. 
The unconstrained esamator f3u m~izes the log lik~libood fun'!1~n, 
with the log likelihood equal to 1n L(/3u ). The hypotheSlS Ho: /3-= /3 im­
poses the CO_!lStraint f3 = W, so that the co~t~ined estimate /3c e~als 
13•. Unless f3u is exactly equal to 13-, lnL(.Bc) IS smalle! than lnL(/3~), l. 
as shown in the figui'e:)The LR test assesses the cons_tramt by compa:mg I/ 
the log likelihood on6e unconstrained~model, ln L(.Bu ), .to ~e l~g like­
lihood of the constrained model, In L(,Bc).af the constraint SJgnificantly 
reduces the likelihood, then the null hypothesis is reject@ 
c:lbe Wald test estimates the model without constraints, and ~sses 
the constraint by considering two things. First, it measures the distance 
between the unconstrained and the constrained estimates. In our exam­
ple, this quantity is Pu - Pc = Pu - .B*. The larg~r t~e distan_£C, th~l~ 
likely it is that the constraint is tt1i'!:) Second, this ~tance ~u -:- ~c ~s 
weighted by the curvature of tbelog likelihood funcuon, which IS ~di­
cated by the second derivative a2 ~ L/ 0/32

• The larg~r the ~nd denva­
tive the faster the curve is changmg. (What does 11 mean if the second 
derivative is O?) The importance of the shape of the func~ion . is illus­
trated in panel B. The log likelihood drawn with a dashed line JS nearly 
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Panel A: Wald, LR, and LM Tests 
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Panel B: Shape of the Likelihood Function 
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Figure 4.2. Wald, Likelihood Ratio, and Lagrange Multiplier Tusts 

flat, so the second derivative evaluated at 'jj u is relatively small. wften 
the seco~d derivative is small, the distance between Pu and p is mi­
nor r~lat!ve to the sampling variation. The second function, dra~n with 
a soh~ Im~, ~as a larger_ second derivative, indicating a more rapidly 
c~angmg likehhooj funcb.2_n. With a larger second derivative, the same 
distance between Pu and f3c might be significant. (How would increasing 
the sample size affect the curvature of the log likelihood function?) 

CJ1i'e ~agrange multiplier (LM) test, also known as the score test, 
only estimates the constrained model, and assesses the slope of the Jog 
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Figure 4.3. Sampling Distribution of a Chi.Square Statistic with 5 Degrees of 
Freedom 

likelihood function at the constraint. If the hypothesis is true, the slope 
(known as the score) at the constraint should be close to O. In panel A 
of Figure 4.2, the slope is represented by the tangent to the curve drawn 
with a dashed line, which is labeled tJlnL/a/3 . As with the Wald test, 
the curvature of the log likelihood function at the constraint is used to 
assess the significance of a nonzero slo~ 
[§/hen H0 is true, the Wald, LR, and LM tests are asymptotically equiv- , \ 
ale~f increases, the sampling distributions of the three t~sts con­
verge to the same chi-square distribution with degrees 'of freedom equal l, 
to the number of constraints being testecl)Figure 4.3 shows the sampling 
distnbution for a chi-square statistic witli"5 degrees of freedom. The area 
to the right of X; is equal to p, and indicates the probability of observ­
ing a value of the test statistic greater than x; if H0 is true. The null 
hypothesis is rejected at the p level of significance if the test statistic is 
larger than X;. 

It is important to remember that the Wald, LR, and LM tests only have 
asymptotic justifications. The degree to which these tests approximate a 
chi•square distribution in small samples is largely unknown. See Section 
3.5.1 (p. 53) for guidelines on the sample size needed for using these 
tests. 

With these ideas in mind, we are ready for formal definitions of the 
Wald and LR tests. The LM test is discussed further in Chapter 7. 

/ 

4.1.2. The Wald 'lest 

While in its most general form the Wald test can be used to test non­
linear constraints, here we consider on]y linear constraints of the form: 

QP=r (4.2) 
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where P is the vector of parameters being tested, Q is a matrix of con­
stants, and r is a vector of constants. While we are usually interested 
only in the intercepts and slopes of a model, p could contain other pa­
rameters such as u in the LRM. By specifying Q and r , a variety of lin­
ear constraints can be iinposed. For example, consider the probit model 
Pr(y = 11 x) = <l>(/Jo + fJ1X1 + fJ2x2). To test that /31 = 0, Equation 4.2 
becomes 

(OlO)G:) =(0) 

Or, to test the constraint that /31 = {J2 = 0, 

The hypothesis H0: QP = r can be tested with the Wald statistic: 

[4.3) 

W is distributed as chi-square with degrees of freedom equal to the 
number of constraints (Le., the number of rows of Q). The Wald statis­
tic consists of two components. First, QP - r at each end of the formula 
measures th;__ di.!_tance between the estimated and hypothesized values. 
Second, [QVar(P)Q'J-1 reflects the variability in the estimator, or, al­
ternatively, the curvature of the likelihood function. To see this more 
clearly, consider a simple example . 

..for the model Pr(y = 11 x) = <l>(fJ0 + {J1 x1 + {32x2) with H0: {J1 = fJ*, 
QP - r can be written as 

(010) (J;)- (/!') = jj,-p• 

~ . 
QP - r is repeated at the end of the formula, which squares the distance 
between the hypothesized value and the estimate. Therefore, negative 
and positive distances have the same effect on the test statistic. The 
middle portion of the Wald statistic is 
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which is simply the inverse of the variance&e larger the variance, 
the smaller the weight given to the distance between the hypothesized 
and estimated val~uivalent!J, the faster ~e l_ikelihood fu~ction is 
changing in the region around /31, the more SJgnificant the difference 
'jj

1 
- f3*. (Why should we give less weight when the variance is larger?) 

