@
\\ Binary Outcomes: The Linear Probability,

Probit, and Logit Models

Binary dependent variables are extremely common in the social sciences.
Maddala and Trost (1982) studied the decisions by a bank to accept
loan applications. Domencich and McFadden (1975) analyzed factors‘ af-
fecting the use of public versus private transportation for commuting.
Aldrich and Cnudde (1975) considered the decision to vote for McGov-
ern in the 1972 presidential election; Allen (1991} examined contribu-
tions by the corporate elite to the Democratic Par.ty; w!:i]e Ragsdale
(1984) studied the president’s decision to make a discretionary speech
to the nation. Other outcomes include whether fraud was committed by
a savings and loan institution (Tillman & Pantell, 1995); if a trainee de-
cided to remain with the sponsoring employer (Gunderson, 1974); and
whether a student collaborated with his or her mentor during graduate
study (Long, 1990). Even a cursory glance at recent journals in the social
sciences turns up dozens of additional examples, ranging from having in-
tercourse before marriage, dropping out of high school, joining a union,
to enlisting in the military. ) .

In this chapter, I present four models for the analysis of binary out-
comes: the linear probability model (LPM), the binary probit model, the
binary logit model, and, briefly, the complementary log-log model@é
LPM is the linear regression model applied to a binary dependent vari-
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ab@While I do not recommend the LPM, the model illustrates the
problems resulting from a binary dependent variable, and motivates our
discussion of the logit and probit models. The probit and logit models
are developed first in terms of the regression of a latent variable. The la-
tent variable is related to the observed, binary variable in a simple way:
if the latent variable is greater than some value, the observed variable
is 1; otherwise it is 0.@ model is linear in the latent variable, but re-
sults in a nonlinear, S-shaped model relating the independent variables
to the probability that an event has occurred. Given the great similarity
between the logit and probit models, I refer to them jointly as the bi-
nary response model, abbreviated as BRM,/The BRM is also developed
as a nonlinear probability model. Within this context, the complemen-
tary log-log model is introduced as an asymmetric alternative to the logit
and probit models.

3.1. The Linear Probability Model

The linear probability model is the regression model applied to a binary

dependent variable. The structural model is .

Yi=xB+s

where x; is a vector of values for the ith observation, B is a vector of
parameters, and ¢ is the error term. y = 1 when some event occurs,
and y = 0 if the event does not occur. For example, y = 1 if a woman
is in the paid labor force, and y = 0 if she is not. If we have a single
independent variable, the model can be written as

yi=a+Bxi+eg

which is plotted in Figure 3.1. The conditional expectation of y given x,
E(y|x) = a + Bx, is shown as a solid line. Observations are plotted as
circles at y =0 and y = 1.

To understand the LPM, we must consider the meaning of E(y|x).
When y is a binary random variable, the unconditional expectation of y
is the probability that the event occurs:

E(y) = [1 x Pr(y; = 1)] + [0 x Pr(y; = 0)] = Pr(y, = 1)

For the regression model, we are taking conditional expectations:

@hl’u‘) = [1x Pr(y; = 1|x;)] + [0 x Pr(y; = 0|x;)] = Pr(y; =ﬁ
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E(ylx)

Figure 3.1. Linear Probability Model for a Single Independent Variable

Therefore, the expected value of y given x is the probability that y = 1
given x. This allows us to rewrite the LPM as

Pr(y, = 1|x) =x;p

Having a binary outcome does not affect the interpretation of the
parameters that was presented in Chapter 2: for a unit increase in x;, the
expected change in the probability of an event occurring is By, holding
all other variables constant. Since the model is linear, a unit change
in x; always results in the same change in the probability. That is, the
model is linear in the probability, and hence the name linear probability
model.

Example of the LPM: Labor Force Participation

Many authors have presented models in which the dependent variable
is whether a married woman was in the paid labor force. For example,
Gunderson (1974) compares the use of logit, probit, and LPM mod-
els. Nakamura and Nakamura (1981, pp. 464-468) use a probit model
to compare labor force participation in the United States and Canada.
While Mroz (1987) focuses on models for a woman’s hours of paid la-
bor, he uses a probit model to correct for sample selection bias. Berndt
(1991, pp. 618-619) reviews the research in this area.
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TABLE 3.1 Descriptive Statistics for the Labor Force Participation Example

Standard
Name Mean Deviation Minimum Maximum Description
LFP 057 0.50 .00 100 1 if wife is in the paid labor force; else 0
K5 0.24 052 0.00 300  Number of children ages 5 and younger
K618 135 132 0.00 800  Number of children ages 6 to 18
AGE 4254 807 30.00 60.00  Wife’s age in years
WC 0.28 045 0.00 1.00 1 if wife attended college; else 0
HC 039 0.49 0.00 100 1 if husband attended college; else 0
LwG 110 059 ~2.05 322  Log of wife’s estimated wage rate
INC 2013 1163 -0.03 96.00  Family income excluding wife’s wages
NOTE: N = 753.

Our analysis is based on data extracted by Mroz (1987) from the 1976
Panel Study of Income Dynamics.! The sample consists of 753 white,
married women between the ages of 30 and 60. The dependent variable
LFP is 1 if a woman is employed and is 0 otherwise. The independent
variables, which are similar to those used by Nakamura and Nakamura
(1981), Mroz (1987), and Berndt (1991), are listed in Table 3.1. Qur mea-
sures of educational attainment are dummy variables indicating whether
the husband or wife spent at least one year in college, rather than the
more commonly used measures of the number of years of education.
This was done to illustrate the interpretation of dummy independent
variables. _

The model being estimated is

LFP=By+8,K5+B,K618+ B3 AGE+B,WC+BsHC+BLWG+B,INC+e

with estimates presented in Table 3.2. Interpretation is straightforward.
For example:

-

o Unsiandardized coefficients for continuous variables. For every additional
child under 6, the predicted probability of a woman being employed de-
creases by .30, holding all other variables constant.

® x-standardized coefficients for continuous variables, For a standard deviation
increase in family income, the predicted probability of being employed de-
creases by .08, holding all other variables constant.

 Unstandardized coefficients for dummy variables. If the wife attended college,
the predicted probability of being in the labor force increases by .16, holding
all other variables constant.

! These data were generously made available by Thomas Mroz.
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TABLE 3.2 Linear Probability Model of Labor Force
Participation

Variable B B t
Constant 1.144 — 9.00

K5 —0.295 -0.154 -8.21
K618 ~0.011 -0.115 —0.80
AGE =0.013 ~0.103 -5.02

wC 0.164 — 357

HC 0.019 — 0.45
LWG 0.123 0.072 4.07
INC -0.007 ~0.079 -4.30

NOTE: N = 753. B is an unstandardized coefficient; 8% is an x-
standardized coefficient; 1 is a t-test of B.

There are several things to note about these interpretations. First, the
effect of a variable is the same regardless of the values of the other
variables. Second, the effect of a unit change for a variable is the same
regardless of the current value of that variable. For example, if a woman
has four young children compared to no young children, her predicted

probability of employment decreases by 1.18 (= 4 x —.295), which is

obviously unrealistic. This problem is considered in the next section. Fi-
nally, fully standardized and y-standardized coefficients are inappropri-
ate given the binary outcome, and x-standardized coefficients are inap-
propriate for binary independent variables.

3.1.1. Problems With the LPM

While the interpretation of the parameters is unaffected by having
a binary outcome, several assumptions of the LRM are necessarily

/wolated

Heteroscedasticity. If a binary random variable has mean g, then its
variance is u(1 — p). (Prove this.) Since the expected value of y given
x is xB, the conditional variance of y depends on x according to the
equation:

Var(y|x) = Pr(y = 1|0)[1 — Pr(y = 1| x)] = xB(1 - xB)

which implies that the variance of the errors depends on the x's and is
not constant. (Plot the Var(y | x) as xp ranges from —.2 to 1.2.) Since the
LPM is heteroscedastic, the OLS estimator of B is inefficient and the
standard errors are biased, resulting in incorrect test statistics.

Binary Qutcomes ) ' s e

Goldberger (1964, pp. 248-250) suggested that the LPM could be cor-
rected for heteroscedasticity with a two-step estimator. In the first step,
¥ is estimated by OLS. In the second step, the model is estimated with
generalized least squares using Var{" ) = %1 — %) to correct for het-
eroscedasticity. While this approach increases the efficiency of the esti-
mates, it does not correct for other problems with the LPM. Further, for
¥ < 0 ory > 1, the estimated variance is negative and ad hoc adjust-
ments are required.

Normality. Consider a specific value of x, say x,. In Figure 3.1,
E(y|x,) is represented by a diamond on the regression line. & is the
distance from E(y|x) to the observed value. Since y can only have the
values 0 and 1, which are indicated by the open circles, the error must
equal either &; = 1 — E(y|x,) or &, = 0 — E(y| x,). Clearly, the errors
cannot be normally distributed. Recall that normality is not required for
the OLS estimates to be unbiased.

[ Nonsensical Predictions.y The LPM predicts values of y that are neg-
ative or greater than 1. Given our interpretation of E(y|x) as Pr(y =,
1|x), this leads to nonsensical predictions for the probabilities. For ex-'
ample, using the means in Table 3.1 and the LPM estimatesjn Table
3.2, we find that a 35-year-old woman with four young children, who did
not attend college nor did her husband, and who is average on other
‘variables, has a predicted probability of being employed of —.48. (Verify
this result.) \While unreasonable predictions are sometimes used to dis-
miss the LPM, such predications at extreme values of the independent
variables are also common in regressions with continuous outcomesD

Functional Form. Since the model is linear, a unit increase in x; re-
sults in a constant change of 8, in the probability of an event, holding
all other variables constant. The increase is the same reggrdless of the
current value of x. In many applications, this is unrealisti?:or exam-
ple, with the LPM each additional young child decreases the probability
of being employed by .295, which implies that 2 woman with four young
children has a probability that is 1.18 less than that of a woman without
young children, all other variables being held constant. More realistically,
each additional child would have a diminishing effect on the probabil-
ity. While the first child might decrease the probability by .3, the second
child might only decrease the probability an additional .2, and so on.
That is to say, the model should be nonlinear. In general, when the out-
come is a probability, it is often substantively reasonable that the effects
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of independent variables will have diminishing returns as the predicted
probability approaches 0 or 1iIn my opinion, the most serious problem
with the LPM is its functional foré

The binary response model hasan S-shaped relationship between the
independent variables and the probability of an event, which addresses
the problem with the functional form in the LPM. In the following sec-
tion I develop this model in terms of a latent dependent variable. Section
3.4 shows how the logit and probit models can also be thought of as non-
linear probability models without appealing to a latent variable. And, in

Chapter 6, the models are derived as discrete choice models in which an .

individual chooses the option that maximizes her utility.

