
Binary Outcomes: The Linear Probability, 
Probit, and Logit Models 

Binary dependent variables are extremely common in the social sciences. 
Maddala and Trost (1982) studied the decisions by a bank to accept 
loan applications. Domencich and McFadden (1975) analyzed factors af­
fecting the use of public versus private transportation for commuting. 
Aldrich and Cnudde (1975) considered the decision to vote for McGov­
ern in the 1972 presidential election; Allen (1991) examined contribu­
tions by the corporate elite to the Democratic Party; while Ragsdale 
(1984) studied the president's decision to make a discretionary speech 
to the nation. Other outcomes include whether fraud was committed by 
a savings and loan institution (1illman & PanteU, 1995); if a trainee de­
cided to remain with the sponsoring employer (Gunderson, 1974); and 
whether a student collaborated with bis or her mentor during graduate 
study (Long, 1990). Even a cursory glance at recent journals in the social 
sciences turns up dozens of additional examples, ranging from having in­
tercourse before marriage, dropping out of high school, joining a union, 
to enlisting in the military. 

In this chapter, I present four models for the analysis of binary out­
comes: the linear probability model (1PM), the binary probit model, the 
binary Jogit model, and, briefly, the complementary Jog-log model~ 
LPM is the linear regression model applied to a binary dependent vari-
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ab~ile I do not recommend the LPM, the model illustrates the 
problems resulting from a binary dependent variable, and motivates our 
discussion of the logit and probit models. The probit and logit models 
are developed first in terms of the regression of a latent variable. The la­
tent variable is related to the observed, binary variable in a simple way: 
if the latent variable 1· s eater than some value, the observed variable 
is l; otherwise it is 0. i model is linear in the latent variable, but re­
sults in a nonlinear, S-s aped model relating the independent variables 
to the probability that an event has occurred. Given the great similarity 
between the logit and probit models, I refer to them jointly as the bi­
nary response model, abbreviated as B@nie BRM is also developed 
as a nonlinear probability model. Within this context, the complemen­
tary log-Jog model is introduced as an asymmetric alternative to the logit 
and probit models. 

3.1. The Linear Probability Model 

The linear probability model is the regression model applied to a binary ' 
dependent variable. The structural model is · 

'-

Yi =X;P+ei 

where x1 is a vector of values for the ith observation, p is a vector of 
parameters, and e is the error term. y = 1 when some event occurs, 
and y = 0 if the event does not occur. For example, y = 1 if a woman 
is in the paid labor force, and y = 0 if she is not. If we have a single 
independent variable, the model can be written as 

Y1 =a+ ~x1 + e1 

which is plotted in Figure 3.1. The conditional expectation of y given x, 
E(y Ix)= a+ ~x, is shown as a solid line. Observations are plotted as 
circles at y = 0 and y = 1. 

To understand the 1PM, we must consider the meaning of E(y Ix). 
When y is a binary random variable, the unconditional expectation of y 
is the probability that the event occurs: 

E(yi) = [1 x Pr(y; = 1)) +[Ox Pr(yi = 0)) = Pr(y; = 1) 

-For the regression model, we are taking conditional expectations: 

. [!_(y, I x,) = [I x Pr(y, = I j x,)) + [G x Pr(y, = 0 j •,)) = Pr(y, = :j 
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Figure 3.1. Linear Probability Model for a Single Independent Variable 

Therefore, the expected value of y given x is the probability that y = 1 
given x. This allows us to rewrite the LPM as 

Pr(y1 = 11 x1) = x1P 

Having a binary outcome does not affect the interpretation of the 
parameters that was presented in Chapter 2: for a unit increase in xk, the 
expected change in the probability of an event occurring is {3k, holding 
aU other variables constant. Since the model is linear, a unit change 
in xk always results in the same change in the probability. That is, the 
model is linear in the probability, and hence the name linear probability 
model. 

EJ«Jmple of the LPM: Labor Force Participation 

Many authors have presented models in which the dependent variable 
is whether a married woman was in the paid labor force. For example, 
Gunderson (1974) compares the use of logit, probit, and LPM mod­
els. Nakamura and Nakamura (1981, pp. 464-468) use a probit model 
to compare labor force participation in the United States and Canada. 
While Mroz (1987) focuses on models for a woman's hours of paid la­
bor, he uses a probit model to correct for sample selection bias. Berndt 
(1991, pp. 618-619) reviews the rese.arch in this area. 
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TABLE 3.1 Descriptive Statistics for the Labor Force Participation Example 

Standard 
Name Mean Deviation Minimum Maximum DescripJion 

LFP 0.5.7 050 0.00 1.00 1 if wife is in the paid labor force; else 0 
K5 024 052 0.00 3.00 Number of children ages 5 and younger 
K618 1.35 132 0.00 8.00 Number of children ages 6 to 18 
AGE 42.54 8.07 30.00 fl0.00 Wife's age in years 
WC 0.28 0.45 0.00 1.00 1 if wife attended college; else 0 
HC 0.39 0.49 0.00 1.00 1 if husband attended college; else 0 
LWG 1.10 059 -2.05 3.22 Log of wife's estimated wage rate 
INC 20.13 11.63 -0.03 96.00 Family income excluding wife's wages 

NOTE: N "' 753. 

Our analysis is based .on data extracted by Mroz (1987) from the 1976 
Panel Study of Income Dynamics.1 The sample consists of 753 white, 
married women between the ages of 30 and 60. The dependent variable 
LFP is 1 if a woman is employed and is O otherwise. The independent 
variables, which are similar to those used by Nakamura and Nakamura 
(1981), Mroz (1987), and Berndt (1991), are listed in Tobie 3.1. Our mea- , 
sures of educational attainment are dummy variables indicating whether 
the husband or wife spent at least one year in college, rather dian the 
more commonly used measures of the number of years of education. 
This was done to illustrate the interpretation -of dummy independent 
variables. 

The model being estimated is 

with estimates presented in Tobie 3.2. Interpretation is straightforward. 
For example: 

• Unstandardized coefficients for continuous varwb/es. For every additional 
child under 6, the predicted probability of a woman being employed de­
creases by .30, holding all other variables constant. 

• x-standardized coefficients for continuous variables. For a standard deviation 
increase in family income, the predicted probability of being employed de­
creases by .08, holding all other variables constant. 

• Unstandardized coefficients for dummy variables. H the wife attended college, 
the predicted probability of being in the labor force increases by .16, holding 
all other variables constant. 

1 These data were generously made available by Thomas Mroz. 
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TABLE 3.2 Linear Probability Model of Labor Force 
Participation 

Variable /3 13s, 

Constant 1.144 9.00 
K5 -0.295 -0.154 -8.21 
K618 -0.011 -0.115 -0.80 
AGE -0:013 -0.103 -5.02 
we 0.164 3.57 
HC 0.019 0.45 
LWG 0.123 0.072 4.07 
JNC -0.007 -0.079 -4.30 

NOTE: N = 753. fj is an unstandardized coefficient; fj5• is an z. 
standardi2ed coefficient; I is a 1-test of fj. 

There are several things to note about these interpretations. First, the 
effect of a variable is the same regardless of the values of the other 
variables. Second, the effect of a unit change for a variable is the same 
regardless of the current value of that variable. For example, if a woman 
has four young children compared to no young children, her predicted 
probability of employment decreases by 1.18 (= 4 x -.295), which is 
obviously unrealistic. This problem is considered in the next section. Fi­
na1Iy, fully standardized and y-standardized coefficients are inappropri­
ate given the binary outcome, and x-standardized coefficients are inap­
propriate for binary independent variables. 

3.1.1. Problems With the LPM 

While the interpretation of the parameters is unaffected by having 
a binary outcome, several assumptions of the LRM are necessarily 

/

·olated. 

Heteroscedasticity. If a binary random variable bas mean µ,, then its 
variance is µ,(l - µ,). (Prove this.) Since the expected value of y given 
x is ~. the conditional variance of y depends on x according to the 
equation: 

........... 
Var(y Ix) = Pr(y = 11 x)(l - Pr(y = 11 x)] = xP(l - xp) 

which implies that the variance of the errors depends on the x's and is 
not constant. (Plot the Var(y Ix) as xp ranges from -.2 to 1.2.) Since the 
LPM is heteroscedastic, the OLS estimator of 13 is inefficient and the 
standard errors are biased, resulting in incorrect test statistics. 

A 
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Goldberger (1964, pp. 248-250) suggested that the LPM could be cor­
rected for heteroscedasticity with a two-step estimator. In the first step, 
y is estimated by OLS. In the s~d step, the model is estimated with 
generalized least squares using Var{e) = y(l - y) to correct for het­
eroscedasticity. While this approach increases the efficiency of the esti­
mates, it does not correct for other problems with the LPM. Further, for 
y < 0 or y > 1, the estimated variance is negative and ad hoc adjust­
ments are required. 

Normality. Consider a specific value of x, say x.. In Figure 3.1, 
E(y Ix.) is represented by a diamond on the regression line. e is the 
distance from E(y I x) to the observed value. Since y can only have the 
values O and 1, which are indicated by the open circles, the error must 
equal either e1 = 1 - E(y Ix.) or e0 = 0 - E(y Ix.). Oearly, the errors 
cannot be normally distributed. Recall that nonnality is not required for 
the OLS estimates to be unbiased. 

[]f[iJT1sensica/ Predictio~ The LPM predicts values of y that are neg­
ative or greater than l~iven our interpretation of E(y Ix) as Pr(y = 
11 x), this leads to nonsensical predictions for the probabilities. For ex-' 
ample, using the means in Tobie 3.1 and the LPM estimates.jn Tobie 
3.2, we find that a 35-year-old woman with four young children, who did 
not attend college nor did her husband, and who is average on other 
variables, h~.:.a predicted probability of being employed of -.48. (Jteri_6, 
this result.) ~bile unreasonable predictions are sometimes used to dis­
miss the LPM, such predications at extreme values of the independent 
variables are also common in regressions with continuous outcomeQ \ 

CFif,nctional Form. Since the model is linear, a unit increase in xk re­
sults in a constant change of flk in the probability of an event, holding 
all other variables constant. The increase is the same reg~ess of the 
current value of x. In many applications, this is unrealistic. or exam­
ple, with the LPM each additional young child decreases t e probability 
of being employed by .295, which implies that a woman with four young 
children has a probability that is 1.18 less than that of a woman without 
young children, all other variables being held constant More realistically, 
each additional child would have a diminishing effect on the probabil­
ity. While the first child might decrease the probability by .3, the second 
child might only decrease the probability an additional .2, and so on. 
That is to say, the model should be nonlinear. In general, when the out­
come is a probability, it is often substantively reasonable that the effects 
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of independent variables will Jiaxe diminishing returns as the predicted 
probability approaches O or ll.I!,i ~ opinion, the most serious problem 
with the LPM is its functional fo~ 

The binary response model has an S-shaped relationship between the 
independent variables and the probability of an event, which addresses 
the problem with the functional form in the LPM. In the following sec­
tion I develop this model in terms of a latent dependent variable. Section 
3.4 shows how the logit and probit models can also be thought of as non­
linear probability models without appealing to a latent variable. And, in 
Chapter 6, the models are derjved as discrete choice models in which an 
individual chooses the option that maximizes her utility. 