Combining these results, 

w = <'fi, - 13•)2 = ('Pi~- p•)2 
~ Oj, 

/Ji 

which is distributed as chi-square with 1 degree of freedom if Ho is true. 
Notice that W is the square of the z-statistic in Equation 4.1, which cor­
responds to a chi-square variable with 1 degree of freedom being equal 
to the square of a normal variable. Some programs, such as SAS, present 
a single degree of freedom chi-square statistic for individual coefficients, 
rather·than the z-statistic. 

The same ideas apply to more complex hypotheses. Consider H0: /31 = 
{32 = 0, which can be written as 

H,: (~~1) (t:) = m 
Qj - r is simply ('jj1 'jj2)'. The middle portion of the Wald formula is 

[Qvai(ii)(Yr' = [ mn¼r(P) m) r 
To keep the example simple, assume that the estimates are uncorrelated. 
(In practice, the estimates will be correlated.) Then 

_ - -1 (Uj O )-l (1/uj O ) 
[ QVar(p)Q'] = 0' Uj2 = 0 i 1/~ [4.4] 

Toe larger the variance, the less weight is given to the distance between 
the hypothesized and estimated parameter. Carrying out the algebra, we 
obtain 
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With uncorrelated parameters, the Wald statistic is the sum of squared 
z's. Recall that a chi-square distnbution with J degrees of freedom is 
defined as the sum of J independent, squared normal random variables. 
When the estimates are correlated, which is normally the case, the re­
sulting formula is more complicated, but the general ideas are the same. 

Examples of the Wald Test: Labor Force Participation 

To illustrate. the Wald test, consider the logit model: 

Pr(LFP = 1) = A(/3o + {31K5 + {J2K618 + {J3AGE 

+ f3J¥C + f3sHC + fJr,LWG + {J7/NC) 

Wald Test of a Single Coefficient. To test H0: {31 = 0, let 

Q = (0 1 0 0 0 0 0 0) and r= (0) 

[4.5] 

Then W = 55.14, which is the square of the z-statistic for K5 in Tobie 
3.3. We descnbe the result as: 

• The effect of having young children on the probability of entering the labor 
force is significant at the .01 level (X2 =55.14, df= 1, p < .01). 

,( The symbol X 2 is often used rather than W since the Wald statistic has \a chi-square distnbution. 

Wald Test That Two Coefficients Are 0. The hypothesis that the effects 
of the husband's and wife's education are simultaneously O can be written 
as: H0: /34 = /35 = 0. To test this hypothesis, Jet • 

Q= (00001000) 
00000100 and 

Then W = 17.66 with 2 degrees of freedom. We conclude: 

• The hypothesis that the effects of the husband's and wife's education are 
simultaneously equal to Ocan be rejected at the .01 level (X2 = 17.66,df = 2, 
p < .01). 

(Specify Q and r to test the hypothesis that all of the coefficients except the 
intercept are simultaneously 0.) 
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Wald Test That Two Coefficients Are Equal. To test that the effect of 
the husband's education equals the effect of the wife's education, define 

Q = (0 0 0 0 1-1 0 0) and r = (0) 

Substituting these matrices into Equation 4.3 and simplifying results in 
the usual formula: 

Then W = 3.54 with 1 degree of freedom. There is 1 degree of freedom 
since there is a single restriction, twen though that restriction involves 
two parameters. We conclude: 

C • The hypothesis that the effects of the husband's and wife's education are ? 
equal is marginally significant at the .05 level (X2 = 3.54, df = 1, p = .06). 

~ 

4.1.3. The Likelihood Ratio Test 

The LR test can also be used to test constraints on a model. While in 
its most general form these constraints can be complex and nonJl.near, I 
only consider constraints that involve eliminating one or more regressors 
from the model. For example, consider the logit models: 

M1: Pr(y = 11 x) = A(/3o + f31x1 + f32x2) 

M 2: Pr(y = 1 Ix)= A(/30 + {31x1 + {32x2 + /33X3) 

M3: Pr(y = 11 x) = A(/Jo + f3i:x1 + f32x2 + /34x4) 

M4: Pr(y = 11 x) = A(/3o + /31X1 + f32x2 + /33X3 + /34x4) 

~del M1 is formed from M2 by imposing the constraint /33 = 0, and 
M1 is fanned from M3 by imposing the constraint /34 = 0. When one 
model can be obtained from another model by imposing constraints, the 
constrained model is said to be nested in the unconstrained model. Thus, 
M1 is nested in M2 and in M3 • Ji9wever, M2 is not nested in M3, nor is 
}4-nested in M2• (Which models are nested in M4?'0 
L The LR test is defined as follows. The constrained model Mc with 
parameters Ile is nested in the unconstrained model Mu with parameters 
i!.cJ'he null hypothesis is that the constraints imposed to create Mc are 
true. Let L( Mu) be the value of the likelihood function evaluated at the 
ML estimates for the unconstrained model, and let L(Mc) be the value 
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at the constrained estimates. The likelihood ratio statistic, hereafter the 
LR statistic, equals 

Cit<Mc I Mu)= 2lnL(Mu)- 2lnL(MclJ 

Under very general conditions, if H0 is true, then G2 is asymptotically 
distributed as chi-square with degrees of freedom equal to the number of 
independent constraints. While the LR statistic can be used to compare 
any pair of nested models, there are two tests that are commonly com­
puted by standard software and are often included in tables presenting 
tJM<_ results of models estimated by ML. 
l_!he first _test compares a given model to the constrained model in 
which all slope coefficients are equal to 0. This test is fre~ntly referred 
to as the likelihood ratio chi-square or the LR chi-squa!!Jlli define the 
test, let model Mp be the unconstrained model that includes an intercept, 
slope coefficients, and any other parameters in the model ( e.g., <T in the 
LRM). Let Ma be the constrained model that excludes all regressors 
from the model ( e.g., only parameters /30 and u would be included for 
the LRM). To test the hypothesis that all of the slope coefficients are 
simultaneously equa1 to 0, we use the test statistic: 