3.2. A Latent Variable Model for Binary Variables

/ As with the LPM, we have an observed binary variable y. Suppose
that there is an unobserved or latent variable y* ranging from —oo to oo
that generates the observed y’s. Those who have larger values of y* are
observed as y = 1, while those with smaller values of y* are observed as
=0.

e Since the notion of a latent variable is central to this approach to
deriving the BRM, it is important to understand what is meant by a latent
variable. Consider a woman’s labor force participation as the observed
y. The variable y can only be observed in two states: a woman is in the
labor force, or she is not. However, not all women in the labor force
are there with the same certainty. One woman might be very close to
the decision of leaving the labor force, while another woman could be
__very firm in her decision. In both cases, we observe the same y = 1.
_ The idea of a latent y* is that there is an underlying propensity to work
that generates the observed state. While we cannot directly observe y*,
at some point a change in y* results in a change in what we observe,
namely, whether a woman is in the labor force) For example, as the
number of young children in the family increases, it is reasonable that
a woman’s propensity to be in the labor force (as opposed to working
at home) would decrease. At some point, the propensity would cross a
threshold that would result in a decision to leave the labor force.

¢ Can all binary outcomes be viewed as manifestations of a latent vari-
able? Some researchers argue that invoking a latent variable is usually

inappropriate, others believe that an underlying latent variable is peg-

fectly reasonable in all cases, while most seem to take a middle groun
Regardless of your assessment of the use of a latent variable, it is im-
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portant to realize thatﬁm derivation and application of the BRM is not
dependent on your acceptance of the notion of a latent variab@Section
3.4 shows that the same BRM can be derived as a nonlinear probability
model, without invoking the idea of a latent variable.

The latent y* is assumed to be linearly related to the observed x’s
through the structural model:

Q{’:X,-ﬂ-l-s;

The latent variable y* is linked to the observed binary variable y by the
measurement equation:

| 1 ify>n

where 7 is the threshold or cutpoint. If y* < 1, then y = 0. If y* crosses
the threshold 7 (i.e., y* > 1), then y = 1. For now, we assume that 7 = 0.
Section 5.2 (p. 122) discusses this identifying assumption in detail.

The link between the latent y* and the observed y is illustrated in
Figure 3.2 for the model y* = a + Bx + &. In this figure, y* is on the
vertical axis, with the threshold 7 indicated by a horizontal dashed line.
The distribution of y* is shown by the bell-shaped curves which should
be thought of as coming out of the figure into a third dimension. When
y* is larger than 7, indicated by the shaded region, we observe y = 1.

Figure 3.2. The Distribution of y* Given x in the Binary Response Model
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For example, at x; about 25% of the y’s equal 1, at x; nearly 90% are
1’s, and at x; nearly all cases are 1's.

/ Since y* is continuous, the model avoids the problems encountered
with the LPM. However, since the dependent variable is unobserved, the
model cannot be estimated with OLS. Instead, we use ML estimation,
which requires assumptions about the distribution of the errors. Most
often, the choice is between normal errors which result in the probit
model, and logistic errors which result in the logit model. As with the

\\LRM, we assume that E(&|x) = 0.
[ Since y* is unobserved, we cannot estimate the variance of the er-
I

ors as we did with the LRM. In the probit model, we assume that
Var(e|x) = 1 and in the logit model that Var(e|x) = #?/3 =~ 3.29.
(The symbol “~” means “is approximately equal t0.”) The specific value
assumed for the variance is arbitrary in the sense that it cannot be dis-
confirmed by the data. We choose a value that results in the simplest
formula for the distribution of e.

The logistic and normal distributions are used so frequently for models
with CLDVs that it is worth examining these distributions in detail. The
probability density functions and cumulative distribution functions for
the normal and logistic distributions are shown in Figure 3.3. The normal
distribution is drawn with a solid line. When ¢ is normal with E(g |x) =0
and Var(e |x) = 1, the pdf is

#(e) = = exp( - f’;)

and the cumulative distribution function (hereafter, cdf) is

q:(e)—fs L ( tz)dz

- —oo W/ 2w X]J 2

The cdf indicates the probability that a random variable is less than or
equal to a given value. For example, ®(0) = Pr(e < 0) = .5. (Find this

Cgoim in panel B of Figure 3.3.)

In the logit model, the errors are assumed to have a standard logistic
distribution with mean 0 and variance m2/3. This unusual variance is
chosen because it results in a particularly simple equation for the pdf:

exp(&) B
[1+exp(s)]?
and an even simpler equation for the cdf:
exp(e)
1 + exp(e)

Ale) =

Ale) =
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Pgnel A: pdf's for logistic and normal distributions
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Figure 3.3. Normal and Logistic Distributions

These distributions are drawn with long dot-dashes in Figure 3.3. The
standard logistic pdf is flatter than the normal distribution since it has a
larger variance.

If we rescale the logistic distribution to have a unit variance, known
as the standardized (not standard) logistic distribution, the logistic and
normal cdf’s are nearly identical, as shown in panel B of Figure 3.3.
However, the pdf and cdf for the standardized logistic distribution with
a unit variance are more complicated:

sen . Yexp(ye)
M) = T ep(or

where y = m/+/3. Because of the simpler equations for the standard
{not standardized) logistic distribution, it is generally used for deriving

sey L exp(ye)
md A(e)=grorrs B2
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Priy=1 Ixz)\

Figare 3.4, Probability of Observed Values in the Binary Response Model

the logit model. The consequences of assuming different variances for
the probit and logit models are considered in Section 3.3.

By assuming a specific form for the distribution of &, it is possible to
compute the probability of y = 1 for a given x. To see this, consider
Figure 3.4, where ¢ is distributed either logistically or normally around
E(y*|x) = a+ Bx. Values of y = 1 are observed for the shaded portion
of the error distribution above 7. Even if E(y* | x) is in the shaded region
where y = 1 (e.g., at x;,), it is possible to observe a 0 if ¢ is large and
negative. The negative error moves y* into the unshaded region of the
Curve.

Figure 3.5 illustrates the translation of these ideas into a formula for
computing Pr{y = 1 |x). Panel A takes the error distribution from Figure

Panel A: Original Axis  Panel B: Shiftthe Axis Panel C: Flip the Axis
Priy=1) 4
=9(xf) g

Pr(y=0)

X8 0 ' 0 xp
y'—xf=¢ ~E=gg-y"

Figure 3.5. Computing Pr(y = 1| x) in the Binary Response Model
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3.4 and places it on its side. Since y = 1 when y* > 0,
Pr(y = 1|x) =Pr(y* > 0|x)
Substituting ¥* = x + &, it follows that
Pr(y=1|x) =Pr(xp + & > 0|x)

Subtracting xp from each side of the inequality corresponds to shifting
the x-axis as shown in panel B. Then

Pr(y = 1|x) = Pr(e > —xB |x)

Since cdf’s express the probability of a variable being less than some
value, we must change the direction of the inequality. The normal and
logistic distributions are symmetric, which means that the shaded area
of the distribution greater than —xf in panel B equals the shaded area
less than xp in panel C. Consequently,

Pr(y =1|x) =Pr(e < xB[x) v

This is simply the cdf of the error distribution evaluated at x[i.\Aooord-
ingly,

Pi(y =1|x) = F(xB) [3.3]

where F is the normal cdf & for the probit model and the logistic cdf A
for the logit model. The probability of observing an event given x is the
cumulative density evaluated at xp.

To understand the functional form of the resulting model, consider the
BRM for a single independent variable:

Pr(y=1|x) = F(a + Bx) [3.4]

As x increases by one unit, the argument of F increases by B units.

Plotting Equation 3.4 corresponds to plotting the cdf of either the normal
or the logistic distribution as its argument increases. This is shown in
Figure 3.6. Panel A illustrates the error distribution for nine values of x.
The region of the distribution where y* > r corresponds to Pr(y = 1| x)
and has been shaded. Panel B plots Pr(y = 1|x). At x;, only a small
portion of the tail of the curve crosses the threshold in panel A, resulting
in a small value of Pr(y = 1|x) in panel B. As we move to x,, the
error distribution shifts up slightly. (This shift is exactly B(x, — x;). Why?
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Panel A: Plot of y*
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Figure 3.6. Plot of y* and Pr(y = 1]|x) in the Binary Response Model

What is the amount of the change in the probability?) Since only a small
portion of the thin tail moves over the threshold, Pr(y = 1|x) increases
only slightly as shown in panel B. As we continue to move to the right,
from x; to x5 to x4, thicker regions of the error distribution slide over
the threshold and the increase in Pr(y = 1|x) becomes larger. After
x4, increasingly thinner sections of the distribution cross the threshold
and the value of Pr(y = 1|x) increases increasingly more slowly as it
approaches 1. The resulting curve is the well-known S-curve associated
with the BRM. :

Binary Ouicomes b SO 1. 1

Before considering the interpretation of the parameters and how they
are related to the predicted probability of an event, we must consider
the issue of identification.

3.3. Identification

@ specifying the BRM, we made three identifying assumptions: (1)
the threshold is 0: 7 = 0; (2) the conditional mean of ¢ is 0: E(¢|x) =
0; and (3) the conditional variance of & is a constant: Var(s =1
in the probit model and Var(e|x) = #?%/3 in the logit modélﬁhese
assumptions are arbitrary in the sense that they cannot be tésted, but
they are necessary to identify the model. Identification is an issue that is
essential for understanding models with latent variables. Since a latent
variable is unobserved, its mean and variance cannot be estimated. For
example, in the covariance structure model, commonly referred to as
the LISREL model, the variance of a latent variable is unidentified.
Assumptions are required to fix the variance to a constant or to link
the latent variable to an observed variable (Bollen, 1989, pp. 238-246;
Long, 1983, pp. 49-52). In the BRM, the model is not identified until
we impose assumptions that determine the mean and variance Qf y*.