3.2. A Latent Variable Model for Binary Variables 

/As with the LPM, we have an observed binary variable y. Suppose 
that there is an unobserved or latent variable y• ranging from -oo to oo 
that generates the observed y's. Those who have larger values of y* are 
observed as y = 1, while those with smaller values of y• are observed as 

.J=O. 
Since the notion of a latent variable is central to this approach to 

deriving the BRM, it is important to understand what is meant by a latent 
variable. Consider a woman's labor force participation as the observed 
y. The variable y can only be observed in two states: a woman is in the 
labor force, or she is not. However, not all women in the labor force 
are there with the same certainty. One woman might be very close to 
the decision of leaving the labor force, while another woman could be 

~ery firm in her decision. In both cases, we observe the same y = 1. 
_ The idea of a latent y• is that there is an underlying propensity to work 

that generates the observed state. While we cannot directly observe y•, 
at some point a change in y• results in a cha~ in what we observe, 
namely, whether a woman is in the labor f~ For example, as the 
number of young children in the family increases, it is reasonable that 
a woman's propensity to be in the labor force (as opposed to working 
at home) would decrease. At some point, the propensity would cross a 
threshold that would re.sult in a decision to leave the labor force. 
~ all binary outcomes be viewed as manifestations of a latent vari­
able? Some researchers argue that invoking a latent variable is usually 
inappropriate, others believe that an underlying latent variable is pe.r.::__ 
fectly reasonable in all cases, while most seem to take a middle groune,...-/ 
Regardless of your assessment of the use of a latent variable, it is im-
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portant to realize thathhe derivation and application of the BRM is not 
dependent on your acceptance of the notion of a latent variab§)Section 
3.4 shows that the same BRM can be derived as a nonlinear 'probability 
model, without invoking the idea of a latent variable. 

The latent y• is assumed to be linearly related to the observed x's 
through the structural model: 

{j_;=x;~+e) 
The latent variable y• is linked to the observed binary variable y by the 
measurement equation: 

C {1 ifyj >-r 
Yi = 0 ifyj~-r (3.1) 

where -r is the threshold or cutpoint. If y• ~ -r, then y = O. If y• crosses 
the threshold -r (i.e., y* > -r), then y = 1. For now, we assume that -r = 0. 
Section 5.2 (p. 122) discusses this identifying assumption in detail. 

The link between the latent y• and the observed y is illustrated in 
Figure 3.2 for the model y• = a + {Jx + e. In this figure, y* is on the 
vertical axis, with the threshold -r indicated by a horizontal dasheq line. 
The distribution of y• is shown by the bell-shaped curves which should 
be thought of as coming out of the figure into a third dimension. When 
y• is larger than -r, indicated by the shaded region, we observe y = 1. 

E(y*lx) 

* >- y=1 
T=O -------

y=O 

()( 

x, 
X 

Figure 3.2. The Distribution of y* Given x in the Binary Response Model 
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For example, at x 1 about 25% of the y's equal 1, at x2 nearly 90% are 
rs, and at x3 nearly all cases are l's. 
/ Since y* is continuous, the model avoids the problems encountered 

( 

with the LPM. However, since .the dependent variable is unobsei:ved, .the 
model cannot be estimated wtth OLS. Instead, we use ML estunatton, 
which requires assumptions about the distribution of the errors. Most 
often, the choice is between normal errors which result in the probit 
model, and logistic errors which result in the logi,t model. As with the 

"---LRM, we assume that E( e Ix) = 0. 

(j 
Since y• is unobserved, we cannot estimate the variance of the er­

ors as we did with the LRM. In the probit model, we assume that 
Var(elx) = 1 and in the logit model that Var(elx) = 7r2/3 ~ 3.29. 
(The symbol"~" means "is approximately equal to.") The specific value 
assumed for the variance is arbitrary in the sense that it cannot be dis-

' 

confirmed by the data. We choose a value that results in the simplest 
formula for the distnbution of e. 

The logistic and normal distributions are used so frequently for models 
with CLDVs that it is worth examining these distributions in detail. The 
probability density functions and cumulative distribution functions for 
the normal and logistic distributions are shown in Figure 3.3. The normal 
distnbution is drawn with a solid line. When e is normal with E( e Ix) = 0 
and Var(e Ix)= 1, the p<if is 

cf,(e) = _1 exp(- e2) 
~ 2 

and the cumulative distribution function (hereafter, cdf) is 

cl>( e) = f_~ ~ exp( -i) dt 

The cdf indicates the probability that a random variable is less than or 
equal to a given value. For example, IJ>(0) = Pr(e !': 0) = .5. (Find this 

_JJ;Oint in panel B of Figure 3.3.) 
C In the logit model, the errors are assumed to have a standiJrd logistic 

distribution with mean O and variance 1r2 / 3. This unusual variance is 
chosen because it results in a particularly simple equation for the pdf: 

exp(e) 
A(e)--- ----,-~ 

- [1 + exp(e)J2 

and an even simpler equation for the cdf: 

- 1 + exp(e) 
[ 

A(e) - exp(e) 
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Panel A: pdfs tor logistic and normal distributions 
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Figure 3.3. Normal and Logistic Distributions 

'· 

These distributions are drawn with long dot-dashes in Figure 3.3. The 
standard logistic pdf is flatter than the normal distribution since it has a 
larger variance. 

If we rescale the logistic distribution to have a unit variance, known 
as the standardized (not standard) logistic distribution, the logistic and 
normal cdrs are nearly identical, as shown in panel B of Figure 3.3. 
However, the pdf and cdf for the standardized logistic distribution with 
a unit variance are more complicated: 

As(e) - -yexp(-ye) and As(e) - exp(-ye) 
- [l + exp(-ye)]2 - l+exp(-ye) 

[3.2] 

where 'Y = 1r/./3. Because of the simpler equations for the standard 
(not standardized) logistic distribution, it is generally used for deriving 
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Figure 3.4. Probability of Observed Values in the Binary Response Model 

the logit model. The consequences of assuming different variances for 
the probit and logit models are considered in Section 3.3. 

By assuming a specific fonn for the distribution of e, it is possible to 
compute the probability of y = l for a given x. To see this, consider 
Figure 3.4, where e is distributed either logistically or normally around 
E(y• Ix) = a+ fjx. Values of y = 1 are observed for the shaded portion 
of the error distnbution above r. Even if E(y• Ix) is in the shaded region 
where y = 1 ( e.g., at x2), it is possible to observe a O if e is large and 
negative. The negative error moves y'" into the unshaded region of the 
curve. 

Figure 3.5 illustrates the translation of these ideas into a formula for 
computing Pr(y = 11 x). Panel A takes the error distribution from Figure 

Panel A: Original Axis Panel B: Shift the Axis Panel C: Flip the Axis 

>. ..... 
'iii 
C ., 
0 

0 M/J 
y• 

- M/J 0 

y•- xp=e 
0 M{J 

- e=xp-y• 

Figure 3.S. Computing Pr(y = 11 x) in the Binary Response Model 
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3.4 and places it on its side. Since y = 1 when y* > 0, 

Pr(y = 1 I x) = Pr(y• > 0 Ix) 

Substituting y'" = xp + e, it follows that 

Pr(y = 1 Ix) = Pr(xp + e > 0 Ix) 

45--

Subtracting xp from each side of the inequality corresponds to shifting 
the x-axis as shown in panel B. Then 

Pr(y = 1 Ix)= Pr(e > -xP lx) 

Since cdf's express the probability of a variable being less than some 
value, we must change the direction of the inequality. The normal and 
logistic distnbutions are symmetric, which means that the shaded area 
of the distribution greater than -xp in panel B equals the shaded area 
ICM than xp in panel C. Consequently, 

G(y = 1 Ix)= Pr(e ~ xP Ix) 

This is simply the cdf of the error distribution evaluated at xp . .,,Ac.cord­
ingly, 

Pr(y = 1 Ix)= F(xP) [3.3] 

where F is the normal cdf 4> for the probit model and the logistic cdf A 
for the logit model. The· probability of observing an event given x is the 
cumulative density evaluated at ~. 

To understand the functional form of the resulting model, consider the 
BRM for a single independent variable: 

Pr(y = 1 I x) = F( a + {3x) [3.4) 

As x increases by one unit, the argument of F increases by {3 units. 
Plotting Equation 3.4 corresponds to plotting the cdf of either the normal 
or the logistic distribution as its argument increases. This is shown in 
Figure 3.6. Panel A illustrates the error distribution for nine values of x. 
The region of the distribution where y* > r corresponds to Pr(y = 11 x) 
and has been shaded. Panel B plots Pr(y = 1 I x ). At Xi, only a small 
portion of the tail of the curve crosses the threshold in panel A, resulting 
in a small va1ue of Pr(y = 11 x) in panel B. As we move to x2, the 
error distribution shifts up slightly. (This shift is exactly {3(x2 - x 1 ) . Why? 
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Figure 3.6. Plot of y• and Pr(y = 11 ll) in the Binary Response Model 

What is the amount of the change in the probability?) Since only a small 
portion of the thin tail moves over the threshold, Pr(y = 1 I x) increases 
only slightly as shown in panel B. As we continue to move to the right, 
from x2 to x3 to x4, thicker regions of the error distribution slide over 
the threshold and the increase in Pr(y = 1 Ix) becomes larger. After 
x4, increasingly thinner sections of the distribution cross the threshold 
and the value of Pr(y = 11 x) increases increasingly more slowly as it 
approaches 1. The resulting curve is the well-known S-curve associated 
with the BRM. 
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Before considering the interpretation of the parameters and how they 
are related to the predicted probability of an event, we must consider 
the issue of identification. 

3.3. Identification 

Un specifying the BRM, we made three identifying assumptions: (1) 
the threshold is 0: -r = 0; (2) the conditional mean of e is 0: E( e I :x) = 
0; and (3) the conditional variance of e is a constant: Var( e~= 1 
in the probit model and Var( e I :x) = 1r

2 / 3 in the Jogit model. ese 
assumptions are arbitrary in the sense that they cannot be tes ed. but 
they are necessary to identify the model. Identification is an issue that is 
essential for understanding models with latent variables. Since a latent 
variable is unobserved, its mean and _variance cannot be estimated. For 
example, in the covariance structure model, commonly referred to as 
the LISREL model, the variance of a latent variable is unidentified. 
Assumptions are required to fix the variance to a constant or to link 
the latent variable to an observed variable (Bollen, 1989, pp. 238-246; 
Long, 1983, pp. 49-52). In the BRM, the model is not identified until ' 
we impose assumptions that determine the mean and variance Q[ y*. 

