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2. SUMMARY STATISTICS FOR EVALUATING 
fflE LOGISTIC REGRESSION MODEL 

17 

When we evaluate a linear regression model, the evaluation typically 
has three parts. First, how well does the overall model work? Can we 
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be confident that there is a relationship between all of the indepen­
dent variables, taken together, and the dependent variable, above and 
beyond what we might expect as a coincidence, attributable to ran­
dom variation in the sample we analyze? If there is a relationship, 
how strong is it? Second, if the overall model works well, how impor­
tant is each of the independent variables? Is the relationship between 
any of the variables attributable to random sample variation? If not, 
how much does each independent variable contribute to our ability 
to predict the dependent variable? Which variables are stronger or 
weaker, better or worse predictors of the dependent variable? Third 
and finally, does the form of the model appear to be correct? Do 
the assumptions of the model appear to be satisfied? In this chapter, 
we deal with the first question, the overall adequacy of the model. 
Chapter 3 deals with the contributipns of each of the independent 
variables, and Chapter 4 focuses on testing the assumptions of the 
model. 

In linear regression analysis, we need to know (a) whether knowing 
the values of all of the independent variables put together allows us 
to predict the dependent variable any better than if we had no infor­
mation on any of the independent variables and, if so, (b) how well 
the independent variables as a group explain the dependent variable. 
For logistic regression, we also may be interested in the frequency 
of correct as opposed to incorrect predictions of the exact value of 
the dependent variable, in addition to how well the model minimizes 
errors of prediction. In linear regression, when the dependent vari­
able is assumed to be measured on an interval or ratio scale, it would 
be neither alarming nor unusual to find that none of the predicted 
values of the dependent variable exactly matched the observed value 
of the dependent variable. In logistic regression, with a finite num­
ber (usually only two) of possible values of the dependent variable, 
we may sometimes be more concerned with whether the predictions 
are correct or incorrect than with how close the predicted values (the 
predicted conditional means, which are equal to the predicted condi­
tional probabilities) are to the observed (0 or 1) values of the depen­
dent variable. 

2.1. R2 , F, and Sums of Squared Errors 

In linear regression analysis, evaluation of the overall model is 
based on two sums of squares. If we were concerned with minimiz­
ing the sum of the squared errors of prediction and if we knew only 
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the values of the dependent variable (but not the cases to which those 
values belonged), we cou]d minimize the sum of the squared errors of 
prediction by using Y, the mean of Y, as the predicted value of Y for 
all cases. The sum of squared errors based on this prediction would 
be I:(Yj - Y)2, the Total Sum of Squares (~T). If the independent 
variables are useful in predicting Y, then Yi, the value of Y pre­
dicted by the regression equation (the conditional mean of Y) will be 
a better predictor than Y of the values of Y, and the sum of squared 
errors I:(Yi - ~)2 will be smaller than the sum of squared errors 
I:(Yj - Y)2. I:(Yj - ~)2 is called the Error Sum of Squares (SSE) 
and is the quantity OLS selects parameters (/31, /32, ••• , /3k) to mini­
mize. A third sum of squares, the Regression Sum of Squares (SSR) is 
simply the difference between SST and SSE: SSR = SST - SSE. 

It is possible in a sample of cases to get an apparent reduction in 
error of prediction by using the regression equation instead of Y to 
predict the values of Yj, even when the independent variables are 
really unrelated to Y. This occurs as a result of sampling variation, 
that is, random :fluctuations in sample values that may make it appear 
as though a relationship exists between two variables when there really 
is no relationship. The multivariate F ratio is used to test whether the 
improvement in prediction using Y instead of Y is attributable to 
random sampling variation. Specifically, the multivariate F ratio tests 
two equivalent hypotheses: H 0 : R2 = 0 and H0 : {31 = {32 = · · · = 
{3k = 0. For OLS linear regression, the F ratio with N cases and k 
independent variables can be calculated as 

F = [SSR/k]/[SSE/(N - k -1)] = (N - k - l)SSR/(k)SSE. 