To see the relationship between the variance of the dependent variable
and the identification of the B’s in a regression model, consider the
model y = xB, + &,, where y is observed. Construct a new dependent
variable w = 8y, where & is any nonzero constant. The variance of w
equals: '

Var(w) = Var(8y) = 8* Var(y)
For example, if 8§ = 1/,/Var(y), then Var(w) = 1. Since w = 8y and
y =xB, + &,, it follows that
w = 8(xB, + &,) = x(3B,) + de,
Therefore, the B’s in a regression of w on x are & times the B's in the
regression of y on x. That is,
B, = B, [3.5]

Since the magnitude of the slope depends on the scale of the dependent
variable, if we do not know the variance of the dependent variable, then
the slope coefficients are not identified.

To apply this result to the BRM and to understand the relationship
between the magnitudes of the logit compared to the probit coefficients,
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we need to distinguish between the structural models for logit and probit.
Let

yi=xB +e and y;=xBp+ep

where L indicates the logit model and P the probit model. Since yf
and yp are latent, it is impossible to determine their variances from the
observed data, and, consequently, §; and B, are unidentified. For both
models, the variance of y* is determined by assuming the variance of
s. Since Var(e, |x) = (w?/3) Var(ep |x) (Why?), it follows that &; =~
(m/+/3)ep. The errors are not identical since the logistic and normal
distributions with unit variance are only approximately equal (see Figure
" 3.3). From Equation 3.5,

By ~ |/ Var(ey |X) Bp =/ 72/3Bp ~ 1.81Bp

where +/7%/3 = 1.81. This transformation can be used to compare coef-
ficients from a published logit analysis to comparable coefficients from
a probit analysis and vice versa.

The approximation B; = 1.8 Bp is based on equating the variances of
the logistic and normal distributions. Amemiya (1981) suggested making
the cdf’s of the logistic and normal distributions as close as possible, not
just making their variances equal. He proposed that the cdf’s were most
similar when &; = 1.6¢p, which led to his approximation: B; ~ 1.6 Bp.
My own calculations indicate that the cdf’s are closest when &, =~ 1.7¢p,
which, conveniently, corresponds to the results in the example 1 now
present.

Example of Logit and Probit: Labor Force Participation

Even though we have not considered estimation, it is useful to examine
the logit and probit estimates from our model of labor force participa-
tion. The model is

Pr(LFP = 1) = F(By + P1K5 + B.K618 + B; AGE
+ B4WC + BsHC + BLWG + B,INC)
Estimates are given in Table 3.3. The first thing to notice is that the log
likelihood and z-tests are nearly identical. This reflects the basic simi-

larity, except for scaling, in the structure of the logit and probit models,
and the fact that these statistics are unaffected by the assumed variance
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TABLE 3.3 Logit and Probit Analyses of Labor Force Participation

Logit Probit Ratio
Variable B z B z B z
Constant 3.182 4.94 1.918 5.04 1.66 0.98
K5 —1.463 —7.43 -0.875 =7.70 1.67 0.96
K618 —0.065 ~0.95 -0.039 —0.95 1.67 1.00
AGE —0.063 ~4.92 —0.038 —4.97 1.66 0.99
wC 0.807 3.51 0.488 3.60 1.65 0.97
HC 0.112 0.54 0.057 046 1.95 1.18
LWG 0.605 4.01 0.366 4.17 1.65 0.96
INC ~0.034 ~4.20 -0.021 -4.30 1.68 0.98
-2InL 905.27 905.39 1.00

NOTE: N =753, B is an unstandardized coefficient; z is the z-test for 8. “Ratio” is the ratio of a logit
to a probit coefficient.

of the error. The effects of the identifying assumptions about Var(z) are
seen by taking the ratio of the logit coefficients to the probit coefficients,
contained in the column labeled “Raﬁo.@ logit coefficients are about,
1.7 times larger than the corresponding probit coefficients, with the ex-
ception of the coefficient for HC which is the least statistically significant
parameter. Clearly, interpretation of the 8’s must take the effects of-the
identifying assumptions into account. This issue is now oonside:;eﬁ

3.3.1. The Identification of Probabilities

Since the B’s are unidentified without assumptions about the mean and
variance of &, the B8’s are arbitrary in this sense: if we change the iden-
tifying assumption regarding Var(e|x), the B’s also change. Accordingly,
the B’s cannot be interpreted directly since they reflect both: (1) the relation-
ship between the x’s and y*; and (2) the identifying assumptions. While the
identifying assumptions affect the Bs, they do not affect Pr(y = 1|x).
More technically, Pr(y = 1|x) is an estimable function. An estimable
function is a function of the parameters that is invariant to the identify-
ing assumptions (Searle, 1971, pp. 180-188). )

Consider the logit model where

exp(x;) - 1
1+exp(x;B) 1+ exp(-x;B)

(Prove the last equality.) The right-hand side is the cdf for the logistic
distribution with variance o? = #2/3. We can standardize & to have a

Pr(y =1]x) =
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unit variance by dividing the structural model by o

Y_=P_ &

o o o

&/o has a standardized logistic distribution with cdf (see Equation 3.2):
. ( T s;)
AS ﬁ) - N\Ae)
14 e,p(:ﬂ f_)
JSIo
Since o = 7/ V3,

&\ _ exp(e;) =
AS(F) = Trexple) &)

Consequently, the probability of an event is unaffected by the identifying
assumption regarding Var(e|x). While the specific value assumed for
Var(e|x) is arbitrary and affects the B’s, it does not affect the quan-
tity that is of fundamental interest, namely, the probability that an event
o ed. The same result hoids for the probit model.

( The critical point is that while the B’s are affected by the arbitrary
scale assumed for &, the probabilities are not affected. Consequently,
the probabilities can be interpreted without concern about the arbitrary
assumption that is made to identify the model. That is to say, the proba-
bilities are estimable functions.)Further, any function of the probabilities
is also estimable. Importantly, we can interpret changes in probabilities
and odds, which are ratios of probabilities. This is done in Section 3.7,
but first we consider an alternative method of deriving the logit and pro-
bit models.

3.4. A Nonlinear Probability Model

The BRM can also be derived without appealing to an underlying
latent variable. This is done by specifying a nonlinear model relating
the x’s to the probability of an evént.Yor example, Aldrich and Nelson
(1984, pp. 31-32) derive the logit model by starting with the problem that
the LPM can predict values of Pr(y = 1|x) that are greater than 1 or

less than 0. To eliminate this problem, they transform Pr(y = 1]x) into a _

function that ranges from —oo to oc. First, the probability is transformed
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into the odds:

Pry=1|x) _ Pry=1|%)

Pr(y=0|x) 1-Pr(y=1]x)
The odds indicate how often something (e.g., ¥ = 1)} happens relative
to how often it does not happen (e.g., y = 0), and range from 0 when
Pr(y = 1|x) = 0 to oo when Pr(y = 1|x) = 1. The log of the odds,
known as the logit, ranges from —oo to co. This suggests a model that is
linear in the logit:

Pr(y=1|x) 7
m[l—Pr(y:llx) =xp [3.6]
This is equivalent to the logit model derived above (Show this.):
exp(xB)
=1 = &
Priy=110) = 1o 37

Other probability models can be constructed by choosing functions of
xB that range from 0 to 1. Cumulative distribution functions have this
property and readily provide a number of examples. The cdf for the,
standard normal distribution results in the probit model:

N

Pry=10n= [ ’: %exp(—i}) dt = B(xB)

Another example is the complementary log-log model (Agresti, 1990,
pp. 104-107; McCullagh & Nelder, 1989, p. 108), defined by

In(—Inf1 - Pr(y = 1|x)]) =xB
or, equivalently,
Pr(y =1|x) =1 — exp[— exp(xB)]

Bnlike the logit and probit models, the complementary log-log model

is asymmetric.|In the logit and probit models, if you are at that point
on the probability curve where Pr(y = 1|x) = .5, increasing x by a
given amount § changes the probability by the same amount as if x is
decreased by 8. This is not the case for the complementary log-log model
as shown in Figure 3.7. As x increases, the probability increases slowly
at the left until it reaches about .2; the change from .8 toward 1 occurs
much more rapidly. The log-log model, which is defined as

Pr(y = 1|x) = exp[ - exp(—xB)]
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Figure 3.7. Complementary Log-Log and Log-Log Models

has the opposite pattern. These models can be estimated with GLIM,
Stata, and SAS, and have links to the proportional hazards model (see
Allison, 1995, pp. 216-217, or Petersen, 1995, p. 499, for details).

3.5. ML Estimation?

To specify the likelihood equation, define p as the probability of ob-
serving whatever value of y was actually observed for a given observation:

pi= Pr(y; =1[x,) if y; = 1 is observed 3
! 1-Pr(y;=1]|x;) if y. =0 is observed [3.8]

Pr(y; = 1|x;) is defined by Equation 3.3. If the observations are inde-
pendent, the likelihood egyation is

N
LBy, X)=]]» [3.9]

=1

? When there is more than one observation for each combination of values of independent
variables, Berkson’s minimum chi-square estimation can be used. Since the requirement
of many observations per cell is rarely satisfied in social science research, I do not consider
;hi)s method. See Hanushek and Jackson (1977, pp. 190-200) or Maddala (1983, pp. 28-

4).
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Combining Equations 3.8 and 3.9,
LBy, X) =[]Pr(y =11x) []1 - Pr(yy = 1]x)]
y=1 y=0

where the index for multiplication indicates that the product is taken
over only those cases where y =1 and y = 0, respectively.

The B’s are incorporated into the likelihood equation by substituting
the right-hand side of Equation 3.3:

L(B|y, X) =[] Fxi8) [ ][1 - F(x:8))
y=1 y=0

('I—hking logs, we obtain the log likelihood equation:
nL(B|y,X) =) _InF(x;)+ ) In[l - F(x;B)]
y=1 y=0

/—Imenﬁya (1985, pp. 273-274) proves that under conditions that are likely
to apply in practice, the likelihood function is globally concave which en-

sures the uniqueness of the ML estimates. These estimates are consis-
tent, asymptotically normal, and asymptotically efficient.