G 2(Mp) = 21nL(Mp)-2mL(M.:i) [4.6J 

The simpler notation G2(Mp) replaces the more cumbersome G2(Ma I 
MfJ). If the null hypothesis that all slopes are O is true, then G 2(Mp) is 
distributed as chi-square with degrees of freedom equal to the number 
of regressors. 

lbe second test, known as the scaled deviance or simply the deviance, 
is used extensively within the framework known as the generalized linear 
model (McCullagh & Nelder, 1989, pp. 33-34). The deviance compares a 
given model to the full model MF. The full model has one parameter for 
each observation, and can reproduce perfectly the observed data. Since 
the observed data are perfectly predicted, the likelihood of Mp is 1, and 
the Jog likelihood is 0. To test that MF significantly improves the fit over . 
M fJ• the deviance is defined as 

D(Mp):::: 2lnL(MF) - 2lnL(MfJ) 

= -2lnL(Mp) 

::= G2(MfJ I Mp) 

• 

Since the deviance is -2 times the Jog likelihood of the given model, its 
value can be computed readily from any program that provides the log 
likelihood of the model being estimated. 
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While D(Mp) is sometimes reported as having a chi-square distribu-
. tion, McCullagh (1986) shows that D(Mp) bas an asymptotic normal 

distribution as a consequence of the number of parameters in the full 
model increasing directly with the number of obseivation&ceunagh 

_and Nelder (1989, pp_. 120--122) suggest that when the data are sparse 
(i.e., when each combination of values of the independent variables oc-
curs only once in the sample), D( M fJ) should not be used as a measure 
of fit in the model. See Hosmer and Lemeshow (1989, pp. 137-145) for 
further det~ 

G2(Mp) ano D(Mp) can be used to compare nested models. Consider 
the unconstrained model Mu and the constrained model Mc, If the val­
ues of the likelihood function are known, we could test the constraints on 
Mu with G2(Mc I Mu)= 2lnL(Mu) - 2lnL(Mc), This statistic could 
also be computed using the LR chi-squares: 

G2(Mu) = 2lnL(Mu) -2lnL(Ma) 

G2(Mc):::: 2lnL{Mc)-2lnL(Ma) 

Since Ma is the same for both models, 

G2(Mc I Mu)= G2(Mu)-G2(Mc) 

= 2lnL(Mu)-2lnL(Mc) 

This is why G2( Mc I Mu) is often referred to as a difference of chi-square 
test. Similarly, the deviance can be used to compute the test. If 

D(Mu) = -2lnL(Mu) and D(Mc) = -2lnL(Mc) 

then 

G2(Mc I Mu)= D(Mc)-D(Mu) 

= -2lnL(Mc)- -2 lnL(Mu) 

= 2lnL(Mu)-2lnL(Mc) 

Examples of the LR Test: Labor Force Participation 

For the unconstrained model in Equation 4.5, the LR chi-square 
G2(Mu) = 124.48 and the deviance D(Mu) = 905.27. These statistics 
are used for computing the following tests. 
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LR Test of a Single Coefficient. To test H0: {31 = 0, the model M[K5J 
is estimated, where the bracketed subscript indicates that K5 is excluded 
from the unconstrained model. The LR chi-square and deviance for the 
constrained model are 

and 

Then, 

G2(MrK5J I Mu)= G2(Mu)- G2(M[K5J) = 66.48 

= D(M[K5J) -D(Mu) = 66.48 

We conclude: 

• The effect of having young children is significant at the .01 level (LRX2 = 
66.5, df = 1, p < .01). 

Notice that I have used LRX2 rather than G2 in presenting the result. 
This makes it explicit that a likelihood ratio test is being reported. 

LR Test of Multiple Coefficients. To test the hypothesis that the effects 
of the husband's and wife's education are simultaneously 0, H 0: {34 = 
/35 = 0, the model Mcwc,HC) is estimated, resulting in 

G2(Mcwc,Hq) = 105.98 and D(M1wc,Hq) = 923.76 

The test statistic is 

G2(M1wc,HCJ I Mu)= G2(Mu)-G2(Miwc.Hq) = 18.50 

= D(Mrwc,HC]) - D(Mu) = 18.50 

We conclude:· 

• The hypothesis that the effects of the husband's and wife's education are 
simultaneously equal to 0 can be rejected at the .01 level (LRX2 = 18.5, 
df = 2., p < .01). 

LR Test That All Coefficients Are 0. G2(Mu) = G2(Ma I Mu) can be 
used to test the hypothesis that none of the regressors affects the prob­
ability of entering the labor force. Formally, H0: /31 = {32 = /33 = /34 = . 
fJs = fJ6 = /31 = 0. We conclude: 

• We can reject the hypothesis that all coefficients except the intercept are 0 
at the .01 level (LRX.2 = 124.5, df= 7, p < .01). 

While a Wald test could be used to test this hypothesis, the LR test is 
more commonly used. 

Hypothesis 'Jesting and Goodness of Fit 

TABLE 4.1 Comparing Results From the LR and Wa1d Tusts 

LR Test Wald Test 

Hypothesis df GZ 

fJ1 =0 1 66.5 

fJ, = fJs = 0 2 18.5 
All slopes = 0 7 124.5 

4.1.4. Comparing the LR and Wald Tests 

p 

< 0.01 
< 0.01 
< 0.01 

w 

55.1 
17.7 
95.0 

p 

<0.01 
< 0.01 
< 0.01 
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~en though the LR and Wald tests are asymptotically equivalent, in 
fimte samples they give different answers, particularly for small samples. 
In general, it is unclear whether one test is to be preferred to the other. 
Rothenberg (1984) suggests that neither test is uniformly superior, while 
Hauck and D~er (1977) suggest that the Wald test is less powerful 
than the LR ~In ~ractice, t~e choice of which t~t to use ~ o~en 
determined by convemence. While the LR test reqmres the estimation 
of two models, the computation of the test only involves subtraction. The 
Wald test only requires estimation of a single model, but the computation ' 
of the test involves matrix manipulations. Which test is more con~enient 
depends on the software being used. 