The attained statistical significance (p) associated with the F ratio indi­
cates the probability of obtaining an R2 as large as the observed R2, 

or /3 coefficients as large as the observed /3 coefficients, if the null 
hypothesis is true. If pis small (usually less than .05, but other values 
of p may be chosen), then we reject the null hypothesis and conclude 
that there is a relationship between the independent variables and the 
dependent variable that cannot be attributed to chance. If p is large, 
then we "fail to reject the nulJ hypothesis" and conclude that there 
is insufficient evidence to be sure that the variance explained by the 
model is not attributable to random sample variation. This does not 
mean that we conclude that there is no relationship, only that if there 



20 

is a re1ationship, we have insufficient evidence to be confident that it 
exists. 

The coefficient of determination. or R2, or "explained variance" 
( really, the proportion of the variance that is explained) is an indicator 
of substantive significance, that is, whether the relationship is_ ~big 
enough" or "strong enough" for us to be concerned about it.! R2 is 
a proportional reduction in error statisiic.)It measures the prop~ion 
( or, multiplied by 100, the percentagej15y which use of the regression 
equation reduces the error of prediction relative to predicting the 
mean, Y. R2 ranges from O (the independent variables are no help at 
all) to 1 (the independent variables allow us to predict the individual 
values Yi perfectly). R 2 is calculated as R2 = SSR/SST = (SST -
SSE)/SST = 1-(SSE/SST). The F ratio and R2 also can be expressed 
as functions of one another: F = [R 2 /k ]/[(1 - R 2 )/(N - k - 1)] and 
R2 = kF/(kF +N - k -1). 
Jt is possible for a relationship to be statistically significant (p ~ 

.0001) but for R2 not to be substantively significant (for example, 
R2 ::s .005) for a large sampi~ If the independent variables explain 
less than one-half of 1 % ofthe variance in the dependent variable, 
we are unlikely to be very concerned with them, even if we are rel­
atively confident that the explained variance cannot be attributed to 
random sample variation. It is also possible for a relationship to be 
substantively significant (for example, R2 :::-. .4), but not statistically 
significant for a small sample. Even though the relationship appears 
to be moderately strong (an explained variance of .40 or, equivalently, 
a 40% reduction in errors of prediction), there may not be enough 
cases for us to be confident that this result cannot be attributed to 
random sampling variation. 

2.2. Goodness of Fit: GM, Rt, and the Log Likelihood 

Close parallels to F and R2 exist for the logistic regression model. 
Just as the sum of squared errors is the criterion for selecting param­
eters in the linear regression model,(tJ:ic log likelihood is the criterion 
for selecting parameters in the logistic regression model. In presenting 
information on the log likelihood, however, statistical packages usually 
present not the log likelihood itself, but the log likelihood multiplied 
by -2, for reasons noted subsequently. For convenie~, t;l;te log like­
lihood multiplied by -2 will be abbreviated as ~~~ Whereas the 
log likelihood is negative, -2LL is positive, and larger values indicate 
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worse prediction of the dependent variahl_~T;e value of -2LL for the 
logistic regression model with only the intercept included can be cal­
culated in SPSS LOGISTIC REGRESSION by adding the chi-square 
for the model in the Omnibus Tests of Model ~efficients table Pllls 
the -2 log likelihood in the Model Summary t~(see Figure l.4)(In 
SPSS NOMREG and PLUM, to be discussed m more detail later';rt 
is the -2 log likelihood for intercept only in the Model Fitting Infor­
mation ta~ ln SAS, it is designated as -2 WG L in the colu.mn 
"Intercep nly" in the output from SAS PROC LOGISTIC. (fh$ 
intercept-only or initial -2LL, hereafter designated D0 to indicate 
that is the - 2 log-likelihood statistic with none (zero) of the indepen­
dent variables in the equation, i§ analogous to the total sum of squares 
(SST) in linear regression analy_§)For a dichotomous dependent vari­
able (coded as O or 1), if ny=J is the number of cases for which 
Y = 1, N is the total number of cases, and P(Y = 1) = ny=i/N is 
the probability that Y is equal to 1, then 

D0 = -2{ny=1ln(P(Y = 1)] + (N - ny=1)ln[1- P(Y = 1)]} 

= -2{(ny=1)ln[P(Y = 1)] + (ny=0)ln[P(Y = O)]}. 