—

3.5.1. Maximum Likelihood and Sample Size %

@r ML estimation, the desirable properties of consistency, normal-
ity, and efficiency are asymptotic. This means that these properties have
been proven to hold as the sample size approaches bc-)While ML esti-
mators are not necessarily bad estimators in small samples, indeed OLS
for the linear regression model is an ML estimator that works quite
well in small-samples,@ small-sample behavior of ML estimators for
the models in this book is largely unlmo@ince alternative estimators
with known small sample properties are generally not available for the
models we consider, the practical question is: When is the sample large
enough fo use the ML estimates and the resulting significance tests? While
I am reluctant to give advice without firm evidence to justify the advice,
it seems necessary to add a cautionary note since it is easy to get the
impression that ML estimation works well with any sample sizetor ex-
ample, the 32 observations from a study by Spector and Mazzeo (1980)
are used frequently to illustrate the logit and probit models, yet 32 is too
small of a sample to justify the use of ML)The following guidelines are
not hard and fast. They are based on my experience of when the models
seem to produce reasonable and robust results and my discussions with
other researchers who use these methods.
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It is risky to use ML with samples smaller than 100, while samples
over 500 seem adequate.)These values should be raised depending on
characteristics of the¥ffodel and the data&?_rst, if there are a lot of pa-
rameters in the model, more observations are nee@n the literature
on the covariance structure n&e&the rule of at least five observations
per parameter is often given. e of at least 10 observations per pa-
rameter seems reasonable for the models in this book,/This rule does
not imply that a minimum of 100 is not needed if Q;;:e only two
parameters. (Second, if the data are ill conditioned (e.g., independent
variables are highly collinear) or if there is little variation in the depen-
dent variable (e.g., nearly all of the outcomes are 1), a larger sample is
required. JThird, some models seem to require more observations. The

" ordi egression model of Chapter 5 is an example. In discussing the
of ML for small samples, Allison (1995, p. 80) makes a useful point.
While the standard advice is that with small samples you should accept
larger p-values as evidence against the null hypothesis, given that the
degree to which ML estimates are normally distributed in small samples
is unknown, it is more reasonable to require smaller p-values in small

3.6. Numerical Methods for ML Estimation

@r the LRM, ML estimates are obtained by setting the gradient of
the log likelihood to 0 and solving for the parameters using algebra.
Algebraic solutions are rarely possible with nonlinear modéls se-
quently, numerical methods are used to find the estimates that Taximize
the log likelihood function erical methods start with & guess of the
values of the parameterS and iterate to improve on that guéss_ While
you may be tempted to dismiss numerical methods as an esoteric topic
of little practical concern, programs using numerical methods for esti-
mation can produce incorrect estimates or fail to provide any estimates.
To recognize and correct such problems, an elementary understanding of
numerical methods is useful. I begin with an introduction to numerical
methods, followed by practical advice on using these methods.

3.6.1. Iterative Solutions

\ssume that we are trying to estimate the vector of parameters 8. We
begin with an initial guess 8, called start values, and attempt to improve
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on this guess by adding a vector {, of adjustmcﬁ@
0, =8 +&
We proceed by updating the previous iteration according to the equation:
0,01 =0,+8,

Iterations continue until there is canvergenc@ughly, convergence oc-
curs when the gradient of the log likelihood is close to 0 or the estimates
do not change from one step to the next. Convergence must occur to ob-
tain the ML estimator 8. )

The problem is to a {, that moves the process rapidly toward
a solution. It is useful to think of {, as consisting of two parts: {, =
D,Y,. Y, is the gradient vector defined as 7lnL/d0,, which indicates
the direction of the change in the log likelihood for a change in the
parameters. D, is a direction matrix that reflects the curvature of the
log likelihood function; that is, it indicates how rapidly the gradient is
changing. A clearer understanding of these components is gained by
examining the simplest methods of maximization.

The Method of Stéepesr Ascent. The method of steepest ascent lets
D=L .
‘ dlnL
9,

An estimate increases if the gradient is positive, and it decreases if the
gradient is negative. Iterations stop when the derivative becomes nearly
0. The problem with this approach is that it considers the slope of In L,
but not how quickly the slope is changing. To see why this is a problem,
consider two log likelihood functions with the same gradient at a given
point but with one function changing shape more quickly than the other.
(Sketch these functions.) You should move more gradually for the func-
tion that is changing quickly, in order to avoid moving too far. Steepest
descent tends to work poorly since it treats both functions in the same
way.

The next three commonly used methods address this problem by
adding a direction matrix that assesses how quickly the log likelihood
function is changing. They differ in their choice of a direction matrix.
In all cases, it takes longer to compute the direction matrix than the
identity matrix used with the method of steepest ascent. Usually, the
additional computational costs are made up for by the fewer iterations
that are required to reach convergence.

eu+1 = 0,., +
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No one method works best ali of the time. An algorithm applied to
one set of data may not converge, while another algorithm applied to
the same data may converge rapidly. For a different set of data, the op-
posite may occur\]p.general, the algorithm used in commercial software
depends on the preferences of the programmer and the ease with which
an algorithm can be programmed for a given mod'glé

The Newton-Raphson Method. The rate of change in the slope of In L
is indicated by the second derivatives, which are contained in the Hessian
matrix & In L/9899'. For example with two parameters 6 = (a ), the
~ Hessian is

#Inl #InL
#InL | dada  dadp
08 #inL FinL
dBda  IBIB

H #°In L/dada is large relative to #%In L/3B4B, the gradient is changing
more rapidly as « changes than as B changes. Thus, smaller a djustments
to the estimate of & would be indicated. The Newton-Raphson algorithm
proceeds according to the equation:

#nL\ 'sInL
Oner =0~ 5o, 50,) o6,
n n n

{Why are we taking the inverse of the Hessian?)

The Method of Scoring. In some cases, the expectation of the Hessian,
known as the information matrix, can be easier to compute than the Hes-
sian. The method of scoring uses the information matrix as the direction
matrix, which results in

FAInL T\ el
On1 ‘""*(E[aenéﬂ:,]) )

The BHHH Method. When the Hessian and the information matrix
are difficult to compute, Berndt et al. (1974) propose using an outer
product of the gradient approximation to the information matrix:

ialnL,-alnLi’
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where In L; is the value of the likelihood function evaluated for the ith
observation. This approximation is often simpler to compute since only
the gradient needs to be evaluated. Iterations proceed according to

ialnLialnL,.')'lalnL

=80
o.l'l‘+1 n . ( (90,, ao” aen

i=1
which is known as the BHHH (pronounced “B-triple-H”) algorithm or
the modified method of scoring.

Numerical Derivatives. If you cannot obtain an algebraic solution for
the gradient or the Hessian, numerical methods can be used to estimate
them. For example, consider a log likelihood based on a single parameter
8. The gradient is approximated by computing the slope of the change in
In L when 8 changes by a small amount. If A is a small number relative
to 6,

olnL _InL(8+A)—InL(6)
a0 A

Using numerical estimates can greatly increase the time and number of
iterations needed, and results can be sensitive to the choice of A, Firther,
different start values can result in different estimates of the Hessian at
convergence, which translates into different estimates of the standard
errors. Programs that use numerical methods for computing derivatives
should only be used if no alternatives are available. When they must be
used, you should experiment with different starting values to make sure
that the estimates that you obtain are stable.

3.6.2. The Variance of the ML Estimator

‘In addition to estimating the parameters 8, numerical methods provide
estimates of the asymptotic covariance matrix Var(@), which are used
for the statistical tests in Chapter 4. The theory of maximum likelihood
shows that if the assumptions justifying ML estimation hold, then the
asymptotic covariance matrix equals

Var(9) = (-E[f;;;j ])hl [3.10]

In words, the asymptotic covariance equals the inverse of the negative
of the expected value of the Hessian, known as the information matrix.
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The covariance matrix is often written in an equivalent form using the
outer product of the gradient:

dlnLalmL'T\!
) [3.11]

Var(8) = { E —
®= (% %
In poth cases, the expression is evaluated at . Since we only have an
estimate of 0, the covariance matrix must be estimated. Three consistent
estimators of Var(#) are commonly used.

The first estimator evaluates Equation 3.10 using the ML estimates ©:

-1
Var,(0) = —(E[fzzl-'L—L])
. 3050’

This estimator is generally used with the method of scoring since that
method requires evaluating the information matrix at each iteration.
. A second estimator is obtained by evaluating the negative of the Hes-
sian, sometimes referred to as the observed information matrix, rather
than the information matrix itself:

G N #mL\™"
Var,(0) = —( A'A‘) 3.12
2 2;‘\ 9650’ 3.12)

Var,(8) is generally used with the Newton-Raphson algorithm. Equa-
tion 3.12 shows the relationship between the curvature of the likelihood
function and the variance of the estimator. The size of the variance is
inversely related to the second derivative: the smaller the second deriva-
tive, the larger the variance. When the second derivative is smaller, the
likelihood function is flatter. If the likelihood equation is very flat, the
variance will be large. This should match your intuition that the flatter
the likelihood function, the harder it will be to find the maximum of the

function, and the less confidence (i.e., the more variance) you should

have in the solution you obtain.
A third estimator, which is related to the BHHH algorithm, is simple
to compute since it does not require evaluation of the second derivatives:

h alnL,-alnLi)"l
~ 0 o

While these estimators of the covariance matrix are asymptotically
equivalent, in practice they sometimes provide very different estimates,
especially when the sample is small or the data are ill conditioned. Con-
sequently, if you estimate the same model with the same data using two
programs that use different estimators, you can get different results.

Ve ®) = (
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3.6.3. Problems With Numerical Methods and Possible Solutions

( While numerical methods generally work well, there can be problems.