To see the relationship between the variance of the dependent variable 
and the identification of the {J's in a regression model, consider the 
model y = xP, + e1 , where y is observed. Construct a new dependent 
variable w = oy, where o is any nonzero constant. The variance of w 
equals: 

Var(w) = Var(oy) = o2 Var(y) 

For example, if o = 1/ ./Var(y), then Var(w) = 1. Since w = oy and 
y = xP, + e1 , it follows that 

w = o(xP, + e,) = x(oP,).+ oe, 

Therefore, the f3' s in a regression of won x are o times the {J's in the 
regression of y on x. That is, 

[3.5J 

Since the magnitude of the slope depends on the scale of the dependent 
variable, if we do not know the variance of the dependent variable, then 
the slope coefficients are not identified. 

To apply this result to the BRM and to understand the relationship 
between the magnitudes of the logit compared to the probit coefficients, 
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we need to distinguish between the structural models for logit and probit. 
Let 

yi, = xPl + el and yj, = :xpp + ep 

where L indicates the logit model and P the probit model. Since yi, 
and yj, are latent, it is impossible to determine their variances from the 
observed data, and, consequently, ~L and PP are unidentified. For both 
models, the variance of y• is determined by assuming the variance of 
e . Since Var{eL Ix) = (w2/3)Var(ep Ix) (Jniy?), it follows that el ~ 
( w / ./3)ep. The errors are not identical since the logistic and normal 
distributions with unit variance are only approximately equal (see Figure 

· 3.3). From Equation 3.5, 

PL ~ Jvar(eL l:x)PP ~ Jw2/3Pp ~ 1.81Pp 

where ,,/ii2i3 ~ 1.81. This transformation can be used to compare coef­
ficients from a published logit analysis to comparable coefficients from 
a probit analysis and vice versa. 

The approximation Ill ~ 1.8 Jlp is based on equating the variances of 
the logistic and normal distributions. Amemiya (1981) suggested making 
the cdf's of the logistic and normal distributions as close as possible, not 
just malting their variances equal. He proposed that the cdf's were most 
similar when eL ~ 1.6ep, which led to his approximation: JlL ~ 1.6 Jlp , 
My own ca1culations indicate that the cdf's are closest when eL ~ l.7ep, 
which, conveniently, corresponds to the results in the example I now 
present. 

Example of Logit and Probit: Labor Force Participation 

Even though we have not considered estimation, it is useful to examine 
the logit and probit estimates from our model of labor force participa­
tion. The model is 

Pr(LFP = 1) = F(/30 + {31K.5 + f32K6J8 + /33AGE 

+ /34 WC+ /3sHC + /3~WG + /37/NC) 

Estimates are given in Tobie 3.3. The first thing to notice is that the log 
likelihood and z-tests are nearly identical. This reflects the basic simi­
larity, except for scaling, in the structure of the logit and probit models, 
and the fact that these statistics are unaffected by the assumed variance 
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TABLE 3.3 Logit and Probit Analyses of Labor Force Participation 

Legit Probil Ratio 

Variable fJ z fJ z fJ z 

Constant 3.182 4.94 1.918 5.04 1.66 0.98 
K5 -1.463 -7.43 -0.875 -7.70 1.67 0.96 
K618 -0.065 -0.95 -0.039 -0.95 1.67 1.00 
.AGE -0.063 -4.92 -0.038 -4.97 1.66 0.99 
WC 0.807 3.51 0.488 3.60 1.65 0.97 
HC 0.112 0.54 0.057 0.46 1.95 1.18 
LWG 0.605 4.01 0.366 4.17 1.65 0.96 
INC - 0.034 -4.20 -0.021 -4.30 1.68 0.98 

-2lnL 905.27 905.39 1.00 

NOTE: N = 153. fJ is an unstandardized coefficient: z is the z-1.cst for p. "Rallo" is the ratio of a logir 
to a probit coefficient. 

of the error. The effects of the identifying assumptions about Var( e) are 
seen ~y ta~ng the ratio of the logit c~~ts to the probit coefficients, 
contamed m the column labeled "Ratio. The logit coefficients are about 
1.7 times larger than the corresponding probit coefficients, with the ex-' 
ception of the coefficient for HC which is the least statistically sienificant 
parameter. Clearly, interpretation of the f3's must take the effe_~~he 
identifying assumptions into account. This issue is now conside.:::J 

3.3.1. The Identification of Probabilities 

~ce the /3's are unidentified without assumptions about the mean and 
vanance of e, the f3's are arbitraxy in this sense: if we change the iden­
tifying assumption regarding Var( e Ix), the f3's also change. Accordingly, 
the {J's cannot be interpreted directly since they reflect both: (1) the relation­
ship between the x 's and Y; and (2) the identifying assumptions. While the 
identifying assumptions affect the /J's, they do not affect Pr(y = 11 x). 
More technically, Pr(y = 11 x) is an estimable function. An estimable 
function is a function of the parameters that is invariant to the identify­
ing assumptions (Searle, 1971, pp. 180-18~ 

Consider the logit model where 

(~ro~e ~e las~ equa"!J,) The right-hand side is the cdf for the logistic 
distnbut1on with vanance u2 = w2 /3. We can standardize e to have a 
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unit variance by dividing the structural mo(lel by u : 

Y~ x-P e­
.-!.. = -'- + .2 
u u u 

e/u has a standardized logistic distribution with cdf (see Equation 3.2): 

( 1T BJ) As(B;) = exp ~fu 
(T ( 1T 8·) l+exp _ _2 

../3 O' 

Since u = 1r I ../3, 

As(e') = exp(e;) = A(e;) 
u 1 + exp(e;) 

Consequently, the probability of an event is unaffected by the identifying 
assumption regarding Var( e I x ). While the specific value assumed for 
Var(e j x) is arbitrary and affects the /3's, it does not affect the quan­
tity that is of fundamental interest, namely, the probability that an event 
o~ ed. The same result holds for the probit model. 

The critical point is that while the ffs are affected by the arbitrary 
sc e assumed for e, the probabilities are not affected. Consequently, 
the probabi1ities can be interpreted without concern about the arbitrary 
assumption that is made to identify the model. That is to say, the proba­
bilities ar~ estimable functions:)Further~ any function of t~e probab~l!t~es 
is also estimable. lmportanlly,"'we can mterpret changes m probabibtles 
and odds, which are ratios of probabilities. This is done in Section 3.7, 
but first we consider an alternative method of deriving the logit and pro­
bit models. 

3.4. A Nonlinear Probability Model 

G°J BRM can also be derived without appealing to an underlying 
latent variable. This is done by specifying a nonlinear model relating 
the x's to the probability of an event'f'or example, Aldrich and Nelson 
(1984, pp. 31-32) derive the logit mooe'J by starting with the problem that 
the LPM can predict values of Pr(y = 1 Ix) that are greater than 1 or 
less than 0. To eliminate this problem, they transform Pr(y = 11 x) into a 
function that ranges from -oo to oo. First, the probability is transformed 
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into the odds: 

Pr(y = 1 Ix)_ Pr(y = 1 Ix) 
Pr(y = Olx) - 1-Pr(y = 1 Ix) 
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The odds indicate how often something ( e.g., y = 1) happens relative 
to how often it does not happen (e.g., y = 0), and range from O when 
Pr(y = 1 Ix) = 0 to oo when Pr(y = 1 Ix) = 1. The Jog of the odds, 
known as the logit, ranges from -oo to oo. This suggests a model that is 
linear in the logit: 

I [ 
Pr(y = 1 Ix) ] a. n ----- -x., 

1- Pr(y=l lx) -
[3.6] 

This is equivalent to the Jogit model derived above (Show thi.s.): 

Pr(y-1 Ix)- exp(xP) [3.7] 
- - 1 + exp(xP) 

Other probability models can be constructed by choosing functions of 
xP that range from Oto 1. Cumulative distribution functions have this 
property and readily provide a number of examples. The cdf for the , 
standard normal distribution results in the probit model: , 

Pr(y = 1 Ix)= Jstl ~ exp(-~) dt = <l>(xp) 
-oo -v21T 2 

{[:Another example is the complementary log-log model (Agresti, 1990, 
pp. 104-107; McCullagh & Nelder, 1989, p . 108), defined by 

· In(-ln[l - Pr(y = 1 I x)l) = xP 

or, equivalently, 

Pr(y = 1 Ix)= 1 - exp[- exp(xP)] 

..{;;nlike the l~it and pro~it models, _the compl~mentary log-log mo~el 
· · is asymmetri.£:.Jln the logit and prob1t models, if you are at that pomt 

on the probability curve where Pr(y = 11 x) = .5, increasing x by a 
given amount 6 changes the probability by the same amount as if x is 
decreased by 6. This is not the case for the complementary log-log model 
as shown in Figure 3.7. As x increases, the probability increases slowly 
at the left until it reaches about .2; the change from .8 toward 1 occurs 
much more rapidly. The log-log model, which is defined as f (y = I I•) = exp[- exp( -x~)l 
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Figure 3.7. Complementary Log-Log and Log-Log Models 

has the opposite pattern. These models can be estimated with GLIM, 
Stata. and SAS, and have links to the proportional hazards model ( see 
Allison, 1995, pp. 216-217, or Petersen, 1995, p. 499, for details). 

3.5. ML Estimation2 

To specify the likelihood equation, define p as the probability of ob­
serving whatever value of y was actually observed for a given observation: 

:.... { Pr(y, = 11 x1) if Y; = l is observed 
Pi - 1- Pr(Y1 = 11 x;) if Y; = 0 is observed [3.BJ 

Pr(y1 = 1 Ix;) is defined by Equation 3.3. If the observations arc inde-
pendent, the likelihood ~tion is N 

LL(Ply,X)= )J~ [3.9] 

2 When there is more than one observation for each combination of values of independent 
variables, Berkson's minimum chi·square estimation can be used. Since the requirement 
of many observations per cell is rarely satisfied in social science research, I do not consider 
this method. See Hanushek and Jackson (1977, pp. 190-200) or Maddala (1983, pp. 28-
34). 
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Combining Equations 3.8 and 3.9, 

L(P IY, X) = n Pr(y, = 1 Ix,) TT[l - Pr(y, = 11 x1)] 
,Y=l y=O 

where the index for multiplication indicates that the product is taken 
over only those cases where y = l and y = 0, respectively. 

The P's are incorporated into the likelihood equation by substituting 
the right-hand side of Equation 3.3: 

L(P I y, X) = TT F(x1P) TI[l - F(x;P)) 
y=l y=O 

t. g logs, we obtain the log likelihood equation: 

lnL(P IY, X) = EinF(x1P) + Eln[l -F(x;fl)J 
,Y=l y-0 

Amemiya (1985, pp. 273-274) proves that under conditions that are likely 
· apply in practice, the likelihood function is globally concave which en­

es the uniqueness of the ML estimates. These estimates are consis­
t, asymptotically normal, and asymptotically efficient. 