Tobie 4.1 compares the results of the LR and Wald tests for our ex­
ample based on a sample of 753. For all hypotheses, the conclusions 
from both tests are the same. Note, however, that the values of the LR 
statistics are larger than the corresponding Wald statistics. 

4.1.S. Computational Issues 

There are two important computational considerations that must be 
taken into account when computing Wald and LR tests. If they are not, 
you run the risk of drawing the wrong conclusions from your tests. 

Computing the LR Test 

Ge LR test requires using the same sample for all models being com­
pare~ Since ML estimation excludes cases with missing data, it is com­
morlor the sample size to change when a variable has been excluded. 
For example, if x1 has three missing obseivations that are not missing 
for any other variables, J.lle usable sample increases by 3 when x 1 is ex­
cluded from the model.(]i:ensure that the sample size does not change, 
you should construct a data set that excludes every observation that has 

,/ 
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missing values for any of the variables used in any of the models be­
ing tested. Alternatively, missing~~es can be imputed using methods 
discussed in Little and Rubin (19~ 

Computing the Wald Test 

The matrix computations for the Wald test can accumulate appreciable 
rounding error if you do not use the fu]I precision of the estimated 
coefficients and covariance matrix. Practically speaking, this means that 
you should use a program in which the estimates can be stored and then 
analyzed. Using the rounded values listed in the output can result in 
incorrect values for the test statistic. 

4.2. Residuals and Influence 

When assessing a model, it is useful to consider how well the model 
fits each case and how much influence each case has on the estimates of 
the parameten(~idua/s measure the difference between the model's 
prediction for a given case and the observed value for that case, with 
observations that fit poorly thought of as outliers. Influence is the effect 
of an observation on estimates of the model's parameters or measures 
of fi:t.nbe analysis of resi<:!,uals and influence is well developed for- the 
Lffi, and I assume that you have some familiarity with this material 
(see Fox, 1991, and Weisberg, 1980, Chapter 5, for good introductions). 
This section considers Pregibon's (1981) extensions of these methods to 
the BRM. 

For a binary model, define '11'j = E(yi I xi) = Pr(y1 = 11 x1). Since 
y is a binary variable, the deviations Yi - '1Ti are heteroscedastic, with 
Var(y; I xi)= 'IT;(l - 'IT;). This suggests the Pearson residual: 

Large values of r1 suggest a failure of the model to fit a given obser­
vation. Pearson re~uals can be used to construct a summary measure 

mfit, m~ & ~=t~? t~) 
. " 
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While X 2 is sometimes reported as having a chi-square distribution, Mc­
cullagh (1986) demonstrated that when the data are sparse (e.g., when 
there are continuous independent variables), X2 has an asymptotic nor­
mal distribution with a mean and variance that are difficult to compute. 
McCullagh and Nelder (1989, pp. 112- 122) recommended that X2 not 
be used as an absolute measure of fit. Hosmer and Lemeshow (1989, pp. 
140-145) propose an alternative test constructed by grouping data that 
can be used with sparse data. 

While Var(y1-1r1) = '1T;(l-'1T1), Var(y1-1ri) f; 1r1(1-1ri}. Consequently, 
the variance of r1 is not 1. To compute the variance of the estimated 
residuals, we need what is known as the hat matrix, so named because it 
transforms the observed y into y in the LRM. For the BRM, Pregibon 
(1981) derived the hat matrix: 

H = VX(X'vxr1x'v 

where V is a diagonal matrix with /ii;(l - 1r1) on the diagonal. Since 
only the diagonal of H is needed, we can use the computationally simpler 
formula: 

where x. is a row vector with values of the independent variables for 
I --~ 

the ith observation and Var(P) is the estimated covariance of the ML 
estimator ji. Using 1 - hu to estimate the variance of r;, the standardiz.ed 
Pearson residual is 

Cr ') Std ri 

= J1 - h ;1 

While ,Std is preferred to,, the two residuals are often similar in practice. 
~ index plot of the standardized r~iduals against the observation 
number can be used to search for outliers. Figure 4.4 is an index plot 
of the standardized residual for the la orce data. Only~ of the 
observations are shown in order to make the fi~re clearer Two obs_er­
vations stand out as extreme and are marked with boxes. rvat1on 
142 has a residual of 3.2; observation 512.has a residual of -2nFur­
ther analyses of these cases might reveal either incorrectly cooed data 
or some inadequacy in the specification of the model. Cases with large 
positive or negative residuals should not simply be discarded from the 
analysis, but rather should be examined to determine why they were fit 
so poorly . 
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Figure 4.4. Index Plot of Standardized Pearson Residuals 

~ile large residuals indicate that an observation is not fit well, they 
/ ~~t indicate whether an observation has a large influence on the es­

timated f3's or the overall fi~ example, a large residual for the ith 
obseivation will not have a)arge"Tnfluence on the estimates of f3 (i.e., re-

J 
moving that observation will not change the estimates very much) if x; is 
near the center of the dat£\Bemg near the center of the data means that 
an observation's values loiea~cc jndependent variable are close to that 
variable's mean in the sam~ n the other hand, extreme observations 
can influence the estimates, hen they do not have large residuals. 
A useful way to detect such o.!!_servations, known as high leverage points, 
is to compute the change in p that occurs when the ith obseivation is 
dele_§Since it is computationally impractical to estimate the model 
N times, once with each obseivation removed, Pregibon (1981) derived 
an approximation ~at only requires estimating the model once. The ex­
pected change in p if the ith observation is removed is approximately 
equal to 