* First, it may be difficult or impossible to reach convergence. You might

get an error such as “Convergence not obtained after 250 iterations.” Or,
it might not be possible to invert the Hessian when In L is nearly ﬂ@
This generates a message such as “Singularity encountered,” “Hessian
could not be inverted,” or “Hessian was not of full rank.” The message
might refer to the covariance matrix or the information matrix. Second,
sometimes convergence occurs, but the wrong solution is obtained. This
occurs when In L has more than one location where the gradient is 0.
The iterative process might locate a saddle point or local maximum,
where the gradient is also 0, rather than the global maxim@’[‘hink
of a two-humped Bactrian camel. The top of the smaller hump is a lo-
cal maximum; the low spot between the two humps is a saddle point.)
In such cases, the covariance matrix which should be positive definite
is negative definite. @hen InL is globally concave, there is only one
solution, and that is a maximum. This is the case for most of the mod-
els considered in this book. JHowever, even when the log likelihood is
globally concave, it is possible to have false convergence. This can oc-
cur when the function is very flat and the precision of the estimates of
the gradient is insufficient. This is common when numerical gra}lients
are used and can also be caused by problems with scaling (discussed be-
low). Finally, in some cases, ML estimates do not exist for a particular
pattern of data@r example, with a binary outcome and a single binary
independent variable, ML estimates are not possible if there is no vari-
ation in the independent variable for one of the outcomes. ffou can try
estimating a probit model using: ¥ = (0011 1) andx’ =(T0110).
This works fine, since there are x’s equal to 0 and 1 for both y =1 and
y = 0. However, now try to estimate the model for: y = (001 1) and
x’ = (1 0.1 1). Your program will “crash” since whenever y = 1, all x's
are 1’s.

When you cannot get a solution or appear to get the wrong solution,
the first thing to check is that the software is estimating the model that
you want to estimate. It is easy to make an error in specifying the com-
mands to estimate your model. If the model and commands are correct,
there may be problems with the data.

" Incorrect variables. Most simply, you may have constructed a variable incor-
rectly. Be sure to check the descriptive statistics for all variables. My
experience suggests that most problems with numerical methods are
due to data that have not been “cleaned.”
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/ Number of observations. Convergence generally occurs more rapidly when
there are more observations, and when the ratio of the number of ob-
servations to the number of variables is larger. While there is generally
little you can do about sample size, it can explain why you are having
problems getting your models to converge.

Scaling of variables. Scaling is a very common cause of problems with numeri-
cal methods. The larger the ratio between the largest standard deviation
and the smallest standard deviation, the more problems you will have
with numerical methods. For example, if you have income measured
in dollars, it may have a very large standard deviation relative to other
variables. Recoding income to thousands of dollars, may solve the prob-
lemn. My experience suggests that problems are much more likely when
the ratio between the largest and smallest standard deviation exceeds
10.

Distribution of the outcome. If a large proportion of cases are censored in the
tobit model or if one of the categories of a categorical variable has very
few cases, convergence may be difficult. There is little that can be done
with such data limitations.

Gi'umerical methods for ML estimation tend to work well when your
model} is appropriate for your data. In such cases, convergence gener-
ally occurs quite rapidly, often within five iterations. If you have too few
cases, too many variables, or a poor model, convergence may be a prob-
lem. In such cases, rescaling your data can solve the problem. If that
does not work, you can try using a program that uses a different numer-
ical algorithm. A problem that may be very difficult for one algorithm
may work quite well for another.

While numerical methods erally work well, I heartily endorse
Cramer’s (1986, p. 10) advice: “Check the data, check their transfer into
the computer, check the actual computations (preferably by repeating
at least a sample by a rival program), and always remain suspicious of
the results, regardless of the appeal.”

3.6.4. Software Issues

There are several issues related to software for logit and probit that
should be considered.

Gﬁe Method of Numerical Maximization. Different programs use dif-
ferent methods of numerical maximization. In most cases, estimates of
the parameters from the different programs are identical to at least four
decimal digits. Bstimates of the standard errors and the z-values may
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differ at the first decimal digit as a result of the different methods used
to estimate Var(B).

Parameterizations of the Model. A more basic difference is found in the
outcome being modeled. While most programs model the probability of
a 1, some programs (e.g.. SAS) model the probability of a 0. This is a
trivial difference if you are aware of what the program is doing. For the
BRM,

Pr(y; = 0]x;)=1—Pr(y; =1|x) = 1- F(x;) = F(-x,B)

where the last equality follows from the symmetry of the pdf for the logit
and probit models. Thus, all coefficients will have the opposite sign. Note
that this will not be the case for the complementary log-log model since
it is asymmetric.

With estimates in hand, we can consider the interpretation of the bi-
nary response model.

3.7. Interpretation

b

In this section, I present four methods of interpretation, each of which
is generalized to other models in later chapters(First, I show how to
present predicted probabilities using graphs arldﬁlﬂgfcond, I exam-
ine the partial change in y* and in the probabili d, I use discrete
change in the probability to summarize the effects of each variable,26-
nally, for the logit model, I derive a simple transformation of the param-
eters that indicates the effect of a variable on the odds that the event
occurr

Since the BRM is nonlinear, no single approach to interpretation can
fully describe the relationship between a variable and the outcome prob-
ability. You should search for an elegant and concise way to summarize
the results that does justice to the complexities of the nonlinear model.
For any given application, you may need to try each method before a fi-
nal approach is determined. For example, you might have to construct a
plot of the predicted probabilities before realizing that a single measure
of discrete change is sufficient to summarize the effect of a variable. I il-
lustrate these methods with the data on the labor force participation of
women. You should be able to replicate many of the results using Tables
3.1 and 3.3, although your answers may differ slightly due to rounding
erTor.
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I begin by showing how the intercept and the slope affect the curve
relating an independent variable to the probability of an event. Under-
standing how the parameters affect the probability curves is fundamental
to applying each method of interpretation.

3.7.1. The Effects of the Parameters
Consider the BRM with a single x:
Pr(y =1|x) = F(a + Bx)

Ganel A of Figure 3.8 shows the effect of the intercept on the probability
curve. When a = 0, shown by the short dashed line, the curve passes
through the point (0, .5). As a gets larger, the curve shifts to the left;
as a gets smaller, the curve shifts to the right. (Why does the curve shift
to the left when o increases;?"hen the curve shifts, the slope at a given
value of Pr(y = 1|x) doeSTot change. This idea of shifting, “parallel”
curves is used to explain several of the methods presented below. It
is also fundamental to understanding the ordinal regression model in
Chapter 5.
Panel B of Figure 3.8 shows the effects of changing the slope. Since
o = 0, the curves go through point (0, .5). The smaller the 8, the more
stretched out the curve) At B = .25, shown by the solid line, the curve
increases steadily as it moves from —20 to 20. When B increases to .5,
shown by the long dashed line, the curve initially increases more slowly.
As x approaches 0, the increase is more rapid. In general, as 8 increases,
the curve increases more rapidly as x approaches 0. While I have not
drawn the curves, when the slope is negative, the curve is rotated 180°
around x = 0. For example, if 8 = —.25, the curve would be near 1 at
x = —20, and would gradually decrease toward 0 at x = 20.

It is also important to understand how the probability curve general-
izes to more than one variable. Figure 3.9 plots the probit model:

Pr(y=1|x,2z) =®(1 + 1x +.75z2)

Similar results apply for the logit model. The surface begins near zero
when x = —4 and z = —8. If we fix z = —8§, then

Pr(y=1{x,z=-8)=®(1+ 1x +[.75 x —8]) = ®(-5.0+ 1x)

which is the first S-shaped curve along the x-axis. If we increase z by 1,
which corresponds to the next curve back along the z-axis, then

Priy=1|x,2=-7)=®(1 + 1x +[.75 x =7]) = ®(-4.25 + 1x)
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Panel A: Effects of Changing o
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Figure 3.8. Effects of Changing the Slope and Intercept on the Binary Response
Model: Pr(y = 1| x) = F(a + Bx)

Only the intercept has changed, which causes the curve to .shift to the
left (see panel A of Figure 3.8). The level of z affects the intercept of
the curve, but does not affect the slope. Conversely, controlling for x
affects the intercept of the curve for z, but not the slope.

With these ideas in mind, we can consider several methods for inter-

preting the binary response model.
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Figure 3.9. Plot of Probit Model: Pr(y = 1|x, z) = ®(1.0 + 1.0x + 0.75z)

3.7.2. Interpretation Using Predicted Probabilities

Ghe most direct approach for interpretation is to examine the pre-
dicted probabilities of an event for different values of the independent
v‘adables. When there are more than two variables, it is no longer pos-
sible t5 plot the entire probability surface and a decision must be made
regarding which probabilities to compute and how to present them. A
useful first step is to examine the range of predicted probabilities within
Fl{:ﬁple, and the degree to which each variable affects the probabil-
it the range of probabilities is between .2 and .8 (or, more con-
servatively, between .3 and .7), the relationship between the x’s and the
predicted probability is nearly linear, and simple measures can be used
to summarize the result@)r, if the range of the probability is small
the relationship between the x’s and the probability will also be approxi:
mately linear. For example, the segment of the probability curve between
.05 and .10 is nearly linear. These points are illustrated below.

Determining the Range of Probabilities
The predicted probability of an event given x for the ith individual is
Pr(y, = 1|x) = F(xB)
The minimum and maximum probabilities in the sample are defined as
minPr(y =1|x) = qu(x,-ﬁ)
max Pr(y =1 |x) = max F(x;B)
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where min; indicates taking the minimum value over all observations,
and similarly for max;. In our example, the predicted probabilities from
the probit model range from .01 to .97, which indicates that the nonlin-
earities that occur below .2 and above .8 need to be taken into account.
If the coefficients from the logit model are used, the predicted probabil-
ities range from .01 to .96. This illustrates the great similarity between
the predictions of the logit and probit models, even for observations that
fall in the tail of the distribution. Consequently, in the remainder of this
section, only the results from the probit analysis are shown.

mputing the minimum and maximum predicted probabilities re-
quires your software to save each observation’s predicted probability for
further analysis) If this is not possible, or if you are doing a meta-analysis,
the minimum and maximum can be approximated by using the estimated
B’s and the descriptive statistic@ lower extreme of the variables is de-
fined by setting each variable associated with a positive 8 to its minimum
and each variable associated with a negative 8 to its maximuri)In our
example, this involves taking the maximum number of young children
(since K6 has a negative effect), the minimum anticipated wage (since
LWG has a positive effect), and so on. Formally, let

o |minza 820

e = Ymaxxy if Br <0
i

and let X be the vector whose kth element is X . The upper extreme can

be defined in a corresponding way, with the values contained in X . The

minimum and maximum probabilities are computed as

Pr(y=1|%)=F(XB) and Pr(y=1|%)=F(XP)

In our example, the computed probability at the lower extreme is less
than .01 and at the upper extreme is .99. While these values are quite
close to the minimum and maximum predicted probabilities for the sam-
ple, X and X are constructs that do not necessarily approximate any
member of the sample. If they differ substantially from any x; in the sam-
ple, then Pr(y = 1| ¥') and Pr(y = 1| X) will be poor approximations
of the probabilities min Pr(y = 1|x) and max Pr(y = 1]x).