3.5.1. Maximum Likelihood and Sample Size , 

(igr ML estimation, the desirable properties of consistency, normal­
ity, and efficieP.cy are asymptotic. This means that these properties have 
been proven to hold as the sample size approaches °bo:)While ML esti­
mators are not necessarily bad estimators in small samf51es, indeed OLS 
for the linear regression model is an ML estimator that works quite 
well in small-samples~ small-sample behavior of ML estimators for 
the models in this book is largely unkno©ince alternative estimators 
with known small sample properties are generally not available for the 
models we consider, the practical question is: When is the sample large 
enough to use the ML estimates and the resulting significance tests? While 
I am reluctant to give advice without firm evidence to justify the advice, 
it seems necessary to add a cautionary note since it is easy to get the 
impression that ML estimation works well with any sample size(For ex­
ample, the 32 observations from a study by Spector and Mazzeo(l.980) 
are used frequently to illustrate the logit and probit models, yet 32 is too 
small of a sample to justify the use of ~The following guidelines are 
not hard and fast. They are based on my experience of when the models 
seem to produce reasonable and robust results and my discussions with 
other researchers who use these methods. 

, 
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Gt is risky to use ML with samples smaller than 100, while samples 
over 500 _se~m adequate1rhese values s~ld be raised depending on 
characten~hcs of the"'lrlodel and the data~t, if there are a lot of pa­
rameters m the model, more observations are nee~n the literature 
on the covariance structure ll)QQ_el, the rule of at least five observations 
per parameter is often given.<,AJule of at least 10 o~ations per pa­
rameter seems reasonable for the models in this book. · s rule does 
not imply that a min~um of 100 is not needed if ou have only two 
par~eters. ~cond, if _the data are ill conditioned ( e.g., independent 
vanables are highly collinear) or if there is little variation in the depen­
dent _variable_ (e.g., nearly all of the outcomes are 1), a larger sample. is 
requir~d. some models seem to require more observations. The 

· ordi~gression model of Chapter 5 is an example. In discussing the 
~ _of ML for small samples, Allison (1995, p. 80) makes a useful point. 
~bile the standard a?vice is tha_t with small samples you should accept 

larger p-valu_es as eVIdence agamst the null hypothesis, given that the 
~egree to wh~c~ ML estimates are normally distributed in small samples 
IS un~~· 1t 1s more reasonable to require smaller p-values in small 
samp~ 

3.6. Numerical Methods for ML Estimation 

ar the LRM, ML estimates are obtained by setting the gradient of 
the log _likelih~od to O and solving for the parameters usin~l ebra. 
Algebraic solutions are rarely possible with nonlinear mode s se­
quently, numerical methods are used to find the estimates that aximize 
the log likelihood funct~merical methods start with a guess of the 
values of the parameters and iterate to improve on that ~ile 
you. may be t~mpted to dismiss numerical methods as an esoteric topic 
of little practical concern, programs using numerical methods for esti­
mation can produce incorrect estimates or fail to provide any estimates. 
To re~gnize and C01:fect such problems, an elementary understanding of 
numencal methods ts useful. I begin with an introduction to numerical 
methods, followed by practical advice on using these methods. 

3.6.l . Iterative Solutions 

Cssume that we are trying to estimate the vector of parameters 8. We 
begin with an initial guess 80, called start values, and attempt to improve 
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on this guess by adding a vector to of adjustme~;;J 

81 = 8o + to 
We proceed by updating the previous iteration according to the equation: 

8n+l = 9n + t,. 
Iterations continue_ until there is c_onv~,genc~ughly, converge~ce oc­
curs when the gradient of the log likelihood ~~~e to O or the estimates 
do not change from onl'-ste to the next. Convergence must occur to ob­
tain the ML estimator 8. 

The problem is to a ~ that moves the process rapidly toward 
a solution. It is useful to think of tn as consisting of two parts: t,. = 
D

11 
y,. . 'Y,. is the gradient vector defined as a In L / a9m which indicates 

the direction of the change in the log likelihood for a change in the 
paran:ieters. D,. is a direction matrix that reflects the curvature of the 
Jog likelihood function; that is, it indicates how rapidly the gradient is 
changing. A clearer understanding of these components is gained by 
examining the simplest methods of maximization. 

The Method of Steepest Ascent. The method of steepest ascent lets 
D=I: "-

alnL 
9n+1 =8,. + ~ 

n 

An estimate increases if the gradient is positive, and it decreases if the 
gradient is negative. Iterations stop when the derivative becomes nearly 
0. The problem with this approach is that it considers the slope of In L, 
but not how quickly the slope is changing. To see why this is a problem, 
consider two log likelihood functions with the same gradient at a given 
point but with one function changing shape more quickly than the other. 
(Sketch these functions.) You should move more gradually for the func­
tion that is changing quickly, in order to avoid moving too far. Steepest 
descent tends to work poorly since it treats both functions in the same 
way. 

The next three commonly used methods address this problem by 
adding a direction matrix that assesses how quickly the log likelihood 
function is changing. They differ in their choice of a direction matrix. 
In all cases, it takes longer to compute the direction matrix than the 
identity matrix used with the method of steepest ascent. Usually, the 
additional computational costs are made up for by the fewer iterations 
that are required to reach convergence. 
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No one method works best all of the time. An algorithm applied to 
one set of data may not converge, while another algorithm applied to 
the _same data m~nverge rapidly. ~or a differ~nt set of data, the op­
posite may occur~eneral, the algonthm used m commercial software 
depends on the preferences of the programmer a~~e ease with which 
an algorithm can be programmed for a given mo~ 

The Newton-Raphson Method. The rate of change in the slope of In L 
is indicated by the second derivatives, which are contained in the Hessian 
matrix a2 In L / aeae'. For example, with two parameters 8 = ( a /3)', the 
Hessian is · 

a2InL = (~a~! ~~::) 
a&a&' . a2 In L a2 In L -- --

iJf3iJa apap 

If a2 In LI aaaa is large relative to a2 Jn L / a13a13, the gradient is changing 
more rapidly as a changes than as f3 changes. Thus, smaJJer a djustments 
to the estimate of a would be indicated. The Newtoo-Raphson algorithm 
proceeds according to the equation: 

9 =8 -(iJ2lnL)-1alnL 
n+ I n iJ& a9' iJ8 

n n n 

(Why are we taldng the inverse of the Hessian?) 

The Method of Scoring. In some cases, the expectation of the Hessian, 
known as the information matrix, can be easier to compute than the Hes­
sian. The method of scoring uses the information matrix as the direction 
matrix, which results in 

( [
a2JnL])-1 a1nL 

9n+I = 8n + E iJ9niJ8~ aen 

The BHHH Method. When the Hessian and the information matrix 
are difficult to compute, Berndt et al. (1974) propose using an outer 
product of the gradient approximation to the information matrix: 

t alnL; aJnL;' 

i=I iJ9n iJ9,. 
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where In L ; is the value of the likelihood function evaluated for the ith 
observation. This approximation is often simpler to compute since only 
the gradient needs to be evaluated. Iterations proceed according to 

9 _ 8 ( .~ alnL; alnL;')-
1 alnL 

n+I - n + L.., 
i=l ae,, ae,, aen 

which is known as the BHHH (pronounced "B-triple-H") algorithm or 
the modified method of scoring. 

Numerical Derivatives. If you cannot obtain an algebraic solution for 
the gradient or the Hessian, numerical methods can be used to estimate 
them. For example, consider a log likelihood based on a single parameter 
8. The gradient is approximated by computing the slope of the change in 
In L v,:hen 8 changes by a small amount. If A is a small number relative 
to 8, 

alnL lnL(fJ+ A)- lnL(8) -- ~ -----'-------'-------'---'-

a8 A 

Using numerical estimates can greatly increase the time and number of 
iterations needed, and results can be sensitive to the choice of A. Further, 
different start values can result in different estimates of the Hessian at 
convergence, which translates into different estimates of the standard 
errors. Programs that use numerical methods for .computing derivatives 
should only be used if no alternatives are available. When they must be 
used, you should experiment with different starting values to make sure 
that the estimates that you obtain are stable. 

3.6.2. The Variance or the ML Estimator 

In addition to estimating the parameters 8, numeri~l methods provide 
estimates of the asymptotic covariance matrix Var(8), which are . used 
for the statistical tests in Chapter 4. The theory of maximum likelihood 
shows that if the assumptions justifying ML estimation hold, then the 
asymptotic covariance matrix equals 

Var(8) = (-E[ ~~;..~ ])-1 

[3.10] 

In words, the asymptotic covariance equals the inverse of the negative 
of the expected value of the Hessian, known as the information matrix. 
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The covariance matrix is often written in an equivalent form using the 
outer product of the gradient: 

Var(9) = ( E[ a: L a:L'])-l [3.11] 

In both cases, the expression is evaluated at 9. Since we only have an 
estimate of 9, the covariance matrix must be estimated. Three consistent 
estimators of Var(8) are commonly used. -

The first estimator evaluates Equation 3.10 using the ML estimates 9: 

Var1(8) = -( E[ ~~:, ])-
1 

This estimator is generally used with the method of scoring since that 
method requires evaluating the information matrix at each iteration. 

A second estimator is obtained by evaluating the negative of the Hes­
sian, sometimes referred to as the observed information matrix, rather 
than the information matrix itself: 

- - (~ a2JnL;)-i Vari(&)= - L..,--=-=;-
i=l aoao 

[3.12) 

¼r2{8) is generally used with the Newton-Raphson algorithm. Equa­
tion 3.12 shows the relationship between the curvature of the likelihood 
function and the variance of the estimator. The size of the variance is 
inversely related to the second derivative: the smaller the second deriva­
tive, the larger the variance. When the second derivative is smaller, the 
likelihood function is flatter. If the likelihood equation is very flat, the 
variance will be large. This should match your intuition that the flatter 
the likelihood function, the harder it will be to find the maximum of the 
function, and the Jess confidence (i.e., the more variance) you should 
have in the solution you obtain. 

A third estimator, which is related to the BHHH algorithm, is simple 
to compute since it does not require evaluation of the second derivatives: 

- (-) - (~ ainL; alnL1) -
1 

Var3 9 - L.., ~ ~ 
i= I ao aO' 

While these estimators of the covariance matrix are asymptotically 
equivalent, in practice they sometimes provide very different estimates, 
especially when the sample is small or the data are ill conditioned. Con­
sequently, if you estimate the same model with the same data using two 
programs that use different estimators, you can get different results. 
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3.6.3. Problems With Numerical Methods and Possible Solutions 

@1e numerical methods generally work well, there can be probl~ms. 
First it may be difficult or impossible to reach convergence. You might 
get a~ error such as "Convergence not obtau_ied after 250 it~rations." Or, 
it might not be possible to invert the Hessian when In L tS nearly flif) 
This generates a message such as "Singularity encountered," "Hessian 
could not be inverted," or "Hessian was not of full rank." The message 
might refer to the covariance matrix or the informa_tion_ matr~. Secon~, 
sometimes convergence occurs, but the wrong solut10n is obtai~ed. '!'his 
occurs when In L has more than one location where. the gradient tS 0. 

rfhe iterative process might locate a saddle point or l~l maxirn~m, 
~here the gradient is also 0, rather than the global maxun~Thmk 

of a two-humped Bactrian camel. The top of the smaller hump 1s a lo­
cal maximum· the low spot between the two humps is a saddle point.) 
In such cases: the covariance matrix which should be posi~e definite 
is negative definite. ~en In L is globally concave, there 1s only one 
solution and that is a maximum. This is the case for most of the mod­
els considered in this boo,l)However, even when the log lik~lihood is 
globally concave, it is possible to have false co_n~ergence. Thi~ ~ oc­
cur when the function is very flat and the prec1s10n of the estunates of 
the gradient is insufficient. This is common when numerical gra~ients 
are used and can also be caused by problems with scaling ( discussed be­
low). Finally, in some cases, ML estimates do not exist for a particular 
pattern of data@r example, with a binary outco~e ~nd a sin~le binat?' 
independent variable, ML estimates are not possible if there JS no van­
ation in the independent variable for one of the outcom~ can try 
estimating a probit model using: y' = (0 0 1 1 1) and x :-(16 1 1 O). 
This works fine, since there are x's equal to O and 1 for both y = 1 and 
y = O. However, now try to estimate the model for: y' = (0 0 11) and 
x = (1 O 1 1). Your program will "crash" since whenever y = 1, all x's 
are l's.:J . 