---- - ,,,.. Y: - 1T· 
A;P = Var(P)Xj 1

1 
_ h,; 

The standardized change in f31c due to the deletion of x;, known as the 
DFBETA, equals 

Hypothesis Testing and Goodness of Fit 101 

A large value of DFBETA;1c indicates that the ith observation has a large 
influence on the estimate of f31c -

A _second measure s~arizes the effect of removing the ith observa­
tion on the entire vector p, which is the counterpart to Cook's distance 

for the LRM: .) r.. o\' - -- -- rf h-­
~ = (A;PJ Var(P)(A;P) = (l _ h:;)2 

Another measure of the impact of a single observation is the change in 
X2 when the ith observation is removed: ) 

(A.X2=_if_ 
\_

1 
• 1- h;; 

Figure 4.5 shows an index plot of C. Comparing this figure to Figure 
4.4 illustrates the difference between an outlier and an influential ob­
servation. In both figures, observation 142 stands out. However, while 
observation 554 has a large residual, it has a C of only .06. Analysis of 
the DFBETA;1c's for observation 142 would indicate which coefficients 
are being affected. 

Methods for plotting residuals and outliers can be extended in many 
ways, including plots of different diagnostics against one anothe~ Details 
of these plots are found in Landwehr et al. (1984) and Hosmer and 
Lemeshow (1989, pp. 149-170). While Lesaffre and Albert (1989) have 
proposed extensions of these diagnostics to the multinomial logit model, 
these extensions have not been added to standard software. Diagnostics 
for logit and probit are included in SAS and Stata. 

ci ----_ ..J:l _ -- - --- - - - - - ·---- --- ----- ·- - ·. -

u 
ci --------- ·--------------------···-··-· 
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Figure 4.5. Index Plot of Cook's Influence Statistics 
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4.3. Scalar Measures of Fit 

G addition to assessing the fit of each observation, it is sometimes 
useful to have a single number to summarize the overall goodness of fit 
of a mo~uch a measure might aid in comparing competing models 
and, ultimately, in selecting a final model. Within a substantive area of 
research, measures of fit can provide a rough index of whether a model 
is adequate. For example, if prior models of labor force participation 
routinely have values of .4 for a given measure of fit, you would expect 
that new analyses with a different sample and perhaps with revised mea­
sures of the independent variables would result in a similar value for that 
measure of fit. Much larger or smaller values would suggest the need to 
reassess the changes made in the new study. 

While the desirabili~ a scalar measure of fit is clear, in practice 
their use is problemati'-fiist, I am unaware of convincing evidence that 
selecting a model that maximizes the value of a given measure of fit 
results in a model that is optimal in any sense other than the model 
having a larger value of that mea@ While measures of fit provide 
some information, it is only partial information .that must be assessed 
within the context of the theory motivating the analysis, past research, 
and . the estimated parameters of the model being considered.@ond, 
while in the LRM the coefficient of determination R2 is the standard 
m«:._~e of fit, there is no clear choice for models with categorical out­
co~ There have been numerous attempts to construct a counterpart 
to R in the LRM, but no one measure is clearly superior and none has 
the advantages of a clear interpretation in terms of explained variation. 
Other measures have been cons@d based on the ability of a model 
to predict the observed outcome inally, the Bayesian measures AIC 
and BIC, which are useful for companng nonnested models, are increas­
ingly popular. Overall, while I approach scalar measures of fit with some 
skepticism, their popularity and proliferation makes a review use~ 

4.3.1. Ri in the LRM 

Many scalar measures of fit for models with CLDVs are constructed 
to approximate the coefficient of determination R2 in the LRM('.Most 
commonly, R2 is defined as the proportion of the variation in y that 
can be explained by the x's in the model. However, R2 can be defined 
in other ways, each of which produces an identical value for R 2 in the 
L~ However, when these equivalent formulas are applied to models 
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for CLDVs, they often produce different values and thus provide differ­
ent measures of fit. 1 

Let the structural model bey= xP+e, with K regressor§z. an inter~pt, 
and N observations. The expected value of y is y = xp, where P is 
the OLS estimator. The coefficient of determination can be defined in 
each of the following ways. Derivations of these formulas can be found 
in Judge et al. (1985, pp. 29-31), Goldberger (1991, pp. 176-179), and 
Pindyck and Rubinfe)d (1991, pp. 61, 76-78, 98-99). 

(ii,e Percentage of Explained Variatl;;)Let RSS = E~ (y; - Yi )2 be 
the sum of squared residuals, and let TSS = E~1(y; - y)~ be the total 
sum of squares. Then R 2 is the percentage of TSS explained by the x's: 

R2 = TSS- RSS = 1 _ RSS = 1 _ 'E~1(Y; -Yi)2 

TSS TSS E!,(Y; - y)2 
[4.7] 

Cihe Ratio of Var(y) and Var@The ratio of the variances of y and y 
is another definition: , 

R
2 Var(y) Var(y) =~=:.--c:::: :;.a..:.:: 

Var(y) Var(y) + Var(e) 
.... [4.8) 

W,ansf ormation of the Likelihood Ratjg) If the errors are assumed to 
be normal, then R2 can be. written as 

R2 = 1-[L(Ma)y/N 
L(Mp) 

[4.9] 

where L(M0 ) is the likelihood for the model with just the intercept, and 
L(M p) is the likelihood for the model including the regressors. 