Uhe value of - 2LL for the logistic regression model that includes 
the independent variables as well as the intercept is designated as 
- 2 log likelihood in the Model Summary table in the output for 
SPSS LOGISTIC REGRESSION, as -2 log likelihood for the final 
model in the Model Fitting Information table in SPSS NOMREG 
and PLUM, and as -2 LOG~ the "Intercept and Covariates" col­
umn in SAS PROC LOGIS~ereafter, this -2LL statistic will be 
referred to as DM for the full model. DM is analogous to the error sum 
of squares (SSE) in linear regression analysis. The most direct ana­
logue in logistic regression analysis to the regression sum of squares 
(SSR in linear regression) is the difference between D 0 and DM, that 
is, (Do - DM). This difference is called the Model chi-square (in the 
Omnibus Tests table) in SPSS LOGISTIC REGRESSION, or the chi­
square for the final model (in the Model Fitting Information table) 
in SPSS NOMREG and PLUM, or -2 LOG Lin the column "Chi­
Square for Covariates" in SAS PROC LOGISTIC. Hereafter, it will 
be referred to as GM, or the model x2 . 

In logistic regression (and in other general linear models), the dif­
ference between two log likelihoods, when multiplied by -2, can be 
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interpreted as a x2 statistic if they come from two different models, 
one of which is nested within the other (McCullagh & Nelder, 1989). 

._()ne model is nested within another if the first model contains some, 
but not all, of the predictors in the second model and contains no 
predictors that are not included in the second model. In other words, 
the predictors in the first model are a proper subset of the predictors 
in the second. GM can be straightforwardly interpreted as the differ­
ence between a first model that contains only an intercept and a sec­
ond model that contains the intercept plus one or more variables as 
predictors. Treated as a chi-square statistic, GM provides a test of the 
null hypothesis that /3 1 = {32 = · · · = f3k = 0 for the logistic regression 
model. If GM is statistically significant (p :: .05), then we reject the 
null hypothesis and conclude that information about the independent 
variables allows us to make better predictions of P(Y = h) (where h 
is some specific value, usually 1, usually for a dichotomous depe1F_nt 
variable) than we could make without the independent variables~ 
is thus analogous to the multivariat_e F test for linear regression as 
well as the regression sum of square0 

Designated the "deviance" by ~ullagh and Nelder (1989) and 
others ( a term with, at best, mixed meanings when the substantive 
example is marijuana use and that I will avoid to the extent possi­
ble hereafter), DM has historically been used as a measure of "good­
ness of fit," which is essentially a test for the statistical significance 
of the variation unexplained by the logistic regression model and is 
akin to testing for the statistical significance of unexplained variance 
in an OLS regression model. If a clichc will help, GM asks how full 
the cup is (how much improvement the predictors make in predict­
ing the dependent variable), while DM asks how empty the cup is 
(how much improvement is needed before the predictors provide the 
best possible prediction of the dependent variable). ~ile GM com­
pares the intercept-only mo%)_, with the full model (the model that 
includes all the predict~rs))D"~ compares the full model with a sat­
urated model (a mode~cludes all predictors plus all possible 
interactions among them.})In previous versions of SPSS LOGISTIC 
REGRESSION (and in the first edition of this monograph), DM was 
assumed to have an approximately x2 distribution and was assigned 
a level of statistical significance. The problem with using DM as a x2 