When you cannot get a solution or appe~r to ~et ~e wrong solut10n, 
. the first thing to check is that the software JS est11~1atmg ~~ model that 

you want to estimate. It is easy to make an error m specifying the com­
mands to estimate your model. If the model and commands are correct, 
there may be problems with the data. 

" /~correct varwbles. Most simply, you may have constructed a variable incor­
rectly. Be sure to check the descriptive statistia; for all variables. My 
experience suggests that most problems with numerical methods are 
due to data that have not been "cleaned." 
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/ Number of observations. Convergence generally occurs more rapidly when 
there are more observations, and when the ratio of the number of ol>­
s~rvations to the number of variables is larger. While there is generally 
bttle you can do about sample size, it can explain why you are having 
problems getting your models to converge. 

' 

Scaling of variables. Scaling is a very common cause of problems with numeri­
cal methods. The larger the ratio between the largest standard deviation 
and the smallest standard deviation, the more problems you will have 
with numerical methods. For example, if you have income measured 
in dollars, it may have a very large standard deviation relative to other 
Vilfiables. R~ing. income to thousands of dollars, may solve the prob­
lem. My expenence suggests that problems are much more likely when 
the ratio between the largest and smallest standard deviation exceeds 
10. 

Distribution of the outcome. If a large proportion of cases are censored in the 
tobit model or if one of the categories of a categorical variable has very 
few cases, convergence may be difficult. There is little that can be done 
with such data limitations. 

~umerical methods for ML estimation tend to work well when your 
model is appropriate for your data. In such cases, convergence gener­
ally occurs quite rapidly, often within five iterations. If you have too few 
cases, too many variables, or a poor model, convergence may be a prob­
lem. In such cases, rescaling your data can solve the problem. If that 
does not work, you can try using a program that uses a different numer­
ical algorithm. A problem th~ay be very difficult for one algorithm 
may work quite well for another. 

While numerical methods erally work well, I heartily endorse 
Cramer's (1986, p. 10) advice: "Check the data, check their transfer into 
the computer, check the actual computations (preferably by repeating 
at least a sample by a rival program), and always remain suspicious of 
the results, regardless of the appeal." 

3.6.4. Software Issues 

There are several issues related to software for logit and probit that 
should be considered. 

6 Method of Numerical Maximization. Different programs use dif­
ferent methods of numerical maximization. In most cases, estimates of 
the parameters from the different programs are identical to at least four 
decimal dig9timates of the standard errors and the z-values may 
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differ at the first decimal digit as a result of the different methods used 
to estimate Var(p). 

Parameterizations of the Model. A more basic difference is found in the 
outcome being modeled. While most programs model the probability of 
a 1, some programs (e.g., SAS) model the probability of a 0. This is a 
trivial difference if you are aware of what the program is doing. For the 
BRM, 

Pr(yi = 0 I xi)= 1 - Pr(y; = 11 x;) = 1 - F(X:P) = F(-X:P) 

where the last equality follows from the symmetry of the pdf for the logit 
and probit models. Thus, all coefficients will have the opposite sign. Note 
that this will not be the case for the complementary log-log model since 
it is asymmetric. 

With estimates in hand, we can consider the interpretation of the bi­
nary response model. 

3.7. Interpretation 
' 

In this section, I present four methods of interpretation, each of which 
is generalized to other models in later chapters-@'st show how to 
present predicted probabilities using graphs and table cond, I exam-
ine the partial change in y* and in the probabili d, I use discrete 
change in the pr_obability to s°:°1111~ the effects of each variab~ 
nally, for the logit model, I denve a Sllllple transformation of the param­
eters that indicates the effect of a variable on the odds that the event 
occurre°4) 

Since the BRM is nonlinear, no single approach to interpretation can 
fu~ describe the relationship between a variable and the outcome prob­
ability. You should search for an elegant and concise way to summarize 
the results that does justice to the complexities of the nonlinear model. 
For any given application, you may need to try each method before a fi­
nal approach is determined. For example, you might have to construct a 
plot of the predicted probabilities before realizing that a single measure 
of discrete change is sufficient to summarize the effect of a variable. I il­
lustrate these methods with the data on the labor force participation of 
women. You should be able to replicate many of the results using Tubles 
3.1 and 3.3, although your answers may differ slightly due to rounding 
error. 
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I begin by showing how the intercept and the slope affect the curve 
relating an independent variable to the probability of an event. Under­
standing how the parameters affect the probability curves is fundamental 
to applying each method of interpretation. 

3. 7.1. The Effects of the Parameters 

C.Onsider the BRM with a single x: 

Pr(y = 1 jx) = F(a + fJx) 

(Panel A of Figure 3.8 shows the effect of the intercept on the probability 
curve. When a = 0, shown by the short dashed line. the curve passes 

· through the point (O, .5). As a gets larger, the curve shifts to the left; 
as a gets smaller, the curve shifts to the right. (Why does the cwve shift 
to the left when a increases ?;when the curve shifts, the slope at a given 
value of Pr(y = 11 x) doein'ot change. This idea of shifting, "parallel" 
curves is used to explain several of the methods presented below. It 
is also fundamental to understanding the ordinal regression model in 
Chapter 5. 
G'anel B of Figure 3.8 shows· the effects of changing the slope. Since 
a = 0, the curves go through point (0, .5). The smaller the fJ, the more 
stretched out the cur@At fJ = .25, shown by the solid line, the curve 
increases steadily as it moves from -20 to 20. When fJ increases to .5, 
shown by the long dashed line, the curve initially increases more slowly. 
As x approaches 0, the increase is more rapid. In general, as fJ increases, 
the curve increases more rapidly as x approaches 0. While I have not 
drawn the curves, when the slope is negative, the curve is rotated 180° 
around x = 0. For example, if fJ = - .25, the curve would be near 1 at 
x = -20, and would gradually decrease toward Oat x = 20. 

It is also important to understand how the probability curve general­
izes to more than one variable. Figure 3.9 plots the probit model: 

Pr(y = 1 j x, z) = 4>(1 + lx + .75z) 

Similar results apply for the logit model. The surface begins near zero 
when x = -4 and z = -8. If we fix z = - 8, then 

Pr(y = 1 j X, Z = -8) = 4>(1 + 1x + [.75 X - 8]) = 4>(-5.0 + lx) 

which is the first $ -shaped curve along the x-axis. If we increase z by 1, 
which corresponds to the next curve back along the z-axis, then 

Pr(y = 1 Ix, z = -7) = 4>{1 + 1x + (.75 x -7)) = 4>(-4.25 + lx) 
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Figure 3.8. Effects of Changing the Slope and Intercept on the Binary Response 
Model: Pr(y: 1 Ix)= F(a + {3x) 

Only the intercept has changed, which causes the curve to .shift to the 
left (see panel A of Figure 3.8). The level of z affects the mtercept of 
the curve, but does not affect the slope. Conversely, controlling for x 
affects the intercept of the curve for z, but not the slope. . 

With these ideas in mind, we can consider several methods for inter­
preting the binary response model. 
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Figure 3.9. Plot of Probit Model: Pr(y = 1 Ix, z) = 11>(1.0+ I .Ox+ 0.75z) 

3.7.2. Interpretation Using Predicted Probabilities 

~e most ~~ approach for interpretation is to examine the pre­
d1c!ed. ~obab1lit1es of an event for different values of the independent 
v~ab~ When the~e are more than two variables, it is no longer pos­
sible to plot the entire probability surface and a decision must be made 
regarding which probabilities to compute and how to present them. A 
useful first step is to examine the range of predicted probabilities within 
!~e ~le, and the degree to which each variable affects the probabil-
1t1eLlf the range of probabilities is between .2 and .8 (or, more con­
servatively, between .3 and . 7), the relationship between the x's and the 
predicted probability is nearly linear, and simple measures can be used 
to su~arize_ the resu1t0)r, if the range of the probability is small, 
the rela!1onsh1p between the x's and the probability will also be approxi­
mately linear. For example, the segment of the probability curve between 
.05 and .10 is nearly linear. These points are illustrated below. 

Detennining the Range of Probabilities 

The predicted probability of an event given x for the ith individual is 

Pr(y; = 11 X;) = F(x;(3) 

The minimum and maximum probabilities in the sample are defined as 

min Pr(y = l j x) = mµi F(x;,i) 
I 

max Pr(y = 11 x) = m~ F(x;,i) 
I 
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where min; indicates taking the minimum value over all observations, 
and similarly for max1• In our example, the predicted probabilities from 
the probit model range from .01 to .97, which indicates that the nonlin­
earities that occur below .2 and above .8 need to be taken into account. 
If the coefficients from the logit model are used, the predicted probabil­
ities range from .01 to .96. This illustrates the great similarity between 
the predictions of the logit and probit models, even for observations that 
fall in the tail of the distribution. Consequently, in the remainder of this 
section, only the results from the probit analysis are shown. 
@mputing the minimum and maximum predicted probabilities re­
quires your. ~are to save each observation's predicted probability for 
further ana~ If this is not possible, or if you are doing a meta-analysis, 
the minimum and maximum can be approximated by using the estimated 
{3's and the descriptive statisti~ lower extreme of the variables is de­
fined by setting each variable associated with a positive /3 to its minimum 
and each variable associated with a negative ~ to its maximu'iii)In our 
example, this involves taking the maximum number of youn~hildren 
(since K6 has a negative effect), the minimum anticipated wage (since 
LWG has a positive effect), and so on. Formally, Jet 

{ 

minx-,. 
.,t-- ; l ,c. 

Xk = 
m~xik 

I . 

and Jet Y be the vector whose Jeth element is l;. The upper extreme can 
be defined in a corresponding way, with the values contained in-; . The 
minimum and maximum probabilities are computed as 

Pr(y = 11 Y) = F(t°jj) and Pr(y = 117) = F("tp) 

In our example, the computed probability at the lower extreme is less 
than .01 and at the upper extreme is .99. While these values are quite 
close to the minimum and maximum predicted probabilities for the sam­
ple, Y and 7 are constructs that do not necessarily approximate any 
member of the sample. If they differ substantially from any X; in the sam­
ple, then Pr(y = 11 "t'} !_lid Pr(y = 11 "t} wi!!_ be poor approximations 
of the probabilities min Pr(y = 11 :i) and max Pr(y = 11 x). 