G ' Transfonnation of the F-Te~The hypothesis H0: /31 = · · · = f3K = 0 
can be tested using an F -test, with the test statistic F. R2 can be written 
in terms of F as ~ 

f_!= FK+(:~K~ 7 
where K is the number of independent vari~ 

1 lbis is similar to the case in the LRM when there is no intercept. See Judge et al. (1985, 
pp. 30-31). 
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4.3..2. Pseudo-R2's Based on R2 in the LRM 

Several pseudo-R2's for models with CLDVs have been defined by 
analogy to the formula given in the last section. These formulas produce 
different values in models with categorical outcomes, and, consequently, 
are thought of as distinct measures. 

The Percentage of Explained ''Varia.!!_on." For binary outcomes, Efron's 
(1978) pseudoaR2 defines y as 1r = Pr(y Ix) and applies Equation 4.7: 

R2 _ l _ L!1 (Y; - Tii)2 
Efron - 'f."N ( -)2 

Li=I Y;-Y 

(Show that in the case of a binary outcome, }:;°:1(Y; - y)2 = (non1)/N, 
where n 0 is the number of O's and n1 is the number of 1 's in the sample.) 
(1icFadden (1973) suggested a different analogy to explained~v~tion 
in the LRM that can be applied to any model estimated with ~This 
popular measure is also referred to as the "likelihood ratio index." In this 
measure, the log likelihood for model Ma without regressors is thought 
of as the total sum of squares, while the log likelihood of model M 13 
with regressors is thought of as the residual sum of squares. By analogy 
to Equation 4.7, 

2 lnL(M.s) 
R - 1 - ---::::---

McF - lnL(Ma) 

(If model Ma= M13 (i.e., the slopes are all 0), RicF equals 0, but RicF 
'- can never exactly equal 1. 

Like R2 for the LRM, R~cF increases as new variables are added to 
the model. To compensate, Ben-Akiva and Lerman (1985, p. 167) suggest 
adjusting RicF for the number of parameters in the model (just as the 
adjusted R.2 in the LRM): 

_2 lnL{M.s) - K 
RMcF = 1 - .-( ) 

lnL Ma 
,,,.,..... --

.RicF will only increase if In L ( M 11 ) increases by more than 1 for each 
_ parameter added to the model. . . . 

Ben-Akiva and Lerman (1985, p. 167) discuss the logic behmd ~d 
limitations of these measures. All else being ';!!ual, mo~els with a l~ger 
value of the log likelihood are preferred, and RMcF provides a convement 
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way to compare log likelihoods across different modetGro~nately, 
there is no clear interpretation of values other than O and 1, nor 1s there 
any standard by which to judge if the value is "large enou~ 

The Ratio of Var(y•) and Var(y*). For models defined in terms of a 
latent outcome according to y• = xp + e, McKelvey and Zavoina (1975, 
pp. 111-112) proposed a pseudo-R2 by analogy to Equation 4.8: 

R2 = ~(y*) = - Var(y*) 
M&Z Var(y*) Var(y'") + Var( e) 

This formula differs from that for the LRM in two respects. First, we 
are using the estimated variance of the latent variable y• rather than the 
observed y. Second, the variance of e is fixed by assumption, rather th~ 
being estimated'. For the logit model, Var( e) = n-2 /3, and for the prob1t 
model, Var( e) = 1. The variance of y' can be computed as 

Vai<?> = ii'Vai(x)ii 

where Var(x) is the estimated covariance matrix among the x',&. 
Ri&:z was suggested by McKelvey and Zavoina (1975, pp. 111-112) 

for ordinal outcomes, but can also be applied to binary and censored out­
comes (Laitila, 1993). In simulation studies, Hagle and Mitchell (1992) 
and Windmeijer (1995) find that Ri&z most closely approximates the 
R2 obtained from regressions on the underlying latent variable. 

A Transformation of the Likelihood Ratio. If we define M 0 as the model 
with just the intercept, and M fl as the mode) with the regressors included, 
by analogy to Equation 4.9 a pseudo-R2 can be defined as 

R2 = 1- [L(Ma)J/N 
ML L(M11) 

(4.10) 

Maddala (1983, p. 39) shows that R~L can be expressed as a transfor­
mation of the likelihood ratio chi-square G2 = -2In[L(Ma)/L(M11)]: 

R~L = 1 - exp( - G2 
/ N) 

which illustrates that measures of fit such as R2 and the various pseudo­
R2's are often closely related to tests of hypothesis. See Magee (1990) 
for other measures of fit based on the Wald and score tests. 
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TABLE 4.2 R2-Type Measures of Fit for the Logit and LPM Models 

Measure 

JnL11 
lnL. 
Ri1ron 
R~ 
R~ 
R~ 
R~u 

-478.086 
-539.410 

0.150 
0.114 
0.150 
0.150 
0.197 

LPM 

- 486.426 
-539.410 

0.131 
0.098 
0.131 
0.131 
0.172 

-452.633 
-514.873 

0.155 
0.121 
0.217 
0.152 
0.205 

-461.653 
-514.873 

0.135 
0.103 
0.182 
0.132 
0.177 

NOTE: N = 153. In L 11 is the log likelihood for the full model; In La is the log likelihood for the model 
with no rcgrcsson; sec the text for definitions of other measures. 

As the fit of Mp approaches the fit of Ma. [i.e., as L(Mp)-+ L(Ma)J, 
RiL approaches 0. However, Maddala (1983, pp. 39-40) shows that RiL 
only reaches a maximum of 1 - L(Ma)2IN . This led Cragg and Uhler 
(1970) to suggest the normed measure: 

2 Ri«, _ 1- [L(Ma)/L(M13 )]21N 

Re&u = maxRiL - 1- L(Ma.)2/N 

Since both RtL and R&tu are defined in terms of the likelihood func­
tion, they can be applied to any model estimated by ML. 