statistic lies in the fact that there are different ways to define a satu­
rated model, resulting in different values for DM and different degrees 
of freedom (Simonoff, 1998). 
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Briefly (and bypassing some detail), as explained by Simonoff 
(1998), one approach (the one taken in SPSS LOGISTIC REGRES­
SION and SAS PROC LOGISTIC) is to comider each case as 
independent (casewise approach), and contributing 1 degree of free­
dom. The alternative is to consider each combination of values of the 
predictors, or each couariate pattern, as a separate cell in a crnsstab­
ulation (contingency table approach), and to calculate degrees of 
freedom based on the number of covariate patterns (cells in the 
table) rather than the number of individuals. In either approach, if 
the number of cases per covariate pattern (cell) is too small or if 
there are many empty cells, DM will not generally have a x2 distri­
bution and it would be inappropriate to use it as a x2 statistic to 
test goodness of fit (McCullagh & Nelder, 1989; Simonoff, 1998). If 
there is a large number of cases relative to the number of covariate 
patterns and sufficient cases per covariate pattern, it is possible to 
define an appropriate saturated model and to calculate a deviance 
statistic that will have a x2 distribution and the correct degrees of 
freedom based on the contingency table approach. This is done in 
SPSS NOMREG and PLUM, both of which can be used to analyze 
dichotomous as well as nominal or ordinal variables with more than 
two categories. In NOMREG and PLUM, the Goodness-of-Fit table 
provides Pearson and deviance x2 statistics, the latter based on the 
- 2 log likelihood. 

For casewise data, it is still possible to construct a goodness-of-fit 
index. One commonly available index for dichotomous depen­
dent viriables is Hosmer and Lemeshow's (1989) goodness-of-fit 
index C, which can be included in the out~ for SPSS LOGISTIC 
REGRESSION or SAS PROC LOGISTIC.4;!9smer and Lemeshow's 
goodness-of-fit index was designed primarily as an alternative to avoid 
the problems associated with using DM as a goodness-of-fit index 
for casewise data, and it proceeds by collapsing the data into deciles 
based on the probability of havil)&.Jhe characteristic of interest (for 
example, being a marijuana use!:2) Other possible goodness-of-fit 
indices include the score statistic, the Akaike information criterion 
(AIC), and the Schwartz criterion (a modification of the AIC), all 
of which are provided in SAS PROC LOGISTIC. The score statis­
tic is, like G 11,1, a test of the statistical significance of the combined 
effects of the independent variables in the model. The AIC and the 
Schwartz criterion, which are briefly discussed in Bollen (1989), are 
two related indices used to compare models, rather than to provide 
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absolute tests of adequacy of fit. It is possible to compare the AIC 
or the Schwartz criterion for the fitted model with the AIC or the 
Schwartz criterion for the model with only the intercept, but this 
provides little more information than GM. 

For some researchers, particularly those who have a strong back­
ground in log-linear models or general linear models, or a perspective 
that is more theoretical than applied, goodness of fit will be an impor­
tant consideration. Given the goal of the logistic regression model 
(prediction of a single dependent variable), and consistent both with 
an applied focus and with the analogy between linear and logistic 
regression, it seems advisable for most purposes to focus here pri­
marily on GM. 

2.2.1. Measures of Multiple Association 
Between the Independent Variables and the Dependent Variable 

Several analogues to the linear regression R2 have been proposed 
for logistic regression. For general reviews, see Hagle and Mitchell 
(1992), Menard (2000), and Veall and Zimmerman (1996). Here the 
focus is on R2 analogues that are commonly used in general pur­
pose statistical packages such as SAS and SPSS, and on some general 
categories of coefficients of determination with which they may be 
compared. If we maintain the analogy between the -2LL statistics for 
logistic regression and the sums of squares for linear regression analy­
sis, the most nat1,1ral choice( directly analogous to SSR/SST, is the like­
lihood ratio R2,"2.§ GMLPo) ;;i° OMittiM.f~""JJ:McFadden, 1974; 
see also Agresti, 1990, pp. 110-111; DeMaris, 1 2, p. 53; Hosmer 
& Lemeshow, 1989, p. 148; Knoke & Burke, 1980, p. 41; Menard, 
2000). R't is a proportional reduction in -2LL or a proportional reduc­
tion in the absolute value of the log-likelihood measure, where the 
-2LL or the absolute value of the log likelihood-the quantity being 
minimized to select the model parameters-is taken as a measure 
of "variation" (Nagelkerke, 1991), not identical but analogous to the 
variance in OLS regression. R[ indicates how much inclusion of the 
independent variables in the model reduces the variation, as measured 
by D0• The variation is between O (for a model in which GM = 0, 
DM = D 0, and the independent variables are useless in predicting 
the dependent variable) and 1 (for a model in which GM = D0, 