~ming on the Use of Minimums and Maximums. The use of the min­
imum or maximum value of a variable can be misleading if there are 
extreme values in the sample. For example, if our sample includes an 
extremely wealthy person, the change in the probability when we move 
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from the minimum to the maximum income would be unrealistically 
large. Before using the minimum and maximum, you should examine 
the frequency distnbution of each variable. If extreme values are present, 
you should consider using the 5th percentile and the 95th percentile, for 
example, rather than the minimum and maximum. 

The Effect of Each Variable on the Predicted Probability 

(Jhe next step is to determinei*he e ent to which change in a vari-
/ able affects the predicted probabili One way to do this is to allow one 

variable to vary from its miru~' um to J maximum, while all other vari­
ables are fixed at their means. Let Pr(y = 11 i, xk) be the probability 
computed when all variables cept xk are set equal to their means, and 
x k equals some specified value. For example, ]7(y = 11 i, min x .1J is the 
probability when x k equals its minimum.@ predicted change in the 
probability as x k changes from its minimum to its maximum equal,D 

Pr(y = l li,maxxk)-Pr(y = 1 ji , minxk) 

For our example, the results are given in Tobie 3.4. The range of pre­
dicted probabilities can be used to guide further analysis. For example, 
there is little to be learned ~alyzing variables whose range of prob­
abilities is small, such as HCJ....X9! variables that have a larger range, the 
end points of the range affect how interpretation should proceed. For 
example, the predicted probabilities for AGE range from .75 when age is 
30 to .32 when age is 60, which is a region where the probability curve is 
nearly tin~ range for INC, however, is from .09 to . 73, where non­
linearities are present. The implications of these differences are shown 
in the next secti~ 

TABLE 3.4 Probabilities of Labor Force Participation Over the Range of Each 
Independent Variable for the Probit Model 

Al At Raf;p of 
Variable Marimum Minimum Pr 

K.5 0.01 0.66 0.64 
~18 0.48 0.60 0.12 
.AGE 0.32 0.75 0.43 
WC 0.71 0.52 0.18 
HC 0.59 057 0.02 
LWG 0.83 0.17 0.66 
INC 0.09 0.73 0.64 
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Plotting Probabilities Over the Rtmge . of a Variable 

When there are more than two independent variables, we must exam­
ine the effects of one or two variables while the remaining variables are 
held constant. For example, consider the effects of age and the wife at­
tending college on labor force participation. The effects of both variables 
can be plotted by holding all other variables at their means and allow­
ing age and college status to vary. To do this, let :so contain the mean 
of all variables, except let WC = 0 and allow AGE to vary. x1 is defined 
similarly for WC = 1. Then 

Pr(LFP = 1 IAGE, WC= 0) = 4>(X()P) 

is the predicted probability of being in the labor force for women of a 
given age who <!,!d not attend college and who are average on all other 
characteristics. Pr(LFP = 11 AGE, WC= 1) can be computed similarly. 
These probabilities are plotted in Figure 3.10. As suggested by Tobie 3.4, 
the relationship between age and the probability of being employed is 
approximately linear. This allows a very simple interpretation: 

(

• Attending college increases the probability of being employed by ,about .18 
for women of all ages, holding all other variables at their means. , 

• For each additional 10 years of age, the probability of being employed de­
creases by about .13, holding all other variables at their means. 

0 
...-.. C? .-----~--...r------.:-----7 

O.> ...- e- Attended College 
<.> E>-- Did Not Attend College 
'- 1/) 

0 " 
LL. 0 -----~ 
L O ------e>,. 
0 II) .. . . ....... . .. . ........ ....... :~~-..... ~ ·.;::_:, · · ·················· · ····· 

.0 0 ----o j '~~~~"G 

~ ......................... ........................................ ..... .. .. ~.:.:.::: .. 
C: 0 

0 0 L-__ ....._ __ ..__ __ ........._ __ ....._ __ ....._ __ ..J 

o 30 35 40 45 

Age 
50 55 60 

Figure 3.10. Probability of Labor Force Participation by Age and Wife's Educa­
tion 
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Figure 3.11. Probability of Labor Force Participation by Age and Family Income 
for Women Without Some College Education 

The effect of age was computed by subtracting the predicted probability 
at age 30 ( = .85) from that at age 60 ( = .46) and dividing by 3 (for three 
periods of ten years). It would also be appropriate to use the marginal 
effect computed at the mean, which is discussed in Section 3.7.4. 

The relationship between age and the probability of working was 
nearly linear and the plot was superfluous. In other cases, plotting is 
very useful. Consider the effects of income and age. While we could 
hold all other variables at their means and draw a three-dimensional 
plot, it is often more informative to divide one of the variables into 
groups and plot the results in two dimensions. Figure 3.11 shows the 
probability of employment as income changes for women aged 30, 40, 
50, and 60. The nonlinearities are apparent, with the effect of income 
decreasing with age. When relationships are nonlinear. plots are often 
useful for uncovering relationships, even if they are not used to present 
the findings. 

Tables of Predicted Probabilities at Selected Values 

You can also use tables to present predicted probabilities. For exam­
ple, the effects of young children and the wife's education on the proba­
bility of employment are shown in Tuble 3.5. The strong, nonlinear effect 
of having young children is clearly evident. It also shows that the effect 
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TABLE 3.5 Probability of Employment by College Attendence and the Number 
of Young Children for the Probit Model 

Number of 
Predicted Probability 

Young Children Did Nol A/tend Anerukd College Dijfffl!nce 

0 0.61 0.78 0.17 
I 0.27 0.45 0.18 
2 0.07 0.16 0.09 
3 0.01 0.03 0.02 

of attending college decreases as the number of children increases. (The 
difference in the probability for those attending and not attending college 
increases and then decreases. Draw the probability curves that produce this 
result.) 
&other strategy for presenting probabilities is to define combinations 
of characteristics that correspond to ideal types in the popula~or 
example, in his study of factors that affected the retention of workers 
by their employer after training programs, Gunderson (1974) defined 
five "hypothetical trainees" based on combinations of the independent, 
variables: typical, disadvantaged, advantaged, housewife, and te~nage en­
trant. Predicted probabilities of being retained were computed .for each 
hypothetical person. In some situations, this can quickly and convincingly 
summarize the effects of key variables. 

3. 7.3. The Partial Change iD y• 

Measures of partial change can also be used to summarize the effects 
of each independent variable on the probability of an event occurring. 
Recall that the logit and probit models are linear in the latent variable: 

y• =X~+s 

Toking the partial derivative with respect to xk, 

I) y• 
- =f3k 
i)xk 

Since the model is linear in y*, the partial derivative can be interpreted 
as: 

.._ For a unit change in Xt, y• is expected to change by {3k units, holding all 
other variables constant. 
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The problem with this interpretation is that the variance of y• is un­
known, so the meaning ofa change of /3k in y• is unclear. This issue 
was discussed by Winship and Mare (1984, p. 517) and McKelvey and 
Zavoina (1975, pp. 114-116) regarding the ordinal regression model, 
but their concerns apply equally to the BRM. Since the variance of y• 
changes when new variables are added to the model, the magnitudes 
of all f3's will chang~en if the added variable is uncorrelated with 
the original variable!(_J)is makes it misleading to comp.arc coefficients 
from different specifications of the independent varia~(Why is this 
not a problem with the LRM?) To compare coefficients across equations, 
McKelvey and Zavoina proposed fully standardized coefficients, while 
Winship and Mare suggested y• -standardized coefficients. 

H ,:r,. is the unconditional standard deviation of y•, then the y• -
standardized coefficient for x k is 

135( = f3k 
CFy-

Which can be interpreted as: 

/.For a unit increase in xk> y• is expected to increase by fJt standard devi­
(__~tions, holding all other variables constant. 

y*-standardized coefficients indicate the effect of an independent vari­
able in its original unit of measurement. This is sometimes preferable for 
substantive reasons and is necessary for binary independent variables. 

Fully standardized coefficients also standardize the independent vari­
able: If uk is the standard deviation of xk, then the fully standardized 
coefficient for x k is 

which can be interpreted as: 

/e For a standard deviation increase in xk, y• is expected to increase by {3f 
l__ standard deviations, holding all other variables constant. 

To compute fi'ZY and life, we need estimates of {3*' uk, and <Fy-. The 
standard deviations of the x's can be computed directly from the ob­
served data. Since y• = xp + e, and x and e are uncorrelated, u;- can 
be estimated by the quadratic form: 

Vai-(y·) = j 'Var(x)l3 + Var(e) 
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TABLE 3.6 Standardized and Unstandardized Probit Coefficients for Labor 
Force Participation 

Variable /3 13s,- ps z 

K.5 - 0.875 -0.759 - 0.398 -7.70 
K618 -0.039 -0.033 - 0.044 -0.95 
AGE -0.038 - 0.033 -0.265 -4.97 
WC 0.488 0.424 0.191 3.60 
HC 0.057 0.050 0.024 0.46 
LWG 0.366 0.317 0.186 4.17 
JNC -0.021 -0.018 -0.207 -4.30 

Vu(y") 1.328 

NOTE: N = 753. p is an unstandardized coefficient psy* is a .)" ~andardized coefficient; pS is a fully 
standardized coefficient. z is the z-test. 

Var(x)._is the covariance matrix for the x's computed from the observed 
data; P contains ML estimates; and Var( e) = 1 in the probit model and 
Var( e) = '1T2 / 3 in the logit model. 

H you accept the notion that it is meaningful to discuss the laten\ 
propensity to work, the fully standardized and y•-standardized coeffi­
cients in Tobie 3.6 can be interpreted just as their counterpa~ for the 
LRM.3 For example, 

0 Each additional young child decreases the mother's propensity to enter the 
\.__ labor market by . 76 standard deviations, holding all other variables constant. 

C A standard deviation increase in age decreases a woman's propensity to 
enter the labor market by .27 standard deviations, holding all other variables 
constant. 

r---- ----------= 
3.7.4. Tbe Partial Chan in Pr(y = 11 x) 

The f3's can also be used to compute the partial change in the proba· 
bility of an event. Let 

Pr(y = 1 J x) = F(xP) [3.13] 

where F is either the cdf <I> for the normal distribution or the cdf A 
for the logistic distribution. The corresponding pdf is indicated as f . 
The partial change in the probability, also called the marginal effect, is 

' If you try to reproduce the standardized coefficients in Tobie 3.6 using the descriptive 
statistics from Table 3.1, your answers will only match to the first decimal digit due to 
rounding. 
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computed by taking the partial derivative of Equation 3.13 with respect 
to x1 :4 

aPr(y = 1 Ix)= aF(xl3) = dF(xP) a:xp = /(xP)/3k 
ax1 ax1 d:xP iJx1 

{3.14] 

For the probit model, 

and for the logit model, 

aPr(y = 1 I~)= A(:xP),8 = exp(:xP) ,8 
axk k {l + exp(xp)]2 k 

= Pr(y = 11 x){l - Pr(y = 11 x))/3~ 

(Prove the last equality.) 
ffie marginal effect is the slope of the probability curve relating xk 

to Pr(y = 1 I x ), holding all other variables const9e sign of the 
marginal effect is determined by ,Bk, since /(IP) is always positive. The 
magnitude of the change depends on the magnitude of ,8 k and the value 
of xp. This is shown in Figure 3.12, where the solid line graphs Pr(y = 
11 x) and the dashed line graphs the marginal effect. The marginal is 
largest at x = x2, which corresponds to Pr(y = 11 x) = .5. The marginal 
is symmetric around x2, reflecting the symmetry of/. Therefore, 

aPr(y = 1 Ix= X1) _ Pr(y = 1 Ix= X3) 

ax - ax . 