Exllmples of Pseudo-R2's: Labor Force Panicipation 

To illustrate scalar measures of fit, consider two models. Model M1 
has the original specification of independent variables: K5, K618, AGE, 
WC, HC, LWG, and JNC. Model M2 adds a squared age termAGE2 and 
drops the variables K618, HC, and LWG. The resulting measures of fit 
for the LPM and logit models are given in Table 4.2. Notice that for a 
given model many of the measures are identical for the LPM, but not 
for the logit model. You should try to reproduce these measures using 
the log likelihoods for the full and restricted models. 

4.3.3. Pseudo-R2's Using Observed Versus Predicted Values 

Another approach to assessing goodne~ of fit in models with catego~­
ical outcomes is to compare the observed values to the predicted values. 
While I develop this idea for models with two outcomes, it can be easily 
generalized to models with J ordinal or nominal outcomes. 
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Let the observed y equal 0 or 1. The predicted probability that y = 1 
is 

(4.11] 

where F is the cdf for the normal distribution for probit and for the 
logistic distribution for logit. Define the expected outcome y as 

- {o Y; = 1 
if 1T; !:: 0.5 
if 7T; > 0.5 

which Cramer (1991, p. 90) calls the "maximum probability rule." This 
allows us to construct a table of observed and predicted values, such as 
Table 4.3, which is sometimes called a classification table. 

/2 
The Count R2. A simple and seemingly appealing measure based on 

he table of observed and expected counts is the proportion of correct 
redictions, which Maddala (1992, p. 334) refers to as the count R2: 

2 1" 
Reount = N LJ nii 

J ' 

\ where the ni/s are the number of correct predictions for outcome j, 
~ich are located on the diagonal cells in Table 4.3. 

The Adjusted Count R2. The count R2 can give the faulty impression 
that the model is predicting very welJ, when, in fact, it is not. In a binary 
model without knowledge about the independent variables, it is possible 
to correctly predict at )east 50% of the cases by choosing the outcome 
category with the largest percentage of observed cases. For example, 
57% of our sample were in the paid labor force. H we P.redict that all 
women are working, we would be correct 57% of the t~Accordingly, 

TABLE 4.3 Classification Tobie of Observed and Predicted Outcomes for a 
Binary Response Model 

Observed 
Predicted Outc-

Outcome y=l y=0 Row Total 

y=l n11 :: correct n12 :: incorrect n1+ 
y = 0 11z1 :: incorrect "n :: correct llz+ 

Column Total n+I n+2 N 
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R&,unt needs to be adjusted to account for the largest row marginal. This 
can be done by 

2 Li nii - max,(n,+) 
R AdjCount = N - max (n ) r r+ 

n,+ is the marginal for row ,, so that max,(n,+) is the maximum row 
marginal (i.e., the number of cases in the outcome with the most ob­
servations ).@e adjusted count R2 is the proportion of correct guesses 
beyond the number that would be correctly guessed by choosing the 
largest marginal, and can be interpreted as: 

• Knowledge of the independent variables, compared to basing our prediction 
only on the marginal distributions, reduces the error in prediction by 100 x 
R~t%. 

Rid-Count is equal to Goodman and Kruskal's A (Bishop et al. 1975, p. 
388} applied to the classification table. Other measures of association 
could also be applied to the classification table (Menard, 1995 pp. 24-
3€) 

Examples of Count Measures: Labor Force Participation 

Tobie 4.4 shows the observed and predicted values from the logit 
model with independent variables: KS, K618, AGE, WC, HC, LWG, and 
INC: The row percentages indicate the percentage of a given outcome 
that were predicted to be either l's or O's. They show that the model is 
more effective at predicting O's (80% are predicted correctly) than l's 
(55% are predicted correctly). In this example, the count R2 is 

2 180+342 
Reount = 753 = .69 

which can be compared to 57% of the cases that were observed as l's. 
On the other hand, the adjusted R2 is 

R2 _ (180 + 342) - 428 _ 
29 

AdjCount - 753 - 428 - · 

shows that the models reduces the errors in prediction by 29%. 
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TABLE 4.4 Observed and Predicted Outcomes for the Logit 
Model of Labor Force Participation 

Observed Outrome y=O y=l Row Total 

y=O 180 145 325 
Row% 55.4 44.6 
y=1 86 342 428 
Row% 20.1 79.9 

Column Total 266 487 753 
Row% 35.3 64.7 

4.3.4. Information Measures 
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A different approach to assessing the fit of a model and for com­
paring competing models is based on measures of information. Akaike's 
information criterion (AIC) is a well-known measure, while the Bayesian 
information criterion (BIC) is a measure that is gaining increasing popu-r 
larity. For a general discussion of information-based measures, see Judge 
et al. (1985, pp. 870-875). , 

Akaike's Information Criterion (AIC) 

Akaike's (1973) information criterion is defined as 

AIC = -2lnL(Mp)+2P 
N 

[4.12] 

where L(Mp) is the likelihood of the model and P is the number of 
parameters in the model ( e.g., K + 1 in the binary regression model 
where K is the number of regressors). While Akaike (1973) formally 
derives AIC through the comparison of a given model to a set of inferior 
alternative models, here I only provide a heuristic motivation for the 
reasonableness of the formula. 

L(Mp) indicates the likelihood of the data for the model, with larger 
values indicating a better fit. -21nL(Mp) ranges from O to +oo with 
smaller values indicating a better fit. As the number of parameters in 
the model becomes larger, -21nL(Mp) becomes smaller since more pa­
rameters make what is observed more likely. 2P is added to -2lnL(Mp) 
as a penalty for increasing the n~ber of parameters. Since the num­
ber of observations affects -21nL(Mp), we divide by N to obtain the 
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per observation contribution to the adjusted - 21nL(Mp). All else being 
equal, smaller values suggest a better fitting model. 

AIC is often used to compare models across different samples or to 
compare nonnested models that cannot be compared with the LR test. 

( All else being equal, the model with tbe smaller AIC is considered the 
better fitting model. 

... 