DM = 0, and the model predicts the dependent variable with per­
fect accuracy). R't can be obtained directly from the output for SPSS 
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NOMREG and PLUM, where it is presented as the McFadden R2 in 
the Pseudo-R2 table. Curiously it is not included (as of this writing) 
in SPSS LOGISTIC REGRESSION. Instead, in SPSS LOGISTIC 
REGRESSION and SAS PROC LOGISTIC, it must be computed 
by hand from the information provided (as described previously) on 
D0 (or DM) and GM.7 

Two measures used in the current versions of SPSS and SAS 
. are (1) the geometric mean squared improvement per observation Ui = 1 - (Lo/ LM)2/N, where Lo is the likelihood function for tliDe 

odel that contains only the intercept, LM is the likelihood function 
at contains all the predictors, and N is the total number of cases 

Cox & Snell, 1989; Maddala, 1983, pp. 39-40), and (2) an adjusted 
geometric mean squared improvement per observation Ri (Cragg & 
Uhler, 1970; Maddala, 1983, p. 40; Nagelkerke, 1991). The unadjusted 
measure cannot have a value of 1, even for a model that fits the data 
perfectly. The adjusted measure permits a value of 1 by dividing by 
the maximum possible value of Ri1: for a particular dependent vari­
able in a particular data set: Ri = [1- (L0/LM)2fN]/[1-(L0) 2fN] = 
R~//(maximum possible Rit ). In SPSS LOGISTIC REGRESSION, 
RM and Ri are presented, respectively, as the Cox-Snell and 
Nagelkerke R2 measures in the Model Summary table or as the 
Cox-Snell and Nagelkerke pseudo-R2 measures in the Pseudo-R2 

table in SPSS NOMREG and PLUM. In SAS PROC LOGISTIC, 
they are simply referred to as the R2 and adjusted R2• 

A family of alternatives to R[ includes the pseudo-R2 or contin­
gency coefficient R~, which was proposed by Aldrich and Nelson 
(1984) in their discussion of logit and probit models, the Wald Ri 
(Magee, 1990), and the McKelvey and Zavoina (1975) Riz. In the 
notation used in this monograph, if N is the number of cases, R~ = 
GM/(GM+N). Similarly, the Wald R~ = W/(W +N), where Wis the 
multivariate Wald statistic. The McKelvey-Zavoina Riz = 4/(s}+l) 
for the probit model (the context in which it was originally developed) 
or Rk, = ~1(4 + 7T2/3) ~r a logit or logistic regression model, 
wheres} is the variance in Y (the predicted value of Y), and 1 and 
7T2 /3 are the standard deviations for the standard normal and logistic 
distributions, respectively. These measures share the common feature 
that they cannot attain a value of 1, even for a perfect model fit. Hagle 
and Mitchell (1992) suggested a correction for Aldrich and Nelson's 
pseudo-R2 that allows it to vary from Oto 1; in principle, this approach 
could also be applied to the Wald and McKelvey-Zavoina measures. 
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Hagle and Mitchell also noted that the corrected Rb provided a good 
approximation for the OLS regression R2 , and Veall and Zimmerman 
noted the same with respect to the McKelvey-Zavoina Riz, when the 
dichotomous dependent variable represents a latent interval scale. In this 
instance, however, there are several other alternatives, including the 
possibility of using a linear probability model (because the restriction 
of values to a dichotomy is really artificial for a latent interval scale), 
using polychoric correlation and weighted least-squares estimation in 
the context of a more complex structural equation model (Joreskog 
& Sorbom, 1993), and using R2 itself to measure the strength of the 
association between the observed and predicted values of the depen­
dent variable. 