~e magnitude of the marginal effect depends on the values of the 
other variables and their coefficients, since f is computed at xp. Conse­
quently~ marginal depends on the ,8's for all variables and the levels 
of all ~o understand how the value of the marginal effect of x k de­
pends on the level of other variables, consider Figure 3.9 which plots 
the probability surface for variables x and z . Pick a point (x, z), which 

• We use the chain rule: 

and the derivative: 

if(g(x)) af(g(x)) ag(x) 
~= ag(x) -:ix 

aF(x) =f(x) 
ax 
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Figqre 3.12. Marginal Effect in the Binary Response Model 
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corresponds to the intersection of lines within the figure. The partial 
aPr(y = 11 x, z)/ax is the slope of the line parallel to the x-axis at the, 
point (x, z); a Pr(y = 11 x, z)/az is the slope of the line parall~I to the z 
axis at the point (x, z). For example, at (-4, -8), the slope witb respect 
to x is nearly 0. As z increases, the slope with respect to x increases 
steadily. At ( -4, 0), where Pr(y = 11 x, z) is about .5, the slope is near 
its maximum. As z continues to increase, the slope gradually decreases. 
Hanushek and Jackson (1977, p. 189) show this relationship by taking 
the second derivative: 

a2 Pr(y=llx) 

a~kaxl 

= /3kf3 t Pr(y = 1 lx)[l - Pr(y = 1 lx)][l - 2Pr(y = 11:x)] 

The f3's can also be used to assess the relative magnitudes of the 
marginal effect for two variables. From Equation 3.14, the ratio of 
marginal effects for xk and xt is 

a Pr(y = 1 Ix) 
axk f(x~),8k f3k 

aPr(y = 11 x) = f(IP)f3t = .Bt 
UXt 

Thus, while the /3's are only identified up to a scale factor, their ratio 
is identified and can be used to compare the effects of independent 
variables. 
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/ Since the value of the marginal effect depends on the levels of all 
( variables, we must decide on which values of the variables to use when 

computing the effect. One method is to compute the average over all 
observations: 

aPr(y=llx) 1 ~f( 0 ) 
mean = N L x;,., f31c 

tJxk l= I 

C
Another method is to compute th_e marginal effect at the mean of the 
ndependent variables: $' -t -t ' S 

"' I, . 
aPr(y = 1 Ii)= /(xP)/31c Mf' K 

iJxk eA ,.{' "'I ., ! r c~e margina~ effect at the mean ~ a popul~r summary m_easure fo~ models 
With categoncal dependent variables. It IS frequently mcluded m tables 
presenting results, and is automatically computed by programs such as 
LIMDEP. However, the measure is limited. First, given the nonlinearity 
of the model, it is difficult to translate the marginal effect into the change 
in the predicted probability that will occur if there is a discrete change 
in x1c, Second, since i might not correspond to any observed values in 
the population, averaging over observations might be preferred. Finally, 
the measure is inappropriate for binary independent variables. For these 
~eason~, I muc~fer the measures of discrete change that are discussed 
m Section 3.7.y 

Tobie 3.7 contains marginal effects for our example of labor force 
partieipation. Several things should be noted. First, the marginal effects 
averaged over all observations are close to the marginals computed when 
all variables are held at their means. They are close since the predicted 
probability overall is approximately .5 in the sample. In general, these 

TABLE 3.7 Marginal Effects on the Probability of 
Being Employed for the Probit Model 

Variable Avtrage At Mean 

K5 -0.300 -0.342 
~18 -0.013 -0.015 
A.GE -0.013 -0.015 
WC 0.167 0.191 
HC 0.020 0.022 
LWG 0.125 0.143 
INC -0.007 -0.008 
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two measures of change can be quite different. Second, the marginal 
effect at the mean for AGE approximates the slope of the lines in Figure 
3.10. If an independent variable varies over a region of the probability 
curve that is nearly linear, the marginal effect can be used to summarize 
the effect of a unit change in the variable on the probability of an event. 
However, if the range of an independent variable corresponds to a region 
of the probability curve that is nonlinear, the marginal cannot be used 
to assess the overall effect of the variable. 

3.7.S. Discrete Change In Pr(y == l Ix) 

G,ie change in the predicted probabilities for a discrete change in an 
independent variable is an alternative to the marginal effect that I find 
more effective for ~rpreting the BRM ( as well as other models for 
categorical outco~Let Pr(y = 11 x, x1c) be the probability of an event 
given x, noting, in particular, the value of x1c , Thus, Pr(y = 11 x, x1c + 8) 
is the probability with x1c increased. by S, while the other variables are 
unchanged. The discrete change in the probability for a change of 8 in 
x1c equals ' 

A Pr(y = 1 Ix} ·' 
Axk = Pr(y = 1 Ix, x1c + 6)- Pr(y = 1 jx, xk) 

The discrete change can be interpreted as: 

~Fora change in the variable xk from xk to xk + 8, the predicted probabil­
ity of an event changes by 6Pr(y = 1 lx)/ 6xk, holding all other variables 

....,____ronstant. 

/ When interpreting the results of the BRM, it is essential to understand 
that the partial change does not equal the discrete change: 

aPr(y = 1 Ix) i= APr(y = 1 Ix) 
axk Axk 

except in the limit as c5 becomes infinitely small (which is, by definition, 
the partial change). The difference between these two measures is shown 
in Figure 3.13 which plots a segment of the probability curve.~ par­
tial change is the tangent at Xi, and its value corresponds to the solid 
trian~or simplicity, assume that S = 1.@ discrete change mea­
surent<e' change in the probability computed at x1 and x1 -t_9Jnis is 
represented by a triangle formed of dashed lines.~ discrete and par­
tial changes are not equal since the rate of change m the curve changes 
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Figure 3.13. Partial Change Versus Discrete Change in Nonlinear Models 

/ as xk changes. While the measures are not equal, if the .change in x1c oc­
curs over a region of the probability curve that is roughly linear, the two 
measures will be close':'mtis is the case for the example in Figure 3.10. 

The amount of'aiscrete change in the probability for a change in x1c 
depends on: (1) the amount of change in x1c; ~) the starting value of 
xk; and (3) the values of all other variables. (fgi example, if we have 
independent variables x1 and x2, the change in Pr(y = l j x) when x1 

changes from 1 to 2 does not necessarily equal the change when x goes 
from 2 tQj)(Jt?Jy would they be equal if Pr(y = 11 :s:) = .5?) Moreover, 
the change in Pr(y = 1 Ix) when x1 changes from 1 to 2 with x2 = 1 
does not necessarily equal the change when x2 = 2. Thus, the practical 
problem is choosing which values of the variables to consider and how 
much to let them change. 

Choosing Values of the Independent Variables 

~ce the change in the probability for a given change in xk depends on 
'ifi;Ievels of all independent variables, we must decide at which values of 
the x's to compute the discrete change. A common approach is to ~ 
the probability for an "average" member of the sample. For example, 
we could hold all values at their means. If the independent variables are 
highly skewed, asseMing change relative to the mean_ft~~ misleading 
and changes relative to the median would be more ~ 
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Dummy variables require special consideration. If xd is a dummy vari­
able, x4 is the proportion of the sample with xd = 1. The predicted 
probability at 'id is between the predicted probability at xd = 1 and 
x, = 0. Alternatively, you could compute the predicted probability for 
each combination of the dummy variab)es, with the other variables held 
at their means. In our labor force example, this would require four base 
probabilities: husband and wife attending college; only the husband at­
tending; only the wife attending; and neither attending. Alternatively, 
dummy variables could be held at the modal value for each variable. 

If there is a combination of the independent variables that is of par­
ticular substantive interest, those values could be used as a baseline. For 
example, if you were interested in the effects of education on labor force 
participation for young women without children, you could hold AGE at 
30, KS at 0, K.618 at 0, and all other variables at their me~e 
foll~g examples, l hold all variables at their ~ 

Amounts of Change in the Independent Variables 

Discrete change can be computed for any amount of change in an, 

independent variable, holding all other variables at some fixed value. The 
amount of change that you allow for an independent variable'<iepends 
on the type of variable and your purpose. Here are some useful options. 

A Unit Change in x1;, H x1; increases from i1c to i1c + 1, 

A~= l Ii)= Pr(y= l ]i,iJ: + 1)-Pr(y = l li, ik) 
XJ: 

By examining the probability curves (see Figure 3.8), it is clear that a 
unit increase in x1: from its mean will only have the same effect as a 
unit decrt1JSe in xk from its mean when Pr(y = 1-I i) = .5. This implies 
that if you have two variables such that /31: = -/3,, the effect of a unit 
increase in x 1c will not equal the effect of a Wlit decrease in x t · For 
these reasons, Kaufman (1996) suggested examining a unit increase that 
is centered around i'1c , That is, 

4Pr(y=lli) Pr( 11-- 1) Pr( 11-- 1) , fu1c = y = J:, Xt + 2 - y = J:, X1c - 2 

G
eml discrete change can be interpreted as: 

· unit change in Xt that is centered around i t results in a change of 
Pr(y = 111)/ ~t in the predicted probability, boldin8 all other variables 
their means. 
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A Standard Deviation Change in x Jc- · This idea can be extended to ex­
amine the effect of a standard deviation change: 

a Pr(~~ 
11 

i) = Pr(y = 11 i, xk + i) -Pr(y = 11 i, xk - i) 
where sk is the standard deviation of X1c-

A Change From O to 1 for Dummy Variables. When computing a dis­
crete change in probability, you must make certain that the change in 
the variable does not result in values that exceed the variable's range. 
For example, if x1c is a dummy variable, either xk + 1/ 2 will exceed 1 or 

. x1c - 1/ 2 will be negative (unless x1c = 1/ 2). Consequently, a preferred 
measure of discrete change for dummy variables is 

aPr(y = 1 Ii) 
!J,. =Pr(y=lli, X1c=l)-Pr(y=lli, Xk=O) 

xk 

~is is the change as X 1c goes from O to 1, holding all other variables at 
, their means. 

Other Choices. The idea of discrete change can be extended in many 
ways depending on t~e application. If a change of a specific amount is 
substantively i,mportant, such as the addition of four years of schooling, 
changes other than 1 or .s1c can be used. 

Example of Discrete Change: Labor Force Participation 

Table 3<"8 contains measures of discrete change for the probit model 
of women's labor force participation. Some of the effects can be inter-

TABLE 3.8 Discrete Change in the Probability of Employment for the Probit 
Model 

Cenured Unit Centered Standard 
Variable Change Deviation Clumgt 

K5 -0.33 -0.18 
K618 -0.02 -0.02 
AGE -0.01 -0.12 
WC 
HC 
LWG 0.14 0.08 
INC -0.01 -0.09 

NOTE: Changes arc computed with other variables held at their means. 