@zming on the Use of Minimums and Maximums. The use of the min-
imum or maximum value of a variable can be misleading if there are
extreme values in the sample. For example, if our sample includes an
extremely wealthy person, the change in the probability when we move
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from the minimum to the maximum income would be unrealistically
large. Before using the minimum and maximum, you should examine
the frequency distribution of each variable. If extreme values are present,
you should consider using the 5th percentile and the 95th percentile, for
example, rather than the minimum and maximum.

The Effect of Each Variable on the Predicted Probability

(_The next step is to determine the eftent to which change in a vari-

able affects the predicted probabilityJOne way to do this is to allow one
variable to vary from its minimum toifs maximum, while all other vari-
- ables are fixed at their means.)Let Pr(y = 1|X, x,) be the probability
computed when all variables €Xcept x, are set equal to their means, and
x; equals some specified value. For example, Pr(y = 1|X, min x; ) is the
probability when x, equals its minimum. predicted change in the
probability as x, changes from its minimum to its maximum cqual@

Pr(y = 1|X, maxx;) — Pr(y = 1|X, minx;)

For our example, the results are given in Table 3.4. The range of pre-
dicted probabilities can be used to guide further analysis. For example,
there is little to be learned by analyzing variables whose range of prob-
abilities is small, such as H(_For variables that have a larger range, the
end points of the range affect how interpretation should proceed. For
example, the predicted probabilities for AGE range from .75 when age is
30 to .32 when age is 60, which is a region where the probability curve is
nearly lingm range for INC, however, is from .09 to .73, where non-
linearities are present. The implications of these differences are shown
in the next section.

TABLE 3.4 Probabilities of Labor Force Participation Over the Range of Each
Independent Variable for the Probit Model

At At Range of

Variable Maximum Minimum Pr

K5 001 - 0.66 0.64
K618 0.48 0.60 0.12
AGE 0.32 0.75 043
wC 0.71 052 0.18
HC 0.59 057 0.02
LWG 0.83 017 0.66

INC 0.09 0.73 0.64
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Plotting Probabilities Over the Range of a Variable

When there are more than two independent variables, we must exam-
ine the effects of one or two variables while the remaining variables are
held constant. For example, consider the effects of age and the wife at-
tending college on labor force participation. The effects of both variables
can be plotted by holding all other variables at their means and allow-
ing age and college status to vary. To do this, let x, contain the mean
of all variables, except let WC = 0 and allow AGE to vary. x, is defined
similarly for WC = 1. Then

Pt(LFP = 1|AGE, WC = 0) = ®(x,B)

is the predicted probability of being in the labor force for women of a
given age who did not attend college and who are average on all other
characteristics. Pr(LFP = 1| AGE, WC = 1) can be computed similarly.
These probabilities are plotted in Figure 3.10. As suggested by Table 3.4,
the relationship between age and the probability of being employed is
approximately linear. This allows a very simple interpretation:

e Attending college increases the probability of being employed by about .18
for women of all ages, holding all other variables at their means. «

e For each additional 10 years of age, the probability of being employed de-
creases by about .13, holding all other variables at their means.

1.00
T

'|B— Attended College
©-- Did Not Attend College

Pr(In Labor Force)
0.00 0.25 0.50 0.75

Figure 3.10. Probability of Labor Force Participation by Age and Wife’s Educa-
tion
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Figure 3.11. Probability of Labor Force Participation by Age and Family Income
for Women Without Some College Education

The effect of age was computed by subtracting the predicted probability
at age 30 ( = .85) from that at age 60 ( = .46) and dividing by 3 (for three
periods of ten years). It would also be appropriate to use the marginal
effect computed at the mean, which is discussed in Section 3.7.4.

The relationship between age and the probability of working was
nearly linear and the plot was superfluous. In other cases, plotting is
very useful. Consider the effects of income and age. While we could
hold: all other variables at their means and draw a three-dimensional
plot, it is often more informative to divide one of the variables into
groups and plot the results in two dimensions. Figure 3.11 shows the
probability of employment as income changes for women aged 30, 40,
50, and 60. The nonlinearities are apparent, with the effect of income
decreasing with age. When relationships are nonlinear, plots are often
useful for uncovering relationships, even if they are not used to present
the findings.

Tables of Predicted Probabilities at Selected Values

You can also use tables to present predicted probabilities. For exam-
ple, the effects of young children and the wife’s education on the proba-
bility of employment are shown in Table 3.5. The strong, nonlinear effect
of having young children is clearly evident. It also shows that the effect
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TABLE 3.5 Probability of Employment by College Attendence and the Number
of Young Children for the Probit Model

Predicted Probability
Number of
Young Children Did Not Attend Attended College Difference
0 0.61 0.78 0.17
1 0.27 0.45 0.18
2 0.07 0.16 0.09
3 0.01 0.03 0.02

of attending college decreases as the number of children increases. (The
difference in the probability for those attending and not attending college

increases and then decreases. Draw the probability curves that produce this

result.)

(Apother strategy for presenting probabilities is to define combinations

of characteristics that correspond to ideal types in the population. JFor

example, in his study of factors that affected the retention of workers

by their employer after training programs, Gunderson (1974) defined

five “hypothetical trainees” based on combinations of the independent,
variables: typical, disadvantaged, advantaged, housewife, and teenage en-

trant. Predicted probabilities of being retained were computed for each

hypothetical person. In some situations, this can quickly and convincingly

summarize the effects of key variables.

3.7.3. The Partial Change in y*

Measures of partial change can also be used to summarize the effects
of each independent variable on the probability of an event occurring.
Recall that the logit and probit models are linear in the latent variable:

y=xB+e

Taking the partial derivative with respect to x,,

—— =B

ox &

Since the model is linear in y*, the partial derivative can be interpreted
as:

"% For a unit change in x,, y* is expected to change by B, units, holding all
other variables constant.
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"The problem with this interpretation is that the variance of y* is un-
known, so the meaning of a change of 8, in y* is unclear. This issue
was discussed by Winship and Mare (1984, p. 517) and McKelvey and
Zavoina (1975, pp. 114-116) regarding the ordinal regression model,
but their concerns apply equally to the BRM. Since the variance of y*
changes when new variables are added to the model, the magnitudes
of all B’s will change even if the added variable is uncorrelated with
the original variablaéis makes it misleading to compare coefficients
from different specifications of the independent vanables)(Why is this
not a problem with the LRM?) To compare coefficients across equations,
McKelvey and Zavoina proposed fully standardized coefficients, while
~ Winship and Mare suggested y*-standardized coefficients.

If o, is the unconditional standard deviation of y*, then the y*-

standardized coefficient for x, is

oy =B

Oy
which can be interpreted as:

® For a unit increase in x,, y* is expected to increase by ,ny " standard devi-
ations, holding all other variables constant.

y*-standardized coefficients indicate the effect of an independent vari-
able in its original unit of measurement. This is sometimes preferable for
substantive reasons and is necessary for binary independent variables.

Fully standardized coefficients also standardize the independent vari-
able. If o}, is the standard deviation of x,, then the fully standardized
coefficient for x; is

T,
Bf = ;fk = f’kﬁiy.

which can be interpreted as:

e For a standard deviation increase in x,, y* is expected to increase by B3
standard deviations, holding all other variables constant.

To compute ,ﬁf" and Efk, we need estimates of B8, o}, and gy.. The
standard deviations of the x’s can be computed directly from the ob-
served data. Since y* = x8 + ¢, and x and & are uncorrelated, 032,. can
be estimated by the quadratic form:

Var(y*) = B'Var(x)B + Var(e)
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TABLE 3.6 Standardized and Unstandardized Probit Coefficients for Labor
Force Participation

Variable B g B z

K5 —0.875 ~0.759 -0.398 -1.70
K618 ~0.039 -0.033 —0.044 -0.95
AGE -0.038 —0.033 —0.265 -4.97
wcC 0.488 0.424 0.191 3.60
HC 0.057 0.050 0.024 0.46
LWG 0.366 0317 0.186 417
INC —0.021 -0.018 ~0.207 —4.30
Var(y*) 1.328

NOTE: N = 753, B is an unstandardized coefficient 8%" is a y*-standardized coefficient; §° is a fully
standardized coefficient. z is the z-test.

1V’Eff(x)‘is the covariance matrix for the x’s computed from the observed
data; B contains ML estimates; and Var(e) = 1 in the probit model and
Var(e) = 7%/3 in the logit model.

If you accept the notion that it is meaningful to discuss the latent
propensity to work, the fully standardized and y*-standardized coeffi-
cients in Table 3.6 can be interpreted just as their counterparts for the
LRM.? For example,

¢ Each additional young child decreases the mother’s propensity to enter the
labor market by .76 standard deviations, holding all other variables constant.