The use of R2, the familiar coefficient of determination from OLS 
linear regression analysis, has received relatively little attention in 
the literature on logistic regression analysis. (For an exception, see 
Agresti, 1990, pp. 111-112.) Its utility in logistic regression has been 
questioned because, unlike R[ and Aldrich and Nelson's pseudo-R2, 

it is not based on the criteria used to select the model parameters. 
Also, if the dichotomous dependent variable is assumed to be an indi­
cator for an unmeasured latent variable, R2 provides a biased esti­
mate of the explained variance. There are certain advantages to the 
use of R2, not instead of Rt, but as a supplemental measure of asso­
ciation between the independent variables and the dependent vari­
able. First, using R2 permits direct comparison of logistic regression 
models with linear probability, analysis of variance, and discriminant 
analysis models when predicting the observed value (instead of pre­
dicting the observed probability that the dependent variable is equal 
to that value) is of interest. Second, R2 is useful in calculating stan­
dardized logistic regression coefficients, a topic to be covered in the 
next chapter. Third, R2 is relatively easy to calculate using existing 
statistical software. 

To calculate R2 for logistic regression, assume that the depen­
dent variable is Y and that you want to name the variable that 
represents the value of Y predicted by the logistic regression model 
LPREDY. In SPSS and SAS, to obtain R2, it is necessary to save 
the predicted values of the dependent variable from SPSS LOGIS­
TIC REGRESSION [using SAVE= PRED(LPREDY)] or from SAS 
PROC LOGISTIC [using OUTPUT PRED = LPREDY]. Next, use 
a bivariate or multiple regression routine (such as SPSS REGRES­
SION or SAS PROC REG) to calculate R2• Alternatively, use any 

;.w.j' 
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analysis of variance routine that calculates ,,,2 or T/ (SPSS MEANS or 
ANOVA; SAS PROC GLM or ANOVA) with the observed value of 
the dependent variable, Y, as the independent variable and the pre­
dicted value of the dependent variable, LPREDY, as the dependent 
variable. Because there are only two variables (the observed values of 
y as one variable, the predicted values of Y as the other), ri2 = R2 

and the two variables may be used interchangeably. Although for T/2 

this role switching between the dependent variable and its predicted 
value (which is based on the values of the independent variables) 
may seem strange for ,,,2, it exactly parallels the method for calculat­
ing canonical correlation coefficients in discriminant analysis (Klecka, 
1980). 

Based on research on the properties of the different proposed mea­
sures, I have suggested (Menard, 2000) that R[ is the most appropri­
ate for logistic regression, based on several considerations.8 First and 
most importantly, R{ is conceptually closest to the OLS R2 insofar as 
it reflects a proportional reduction in the quantity actually being min­
imized (-2LL; equivalently, the Jog likelihood is being maximized), in 
contrast to R2, Ri, and Rk. Also, unlike measures that depend on 
the sample size as well as the log likelihood or -2LL (Rt, Ri, R~), 
R[ depends only on the quantity being maximized or minimized. Sec­
ond, R'f, is not sensitive to the base rate, the proportion of cases 
that have the attribute (for example, being or not being a marijuana 
user) being studied. Evidence indicates that Rt, R~, R~, and R2 all 
have the undesirable property that their value increases as the base 
rate (whichever is smaller, ny=if Nor ny=o/ N) increases from O to 
.50, absurdly suggesting that one could, in effect, substitute the sam­
ple size for one of these coefficients of determination as a measure 
of explained variation (Menard, 2000, p. 23). Third, Rt, unlike the 
unadjusted versions of Ri, R~, and Riz, varies between O and 1, 
where O represents no predictive utility for the independent variables 
and 1 represents perfect prediction. Fourth, as noted by Veal! and 

. Zimmerman (1996), R[ works as well for polytomous nominal or ordi­
l./ nal dependent variables as for dichotomous dependent variables, in 
I contrast to the variance-based measures Riz and R2• 