Change From 
0 to 1 

0.18 
0.02 
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preted as: 

• For a woman who is average on all characteristics, an additional young child 
decreases the probability of employment by .33. 

• A standard deviation change in age centered around the mean will decrease 
the probability of working by .12, holding all other variables constant. 

• If a woman attends college, her probability of being in the labor force is 
.18 greater than a woman who does not attend college, holding all other 
variables at their means. 

Notice that the discrete change from O to 1 for WC and HC is nearly 
identical to the effect of a unit change. This is a consequence of the near 
linearity of the probability curve over the range of these variables, and 
will not nece~arily be true in other examples. 

3.8. Interpretation Using Odds Ratios 

Our final method of interpretation takes advantage of the tractable , 
fonn of the logit model. A simple transformation of the {J's in the logit 
model indicates the factor change in the odds of an event occurring. 
There is no corresponding transformation of the parameters of the probit 
model. 

From Equation 3.6, the logit model can be written as the log-linear 
model: 

In fi(x) = xp [3.15] 

where 

fi(x) _ Pr(y = 1 Ix) _ Pr(y = 1 Ix) 
- Pr(y = Olx) - 1 - Pr(y = 1 Ix) 

(3.16] 

is the odds of the event given x. In fi( x) is the log of the odds, known as 
the l.ogit. Equation 3.15 shows that the logit model is linear in the logit. 
Consequently, 

alnfi(x) _ 
13 UXJc - k 

Since the model is linear, Pk can be interpreted as: 

• For a unit change in xk> we expect the logit to change by f3k, holding all 
other variables constant. 
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This interpretation is simple since the effect of a unit change in xk on 
the Iogit does not depend on the level of x k or on the level of any 
other variable. Unfortunately, most of us do not have an intuitive un­
derstanding of what a change in the logit means. This requires another 
transformation. 

Toking the exponential of Equation 3.15, 

O(x) = exp(x~) 

= exp(,Bo + f31x1 + · · · + f3kxk + · · · + Pxxx) 

= exp(/3o)exp(f31x1)· · -exp(,Bkxk)· · -exp(,Bxxx) = O(x, xk) . 

· The last equality introduces notation that makes explicit the value of 
xk. To assess the effect of x., we want to see how n changes when xk 
changes by some quantity/,. Most often, we consider t, = 1 or t, = sk. If 
we change xk by c5, the odds become 

O(x, xk + l,) 

= exp(J3o) exp(f31x1) · · · exp(fJk(xk + 8)) .. · exp(f3xxx) 

= exp(J3o)exp(f31x1) · · -exp(f3kxk) exp(f3k8) · · · exp(f3xxx) 

To compare the odds before and after adding 8 to xk, we take the odds 
ratio: 

O(x,xk + 6) 
. O{x, xk) 

_ exp(.Bo)exp(.81x1 ) · · -exp(,Bkxk) exp(.BkB) · · · exp(flxxx) 
- exp(/30) exp(,81 x1) · · · exp(,Bkxk) · · · exp(/3 xx x) 

= exp(J3.6) 

Therefore, the parameters can be interpreted in terms of odds ratios: 

• For a change of 8 in xk, the odds are expected to change by a factor of 
exp(/3* x 6), holding all other variables constant. 

For 8 = 1, we have: 

• Factor change. For a unit change in xi:, the odds are expected to change by 
a factor of exp(,B/c), holding all other variables constant. 

If exp(,Bk) is greater than 1, you could say that the odds are "exp(Pk) 
times larger." If exp(/3k) is less than 1, you could say that the odds are 
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"exp(t3k) times smaller." For 6 = s , we have: 
k 

• Standtirdized factor change. For a standard deviation change in x1, the odds 
are expected to change by a factor of exp(J3* xsk ). holding all other variables 
constant. 

Notice that the effect of a change in xk does not depend on the level of 
xk or on the level of any other variable. 

We can also compute the percentage change in the odds: 

100 O(x, xk + l,)- O(x, xk) = 100[exp(t3A: x 8) -1] 
O(x. xk) 

This quantity can be interpreted as the percentage change in the odds 
for al, unit change in xk, holding all other variables constant. 

The factor change and standardized factor change coefficients for the 
logit model analyzing labor force participation are presented in Table 
3.9. Here is how some of the coefficients can be interpreted using factor 
and percentage changes: 

• For each additional young child, the odds of being employed are decreased 
by a factor of .23, holding all other variables constant. Or, equivalently, 
for each additional young child, the odds of working are decreased 77%, 
holding all other variables constant. 

• For a standard deviation increase in anticipated wages, the odds of being 
employed are 1.43 times greater, holding all other variables constant. Or, 
for a standard deviation increase in anticipated wages, the odds of working 
are 43% greater, holding all other variables constant . 

• Being 10 years older decreases the odds by a factor of .52 ( = e-.063xlo), 
holding all other variables constant. 

TABLE 3.9 Factor Change Coefficients for Labor Force Participation for the 
Logit Model 

Legit Factor Standard Factor 
Variable Coefficknt Clumge Change z-value 

Constant 3.182 4.94 
K5 -1.463 0.232 0.465 -7.43 
K618 -0.065 0.937 0.918 -0.95 
AGE -0.063 0.939 0.602 -4.92 
WCOL 0.807 2.242 3.51 
HCOL 0.112 1.118 0.54 
WAGE 0.605 1.831 1.427 4.01 
INC -0.034 0.966 0.670 -4.20 
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The odds ratio is a multiplicative coefficient, which means that "pos­
itive" effects are greater than 1, while "negative" effects are between 
0 and 1. Magnitudes of positive and negative effects should be compared 
by taking the inverse of the negative effect ( or vice versa). For example, a 
positive factor change of 2 has the same magnitude as a negative factor 
change of .5 = 1/2. Thus, a coefficient of .1 = 1/10 indicates a stronger 
effect than a coefficient of 2. Another consequence of the multiplicative 
scale is that to determine the effect on the odds of the event not occur­
ring, you simply take the inverse of the effect on the odds of the event 
occurring. For example, 

• Being 10 years older makes the odds of not being in the labor force 1.9 
(= 1/.52) times greater, holding all other variables constant. 

~en interpreting the odds ratio, it is essential to keep the folJow­
ing in mind: A constant factor change in the odds does notirrespond to 
a constant change or constant factor change in the probability. This can 
be seen in Tuble 3.10. While the odds are being changed y a. constant 
factor of 2, the probabilities do not change by a constant factor or a 
constant amount. When the odds are very sma11, the factor change in 
the probability is approximately equal to the factor change in the odds. 
When the odds are large, the probability remains essentially unchanged. 
Consequently, when interpreting a factor change in the odds, it is essen­
tial to know what the current level of the odds is. This can be done using 
the methods in Section 3.7.2 to compute the predicted probability, and 
then computing the odds according to Equation 3.16. 

TABLE 3.10 Factor Change of Two in the Odds With the Corresponding Factor 
Change and Change in the Probability 

Original Clumged FaclOr Change 
Change 

Odds Probabilily Odds Probability Odds Probabilily in Probability 

1/1000 0.001 2/1000 0.002 2.000 1.998 0.001 
1/100 0.010 :?.1100 0.020 2.000 1.980 0.010 
1/10 0.091 2/10 0.167 2.000 1.833 0.076 
1/2 0.333 2/2 0.500 2.000 1.500 0.167 
1/1 0.500 2/1 0.667 2.000 1.333 0.167 
2/1 0.667 4/1 0.800 2.000 1.200 0.133 

10/1 0.909 20/1 0.952 2.000 1.048 0.043 
100/1 0.990 200/1 0.995 2.000 1.005 0.005 

1000/1 0.999 2000/1 0.999 2.000 1.000 0.000 
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3.9. Conclusions 

The choice between the logit and probit models is largely one of con­
venience and convention, since the substantive results are generally indis­
tinguishable.~ambers and Cox (1967) show that extremely large sam­
ples are necessary to distinguish ~ther observations were generated 
from the logit or the probit mod~e availability of software is no 
longer an issue in choosing which model to use. Often the choice is a 
matter of convention. Some research areas tend to use logit, while oth­
ers favor probit. For some users, the simple interpretation of Iogit coef­
ficients as odds ratios is the decidin~ctor. In other cases, the need to 
generalize a model may be an issue(!?r example, multiple-equation sys­
tems involving qualitative dependent variables are based on the probit 
model, as discussed in Chap~r, if an analysis also includes equa­
tions with a nominal dependent variable, the logit model may be pre­
ferred since the probit model for nominal dependent variables is com­
putationally too demanding. Or, in case-control studies where sampling 
is stratified by the binary outcome, the logit model is required (see Hos­
mer & Lemeshow, 1989, Chapter 6, for details). 

Many of the ideas presented in this chapter are used to develop and 
interpret models for ordinal and nominal variables in Chapte{.S 5 and 
6. First, however, Chapter 4 considers hypothesis testing, methods for 
detecting outliers and influential observations, and measures of fit. 

3.10. Bibliographic Notes 

The very early history of these models begins in the 1860s and is dis­
cussed by Finney (1971, pp. 38-41 ). The more recent history of the probit 
model involves attempts to model the effects of toxins on insects. Work 
by Gaddum (1933) and Blis.s (1934) was codified in Finney's influential 
Probit Analysis (1971), whose first edition appeared in 1947. The logit 
model was championed by Berkson (1944, 1951) in the 1940s as an alter­
native to the probit model. Cox's (1970) The Analysis of Binary Data was 
highly influential in the acceptance of the logit model. Applications of 
the logit and probit models appeared in economics in the 1950s (Cramer, 
1991, p. 41). Goldberger's (1964, pp. 248-251) Econometric Theory was 
important in establishing these models as standard tools in economics, 
while Hanushek and Jackson's (1977) Statistical Methods for Social Sci­
entists was important in disseminating these models to areas outside of 
economics. 
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McCullagh and Nelder (1989, Chapter 4) develop the logit and pro­
bit models, along with several alternatives, within the framework of the 
generalized linear model. Pudney (1989, Chapter 3) derives these mod­
els from behavioral assumptions associated with utility maximization. 
Agresti (1990, Chapter 4) presents both models with special attention 
to the links between logit analysis and log-linear models for categorical 
data. While the interpretation of the results of these models has often 
been neglected, each of the methods of interpretation considered in this 
chapter can be found in one fonn or another in earlier work. Recent 
treatments that focus on interpretation include Hanushek and Jackson 
(1977, pp. 187-207), King (1989a, pp. 97-117), Liao (1994), Long (1987), 
and Petersen (1985). 

For a more advanced discussion of numerical methods, see Judge et 
al. (198S, pp. 951-979) and Greene (1993, pp. 343-357). For details on 
estimates of the covariance matrix, see Cramer (1986, pp. 27-29), Greene 
(1993, pp. 115-116), and Davidson and MacKinnon (1993, pp. 263-267). 