¢ A standard deviation increase in age decreases a woman’s propensity to
enter the labor market by .27 standard deviations, holding all other variables
constant.
H-—"H—M—f—_———"“_\
3.7.4. The Partial Change in Pr(y = 1|x)

The B’s can also be used to compute the partial change in the proba-
bility of an event. Let

Pr(y =1|x) = F(xB) [3.13]

where F is either the cdf @ for the normal distribution or the cdf A
for the logistic distribution. The corresponding pdf is indicated as f.
The partial change in the probability, also called the marginal effect, is

*If you try to reproduce the standardized coefficients in Table 3.6 using the descriptive
statistics from Table 3.1, your answers will only match to the first decimal digit due to

rounding.
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computed by taking the partial derivative of Equation 3.13 with respect
to x k:‘
dPr(y=1|x) _JF(xB) _ dF(xB) ixp

9%y, By e g, I [3.14]

For the probit model,

dPr(y =1]x) _
—:?xk— = ¢(xB)B,
and for the logit model,
Pr(y=1|x) _ _ exp(xB)
TR epaer
= Pr(y =1|x)[1 - Pr(y = 1|x)]B;
(Prove the last equality.)

marginal effect is the slope of the probability curve relating x;
to Pr(y = 1|x), holding all other variables constant./The sign of the
marginal effect is determined by By, since f(xB) is always positive. The
magnitude of the change depends on the magnitude of 8, and the value
of xB. This is shown in Figure 3.12, where the solid line graphs Pr(y =
1|x) and the dashed line graphs the marginal effect. The marginal is
largest at x = x,, which corresponds to Pr(y = 1|x) = .5. The marginal
is symmetric around x,, reflecting the symmetry of f. Therefore,

Py =1lx=2x) _Pry=1|zx=1)
ax dx ’

Ge magnitude of the marginal effect depends on the values of the
other variables and their coefficients, since f is computed at xB. Conse-
quently, the marginal depends on the B’s for all variables and the levels
of all x’s. /To understand how the value of the marginal effect of x; de-
pends on the level of other variables, consider Figure 3.9 which plots
the probability surface for variables x and z. Pick a point (x, z), which

*We use the chain rule:
o (g(x)) _ of(g(x)) dg(x)

ax dg(x) ox

and the derivative:

dF(x)
o f(x)
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. Pr(y=1Ix)=F(xg)
=== 3Pr(y=1Ix)/3x

0.00 0.25 0.50 0.75 1.00

Figure 3.12. Marginal Effect in the Binary Response Model

corresponds to the intersection of lines within the figure. The partial
dPr(y = 1]|x, z)/dx is the slope of the line parallel to the x-axis at the,
point (x, z); dPr(y = 1|x, z)/dz is the slope of the line parallel to the z
axis at the point (x, z). For example, at (—4, —8), the slope with respect
to x is nearly 0. As z increases, the slope with respect to x increases
steadily. At (—4, 0), where Pr(y = 1|, z) is about .5, the slope is near
its maximum. As z continues to increase, the slope gradually decreases.
Hanushek and Jackson (1977, p. 189) show this relationship by taking
the second derivative:

#*Pr(y =1|x)
6x;,6x¢
= BB Pr(y = 1[x)[1 - Pr(y = 1|x)][1 - 2Pr(y = 1|x)]

The B’s can also be used to assess the relative magnitudes of the
marginal effect for two variables. From Equation 3.14, the ratio of
marginal effects for x; and x, is

dPr(y=1[x)
x,__ _fGB)B _ By
Pr(y=1]x) ~ f(xB)B, B

ox /]

Thus, while the B’s are only identified up to a scale factor, their ratio
is identified and can be used to compare the effects of independent
variables.
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/ Since the value of the marginal effect depends on the levels of all
variables, we must decide on which values of the variables to use when
computing the effect. One method is to compute the average over all
observations:

aPr(y=1]x) 1 &
\ mean o = § L BBy

Another method is to compute the marginal effect at the mean of the
independent variables: .
S+ ,_\‘} g 9

———=f(ZB)B £ x
ax; " a‘{ Q‘pqn !}-

The marginal effect at the mean is a popular summary measure for models
with categorical dependent variables. It is frequently included in tables
presenting results, and is automatically computed by programs such as
LIMDEP. However, the measure is limited. First, given the nonlinearity
of the model, it is difficult to translate the marginal effect into the change
in the predicted probability that will occur if there is a discrete change
in x;. Second, since X might not correspond to any observed values in
the population, averaging over observations might be preferred. Finally,
the measure is inappropriate for binary independent variables. For these
reasons, I much prefer the measures of discrete change that are discussed
in Section 3.7.5.

Table 3.7 contains marginal effects for our example of labor force
participation. Several things should be noted. First, the marginal effects
averaged over all observations are close to the marginals computed when
all variables are held at their means. They are close since the predicted
probability overall is approximately .5 in the sample. In general, these

TABLE 3.7 Marginal Effecis on the Probability of
Being Employed for the Probit Model

Variable Average At Mean
K5 -0.300 -0.342
K618 —~0.013 -0.015
AGE —0.013 -0.015
wcC 0.167 0.191
HC 0.020 0.022
LWG 0.125 0.143
INC -0.007 —0.008
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two measures of change can be quite different. Second, the marginal
effect at the mean for AGE approximates the slope of the lines in Figure
3.10. If an independent variable varies over a region of the probability
curve that is nearly linear, the marginal effect can be used to summarize
the effect of a unit change in the variable on the probability of an event.
However, if the range of an independent variable corresponds to a region
of the probability curve that is nonlinear, the marginal cannot be used
to assess the overall effect of the variable.

3.7.5. Discrete Change in Pr(y =1|x)

G‘he change in the predicted probabilities for a discrete change in an
independent variable is an alternative to the marginal effect that I find
more effective for interpreting the BRM (as well as other models for
categorical outcomes).)Let Pr(y = 1|x, x;) be the probability of an event
given x, noting, in particular, the value of x,. Thus, Pr(y = 1|x, x; + &)
is the probability with x; increased by 8, while the other variables are
unchanged. The discrete change in the probability for a change of 8 in
x; equals !

APr(y=1]x)
Axy

The discrete change can be interpreted as:

b
=Pr(y=1|%,x,+8) - Pr(y =1|x, x;)

//T‘ For a change in the variable x, from x to x, + 8, the predicted probabil-

ity of an event changes by APr(y = 1|x)/Ax;, holding all other variables

“——Constant.
/ When interpreting the results of the BRM, it is essential to understand

that the partial change does not equal the discrete change:

aPr(y=1|x) # APr(y=1]|x)
axy Axy

.

except in the limit as & becomes infinitely small (which is, by definition,
the partial change). The difference between these two measures is shown
in Figure 3.13 which plots a segment of the probability curve. dﬂg par-
tial change is the tangent at x,, and its value corresponds to the solid
triangle.Yor simplicity, assume that § = 1.@6_ discrete change mea-
sure§The change in the probability computed at x, and x, -+ T)This is
represented by a triangle formed of dashed lines. The discrete and par-
tial changes are not equal since the rate of changem the curve changes
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Pr(y=1)

- i ¢ xq4+1
X
Figare 3.13. Partial Change Versus Discrete Change in Nonlinear Models

/ as x; changes. While the measures are not equal, if the change in x; oc-

curs over a region of the probability curve that is roughly linear, the two
measures will be close.)This is the case for the example in Figure 3.10.
The amount of discrete change in the probability for a change in x,
depends on: (1) the amount of change in x,; ég the starting value of
xi; and (3) the values of all other variables. example, if we have
independent variables x, and x,, the change in Pr(y = 1|x) when x,

changes from 1 to 2 does not necessarily equal the change when x goes '

from 2 t@(Why would they be equal if Pr(y = 1|x) = .5?) Moreover,
the change in Pr(y = 1|x) when x; changes from 1 to 2 with x, = 1
does not necessarily equal the change when x; = 2. Thus, the practical
problem is choosing which values of the variables to consider and how
much to let them change.

Choosing Values of the Independent Variables

Since the change in the probability for a given change in x; depends on

e levels of all independent variables, we must decide at which values of
the x’s to compute the discrete change. A common approach is to assess
the probability for an “average” member of the sample. For example,
we could hold all values at their means. If the independent variables are
highly skewed, assessing change relative to the mean may be misleading
and changes relative to the median would be more useful.

Binary Outcomes 77

Dummy variables require special consideration. If x, is a dummy vari-
able, X, is the proportion of the sample with x, = 1. The predicted
probability at X, is between the predicted probability at x; = 1 and
x4 = 0. Alternatively, you could compute the predicted probability for
each combination of the dummy variables, with the other variables held
at their means. In our labor force example, this would require four base
probabilities: husband and wife attending college; only the husband at-
tending; only the wife attending; and neither attending. Alternatively,
dummy variables could be held at the modal value for each variabie.

If there is a combination of the independent variables that is of par-
ticular substantive interest, those values could be used as a baseline, For
example, if you were interested in the effects of education on labor force
participation for young women without children, you could hold AGE at

" 30, K5 at 0, K618 at 0, and all other variables at their mcm@me

following examples, 1 hold all variables at their méans:

Amounts of Change in the Independent Variables

Discrete change can be computed for any amount of change in an
independent variable, holding all other variables at some fixed value. The
amount of change that you allow for an independent variable~depends
on the type of variable and your purpose. Here are some useful options.

A Unit Change in x;. If x; increases from X, to X + 1,

A;Pr—(%“—”-ﬂ =Pr(y=1|%,%, +1)-Pr(y=1|X,X;)

Xk

By examining the probability curves (see Figure 3.8), it is clear that a
unit increase in x, from its mean will only have the same effect as a
unit decrease in x; from its mean when Pr(y = 1|X) = .5. This implies
that if you have two variables such that 8, = —B,, the effect of a unit
increase in x; will not equal the effect of a unit decrease in x,. For
these reasons, Kaufman (1996) suggested examining a unit increase that
is centered around X;. That is,

A_P‘(i_x?lﬁ).=h(y=lli,ft+%)—PI'(J’=”1§&“%)

The centered discrete change can be interpreted as:

e A unit change in x; that is centered around ¥, results in a change of
APr(y = 1|X)/Ax; in the predicted probability, holding all other variables
at their means.
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A Standard Deviation Change in x,. This idea can be extended to ex-
amine the effect of a standard deviation change:

APr(y=1|%) _ o S I
Ay _Pr(y-_llx,xk-}—-i)-—Pr(y_llx,xk—7)
where 5, is the standard deviation of x;.

A Change From 0 to 1 for Dummy Variables. When computing a dis-
crete change in probability, you must make certain that the change in
the variable does not result in values that exceed the variable’s range.
For example, if x; is a dummy variable, either X, + 1/2 will exceed 1 or

. X — 1/2 will be negative (unless X, = 1/2). Consequently, a preferred
measure of discrete change for dummy variables is

APr(y =1|%)
Ax,

/’.["hxs is the change as x; goes from 0 to 1, holding all other variables at
their means.

=Pr(y=1|X, x; =1)-Pr(y=1|%, x, =0)

N

Other Choices. The idea of discrete change can be extended in many
ways depending on the application. If a change of a specific amount is
substantively important, such as the addition of four years of schooling,
changes other than 1 or.s; can be used.

Example of Discrete Change: Labor Force Participation

Table 3.8 contains measures of discrete change for the probit model
of women’s labor force participation. Some of the effects can be inter-

TABLE 3.8 Discrete Change in the Probability of Employment for the Probit

Model
Centered Unit Centered Standard Change From
Variable Change Deviation Change 0w 1
Ks -0.33 —0.18 —
Ke18 -0.02 -0.02 —_
AGE -0.01 -0.12 —
wC - — 0.18
HC - — 0.02
LWG 0.14 0.08 —
INC -0.01 —0.09 —

NOTE: Changes are computed with other variables held at their means.
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preted as:

» For a woman who is average on all characteristics, an additional young child
decreases the probability of employment by .33.