The Bayesian Infonnation Criterion (BIC) 

The Bayesian information criterion has been proposed by Raftery 
(1996, and the literature cited therein) as a measure to assess the overall 
fit of a model and to allow the comparison of both nested and nonnested 
models. This section summarizes Raftery (1996), which derives the for­
mulas given below. 

BIC is based on a Bayesian comparison of models. Consider models 
M1 andM2 . The posterior odds of M2 relative to M 1 equal 

Pr(M2 I Observed Data) 
Pr(M1 I Observed Data) 

If the probability of M2 given the observed data is greater than the 
probability of M1 given the observed data, M2 would be.preferred. Under 
the assumption that the prior odds Pr(M2)/ Pr(M1) of the two models 
are 1 (i.e., we have no prior preference for one model over the other), 
the Bayes theorem can be used to show that the posterior odds equal 
the Bayes factor: 

Pr(Observed Data I M2) 

Pr( Observed Data IM 1) 

/ Model M2 would be chosen if the probability of the observed data given 
that M2 generated the data is greater than the probability of the observed 
data given M1. Even if neither M2 nor M1 is the "true" model, the Bayes 
factor "is designed to choose the model that will, on average, give better 

~ut-of-sample predictions" (Raftery, 1996, p. 14). 
The BIC statistic is a computationally convenient approximation to 

the Bayes factor. Given N observations, consider model Mk with de­
viance D(Mk) comparing Mk to the saturated model Ms with dfk equal 
to the sample size minus the number of parameters in Mk.2 The first 

2 In Section 4.1.3, I used the term "full model" to refer to what Raftery calls lhe saturated 
model. 
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BIC measure equals 
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[4.13] 

Since BICs for the saturated model equals O (W'hy must this be the case?), 
the saturated model is preferred when BICA: > 0. When BICk < 0, Mk 
is preferred with the more negative the BICA: the better the fit. 

A second version of BIC is based on the LR chi-square in Equation 
4.6 with df1c equal to the number of regressors (not parameters) in the 
model: 

[4.14] 

If M.a is the null model without any regressors, then BIC~ is 0. The 
null model is preferred when Biq, > 0, suggesting that Mk includes too 
many parameters or variables. When BI¼ < 0, then Mk is preferred 
with the more negative the BIC'k the better the fit. Basically, BI¼ as­
sesses whether Mk fits the data sufficiently well to justify the number of , 
parameters that are used. 

Either BICk or BIC,., can be used to compare models, whethtr or not 
they are nested. Raftery (1996) shows that 

21n[Pr(Observed Data I M2)] 
Pr(Observed Data I M

1
) ::::: BICi - BICi [4.15] 

I Thus, the difference in the BICs from two models indicates which model 
is more likely to have generated the observed data. Further, it can be 
shown that 

~ 
BIC1 - BICi = BIC1 - Biq 

so that the choice of which BIC measure to use is a matter of conve­
~ce. 
Uased on Equation 4.15, the model with the smaller BIC or BIC' is 
preferred. How strong the preference is depends on the magnitude of 
the difference. Raftery, based on Jeffreys (1961), suggested guidelines for 
the strength of evidence favoring M2 against M 1 based on a difference 
in BIC or BIC. These are listed in Tuble 4.5. Since the model with the 
more negative BIC or BIC' is preferred, if BIC1 - BIC2 < 0, then the 
first model is preferred. If BIC1 - BICi > 0, then the second model is 
preferr_::) 
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TABLE 4.5 Strength of Evidence Based on the 
Absolute Value of the Difference in 
BIC or BIC' 

0--2 
2--6 
~10 
> 10 

Evidence 

Weak 
Positive 
Strong 
Veiy Strong 

FinalJy, to see the link between BIC and other measures of fit, consider 
the fonnula that Raftery (1996, p. 19) provides for computing BIC' in 
the LRM: 

BIC'k = Nln(l - RD +dfk lnN 

This convenient computational formula for BIC' in the LRM can also 
be used for models with CIDVs by replacing Ri by R~L from Equation 
4.10. 

E.xtlmple of InfomUJtion Measures: Labor Force Participation 

To illustrate the AIC and BIC measures, the logit model M1 with the 
original specification of independent variables: K5, K618,AGE, WC, HC, 
LWG, and INC; and M2 which adds a squared age termAGE2 and drops 
the variables K618, HC, andLWG were estimated. Tuble 4.6 contains the 
test statistics, along with the components that are used to compute them. 
Since many programs do not compute the AIC and BIC. it is important 
to verify that you can obtain the listed statistics using the formula in 
Equations 4.12 through 4.14. 

Based on the values of AIC, BIC, and BIC', model M1 is favored by 
all measures. Using the difference in BIC, 

BIC1 - BICi = -4,029.66 - - 4,024.87 = -4.79 
BIC. -BICi = - 78.11- - 73.32 = -4.79 

According to Tobie 4.5, the evidence favoring M1 over M2 is positive but 
not strong. 

4.4. Conclusions 

The methods for hypothesis testing are quite general and can be used 
with a)l models considered in this book. Pregibon's methods for detecting 
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TABLE 4.6 AIC and BIC for the Logit Model 

Measure M1 Mz 

lnL, -452.633 -461.653 
lnL. -514.873 -514.873 
(JI 124.481 106.441 
D 905.266 923.306 
df 745 747 
df' 7 5 
p 8 6 
AIC 1.223 1.242 
BIC -4029.663 -4024.871 
BIC ' -78.112 -73.321 

NOTE: In L,, is the log likelihood for the full model; In L0 is the log 
likelihood for the model with no regressors. N = 153. 
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outliers and influentia1 observations apply only to models with binary 
outcomes. While some of the scalar measures of goodness of fit are only 
appropriate for models with binary outcomes, others apply with minor 
adjustments to any model estimated with ML. 

' 
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