2.3. Predictive Efficiency: ¾• T P' cl>p, and the Binomial Test 

In addition to statistics regarding goodness of fit, logistic regression 
programs commonly print classification tables that indicate the pre-
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dieted and observed values of the dependent variable for the cases in 
the analysis. These tables resemble the contingency tables produced 
by SPSS CROSSTABS and SAS PROC FREQ. In most instances, we 
will be more interested in how well the model predicts probabilities, 
P(Yi = 1). In other cases, however, we may be more interested in the 
accurate prediction of group membership, so the classification tables 
may be of as much or more interest than the overall fit of the model. 
There is no consensus at present on how to measure the associa­
tion between the observed and predicted classification of cases based 
on logistic regression or related methods such as discriminant anal­
ysis. There are, however, several good suggestions that can easily be 
implemented to provide summary measures for classification tables. 
The best options for analyzing the prediction tables provided by logis­
tic regression packages involve proportional change in error measures 
of the form 

d . . ffi . _ ( errors without model) - ( errors with model) 
pre 1ctlve e c1ency - ( . h d l) , 

errors wit out mo e 

[2.1] 

which is a proportional change in error formula. If the model improves 
our prediction of the dependent variable, this formula is the same as 
a proportional reduction in error (PRE) formula. It is possible under 
some circumstances, however, that a model actually will do worse than 
chance at predicting the values of the dependent variable. When that 
occurs, the predictive efficiency is negative and we have a proportional 
increase in error. The errors with the model are simply the number 
of cases for which the predicted value of the dependent variable is 
incorrect. The errors without the model differ for the three indices 
and depend on whether we are using a prediction, classification, or 
selection model. 

2.3.1. Prediction, Classification, and Selection Models 

In prediction models, the attempt is made to classify cases accord­
ing to whether they satisfy some criterion, such as success in col­
lege, absence of behavioral or emotional problems in the military, or 
involvement in illegal behavior after release from prison. In prediction 
models, there are no a priori constraints on the number or proportion 
of cases predicted to have or not have the specified behavior or char­
acteristic. In principle, it is possible (but not necessary) to have the 
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same number of cases predicted to be "positive" (having the behav­
ior or characteristic, e.g., "successes") and "negative" (not having the 
behavior or characteristics, e.g., "failures") as are observed to be posi­
tive and negative. That is, there is nothing that constrains the marginal 
distributions (the number or proportion of cases in each category, pos­
itive or negative) of predicted and observed frequencies to be equal 
or unequal. In particular, all cases may be predicted to belong to 
the same category, that is, the sample or population may be homo­
geneous. In practical terms, prediction models are appropriate when 
identical treatment of all groups ("lock 'em all up" or "let 'em all go") 
is a viable option. 

In classification models, the goal is similar to that of prediction 
models, but~re is the added assumption that the cases are truly het­
erogeneom(..9?rrespondingly, the evaluation of a classification model 
imposes the constraint that the model should classify as many cases 
into each category as are actually observed in each categ~The pro­
portion or number of cases observed to be in each category (the base 
rate) should be the same as the proportion or number of cases pre­
dicted to be in each category. To the extent that a model fails to meet 
this criterion, it fails as a classification model. Complete homogene­
ity is an unacceptable solution for a classification model. Practically 
speaking, classification models are appropriate when heterogeneity is 
assumed, and identical treatment of all groups is not a viable option. 

In selection models (Wiggins, 1973), the concern is with "accepting" 
or "rejecting" cases for inclusion in a group, based both on whether 
they will satisfy some criterion for success in the group and on the 
minimum required, maximum allowable, or specified number of cases 
that may ( or must) be included in the group. In selection models, the 
proportion of cases observed to be successful ( the base rate again) may 
or may not be equal to the proportion of cases accepted or selected 
for inclusion in the group (the selection ratio). For example, a com­
pany may need to fill 20 positions from a pool of 200 applicants. 
The selection ratio will be 20/200 = .10 (10%) regardless of whether 
the base rate (the observed probability of success on the job) is 5% 
or 20%, half or twice the !,election ratio. The classification tables pro­
vided in logistic regression packages may naturally be regarded as 
prediction or classification models. They may be used to construct 
selection models, but they must be altered {unless, purely by coinci­
dence, the selection ratio turns out to be equal to the base rate) so 
that the correct number of cases is selected. 