* A standard deviation change in age centered around the mean will decrease
the probability of working by .12, holding all other variables constant.

¢ If a woman attends college, her probability of being in the labor force is
.18 greater than a woman who does not attend college, holding all other
variables at their means.

Notice that the discrete change from 0 to 1 for WC and HC is nearly
identical to the effect of a unit change. This is a consequence of the near
linearity of the probability curve over the range of these variables, and
will not necessarily be true in other examples.

3.8. Interpretation Using Odds Ratios

Our final method of interpretation takes advantage of the tractabler
form of the logit model. A simple transformation of the B’s in the logit
model indicates the factor change in the odds of an event otcurring.
There is no corresponding transformation of the parameters of the probit

model.
From Equation 3.6, the logit model can be written as the log-linear

model:
In ((x) = xp [3.15]

where
Pr(y=1|x) Pr(y =1|x)
Ox) = =
(x) Pr(y=0(x) 1-Pr(y=1|x)
is the odds of the event given x. In ()(x) is the log of the odds, known as
the logit. Equation 3.15 shows that the logit model is linear in the logit.
Consequently,

[3.16)

InQ(x) _
o - By

Since the model is linear, B, can be interpreted as:

¢ For a unit change in x;, we expect the logit to change by 8,, holding all
other variables constant.
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This interpretation is simple since the effect of a unit change in x, on
the logit does not depend on the level of x, or on the level of any
other variable. Unfortunately, most of us do not have an intuitive un-
derstanding of what a change in the logit means. This requires another
transformation.

Taking the exponential of Equation 3.15,

)(x) = exp(xpB)
= exp(Bo + B1x) + - + Brxy + -+ + Bxxk)
= exp(Bo) exp(B1x1) - - - exp(Bixy) - - - exp(Bxxg ) = UX, x;.}

~ The last equality introduces notation that makes explicit the value of
x;. To assess the effect of x;, we want to see how {} changes when x,
changes by some quantity 8. Most often, we consider § =1 or 6 = s5,. If
we change x,; by 8, the odds become

Qx, x; + 8)
= exp(Bo) exp(Byx;) - - - exp(Bi(x + 8)) - - -exp(Bgxk)
= exp(Bp) exp(Byx;) - - - exp(Brxi ) exp(fBrd) - - - exp(Bgx)

To compare the odds before and after adding & to x,, we take the odds -

ratio:
O(x, x; + 8)
 Q(x, xp)

_ exp(Bo) exp(Byx;) - - - exp(Byxx ) exp(B8) - - - exp(Bgxx)
exp(Bo) exp(Byx;) - - exp(Bxy) - - - exp(Bgxx)

= exp(By6)

Therefore, the parameters can be interpreted in terms of odds ratios:

s For a change of & in x,, the odds are expected to change by a factor of
exp(f; x 8), holding all other variables constant.

For 8 = 1, we have:

s Factor change. For a unit change in x;, the odds are expected to change by
a factor of exp(8, ), holding all other variables constant.

If exp(By) is greater than 1, you could say that the odds are “exp(g,)
times larger.” If exp(,) is less than 1, you could say that the odds are
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“exp(By) times smaller.” For § = s,, we have:

o Standardized factor change. For a standard deviation change in x;, the odds
are expected to change by a factor of exp(8, xs, ), holding all other variables
constant.

Notice that the effect of a change in x, does not depend on the level of
x; or on the level of any other variable.
We can also compute the percentage change in the odds:

Q(x, Xy + 5) = Q(X, x;,)
(x, x;)

This quantity can be interpreted as the percentage change in the odds
for a & unit change in x,, holding all other variables constant.

The factor change and standardized factor change coefficients for the
Jogit model analyzing labor force participation are presented in Table
3.9. Here is how some of the coefficients can be interpreted using factor
and percentage changes:

100 = 100[exp(B; x ) — 1]

e For each additional young child, the odds of being employed are decreased
by a factor of .23, holding all other variables constant. Or, equivalently,
for each additional young child, the odds of working are decreased 77%,
holding all other variables constant.

e For a standard deviation increase in anticipated wages, the odds of being
employed are 1.43 times greater, holding all other variables constant. Or,
for a standard deviation increase in anticipated wages, the odds of working
are 43% greater, holding all other variables constant.

e Being 10 years older decreases the odds by a factor of .52 ( = e~®¥x10),
holding all other variables constant.

TABLE 3.9 Factor Change Coefficients for Labor Force Participation for the

Logit Model
Logit Factor Standard Factor
Variable Coefficient Change Change z-value
Constant 3.182 - — 4,94
K5 ~1.463 0.232 0.465 ~1.43
K618 -0.065 0.937 0918 ~{0.95
AGE -0.063 0.939 0.602 —4.92
WCOL 0.807 2242 — 3351
HCOL 0.112 1.118 — (.54
WAGE 0.605 1.831 1.427 4,01
INC —0.034 0.966 0.670 -4.20
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The odds ratio is a multiplicative coefficient, which means that “pos-
itive” effects are greater than 1, while “negative” effects are between
0 and 1. Magnitudes of positive and negative effects should be compared
by taking the inverse of the negative effect (or vice versa). For example, a
positive factor change of 2 has the same magnitude as a negative factor
change of .5 = 1/2. Thus, a coefficient of .1 = 1/10 indicates a strongér
effect than a coefficient of 2. Another consequence of the multiplicative
scale is that to determine the effect on the odds of the event not occur-
ring, you simply take the inverse of the effect on the odds of the event
occurring. For example,

e Being 10 years older makes the odds of not being in the labor force 1.9
(= 1/.52) times greater, holding all other variables constant.

@hen interpreting the odds ratio, it is essential to keep the follow-
ing in mind: A constant factor change in the odds does not correspond to
a constant change or constant factor change in the probability.yThis can
be seen in Table 3.10. While the odds are being changed %y a constant
factor of 2, the probabilities do not change by a constant factor or a
constant amount. When the odds are very small, the factor change in
the probability is approximately equal to the factor change in the odds.
When the odds are large, the probability remains essentially unchanged.
Consequently, when interpreting a factor change in the odds, it is essen-
tial to know what the current level of the odds is. This can be done using

the methods in Section 3.7.2 to compute the predicted probability, and

then computing the odds according to Equation 3.16.

TABLE 3.10 Factor Change of Two in the Odds With the Corresponding Factor

Change and Change in the Probability

Original Changed Factor Change
Change
Odds Probability Odds  Probability Odds Probability in Probability
1/1060 0.001 2/1000 0.002 2.000 1.998 0.001
1/100 0.010 2/100 0.020 2.000 1.980 0.010
1/10 0.091 2/10 0.167 2.000 1.833 0.076
12 0333 22 0.500 2.000 1.500 0.167
1 0.500 1 0.667 2.000 1333 0.167
n 0.667 a1 0.800 2.000 1.200 0.133
10/1 0.909 2011 0.952 2.000 1.048 0.043
160/1 0.990 2001 0.995 2.000 1.005 0.005
1000/1 0.999 200071 0.999 2.000 1.000 0.000
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3.9. Conclusions

The choice between the logit and probit models is largely one of con-
venience and convention, since the substantive results are generally indis-
tinguishable.{Chambers and Cox (1967) show that extremely large sam-
ples are necessary to distinguish whether observations were generated
from the logit or the probit modﬁl‘he availability of software is no
longer an issue in choosing which model to use. Often the choice is a
matter of convention. Some research areas tend to use logit, while oth-
ers favor probit. For some users, the simple interpretation of logit coef-
ficients as odds ratios is the deciding factor, In other cases, the need to
generalize a model may be an issuef For example, multiple-equation sys-
tems involving qualitative dependent variables are based on the probit
model, as discussed in Chapter 9.)Or, if an analysis also includes equa-
tions with a nominal dependent variable, the logit model may be pre-
ferred since the probit model for nominal dependent variables is com-
putationally too demanding. Or, in case-control studies where sampling
is stratified by the binary outcome, the logit model is required (see Hos-
mer & Lemeshow, 1989, C'hapter 6, for details).

Many of the ideas presented in this chapter are used to develop and’
interpret models for ordinal and nominal variables in Chaptegs 5 and
6. First, however, Chapter 4 considers hypothesis testing, methods for
detecting outliers and influential observations, and measures of fit.

3.10. Bibliographic Notes

The very early history of these models begins in the 1860s and is dis-
cussed by Finney (1971, pp. 38-41). The more recent history of the probit
model involves attempts to model the effects of toxins on insects. Work
by Gaddum (1933) and Bliss (1934) was codified in Finney’s influential
Probit Analysis (1971), whose first edition appeared in 1947. The logit
model was championed by Berkson (1944, 1951) in the 1940s as an alter-
native to the probit model. Cox’s (1970) The Analysis of Binary Data was
highly influential in the acceptance of the logit model. Applications of
the logit and probit models appeared in economics in the 1950s (Cramer,
1991, p. 41). Goldberger’s (1964, pp. 248-251) Econometric Theory was
important in establishing these models as standard tools in economics,
while Hanushek and Jackson’s (1977) Statistical Methods for Social Sci-
entists was important in disseminating these models to areas outside of
€conomics.
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McCullagh and Nelder (1989, Chapter 4) develop the logit and pro-
bit models, along with several alternatives, within the framework of the
generalized linear model. Pudney (1989, Chapter 3) derives these mod-
els from behavioral assumptions associated with utility maximization.
Agresti (1990, Chapter 4) presents both models with special attention
to the links between logit analysis and log-linear models for categoricai
data. While the interpretation of the results of these models has often
been neglected, each of the methods of interpretation considered in this
chapter can be found in one form or another in earlier work. Recent
treatments that focus on interpretation include Hanushek and Jackson
(19717, pp. 187-207), King (1989a, pp. 97-117), Liao (1994), Long (1987),
and Petersen (1985). ‘

For a more advanced discussion of numerical methods, see Judge et
al. (1985, pp. 951-979) and Greene (1993, pp. 343-357). For details on
estimates of the covariance matrix, see Cramer (1986, pp. 27-29), Greene
(1993, pp. 115-116), and Davidson and MacKinnon (1993, pp. 263-267).




