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Abstract—We focus on stochastic geometry analysis of a
low Earth orbit (LEO) narrowband terrestrial-satellite uplink
with satellite base stations (SBSs) in a uniform constellation
equipped with narrow Gaussian beams. The served and inter-
fering omnidirectional user equipments (UEs) are distributed
on the Earth’s surface according to a homogeneous Poisson
point process (HPPP) with Nakagami faded signals. This study
presents a detailed but comprehensive mathematical analysis
of several key metrics: the signal-to-interference ratio (SIR),
the SIR meta distribution (MD), the signal-to-interference-plus-
noise ratio (SINR), and the average throughput. Many results
are presented in simple analytical and closed forms containing
more insight than the expressions proposed in prior works. The
results indicate an optimal UE density depending on the altitude,
elevation angle, and the width of the antenna gain, maximizing
the average throughput. However, this optimal density leads to a
significant variance in the user experience regarding link quality
(i.e., the users are not treated fairly).

Index Terms—Low Earth orbit, stochastic geometry, coverage
probability, meta distribution, average throughput, Lomax dis-
tribution.

I. INTRODUCTION

A. Motivation
Fifth-generation (5G) and beyond wireless communication

systems are setting new standards of reliability and connec-
tivity [1]. The emerging Low Earth Orbit (LEO) satellite
networks have the potential to significantly increase coverage,
especially in far-flung areas: incorporating such networks
with terrestrial networks can facilitate a seamless coverage
continuum [2]. Several large LEO constellation projects are al-
ready being developed and planned, including Starlink, Kuiper,
LeoSat, OneWeb, and Telesat. Kuiper, LeoSat, OneWeb, and
Telesat. 3GPP aims to adapt existing satellite and terres-
trial networks to provide direct connectivity from hand-held
equipment to LEO satellites using frequencies assigned to
mobile satellite services or those assigned to legacy terres-
trial networks. An extensive study of potential LEO network
configurations is presented in [3], indicating that numerous
implementations are possible. Due to the large footprint, a
single satellite can serve several user equipments (UEs). At
the same time, the large cell size causes interference between
terrestrial and non-terrestrial users and systems.
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The stochastic geometry system-level analysis offers valu-
able insights that complement other link and system-level
models and simulations of terrestrial and non-terrestrial com-
munications. This analytical method helps us understand how
different deployment parameters affect performance metrics.
In particular, it provides comprehensive information on the
satellite base station (SBS) reliability, coverage probability,
and throughput. Ultimately, this knowledge aids in determining
optimal network configurations and allows for more efficient
allocation of simulation resources.

B. Related work
As a relatively new concept introduced in [4], the analysis of

the signal-to-interference ratio (SIR) meta distributions (MD)
for terrestrial networks has become well-established in the
literature. Additionally, SIR MD has been applied to the LEO
networks. An analysis of the SIR MD under the Nakagami
fading model was proposed in [5] and [6], where the SIR
MD was studied in a LEO downlink. Both papers model the
satellites by either the homogeneous Poisson point process
(HPPP) or the homogeneous binomial point process (HBPP)
on a sphere and the transmitters as a HPPP, allowing the
ergodic interpretation of the SIR MD as “what fraction of
users can achieve a given transmission reliability for a given
SIR threshold”. 1 In [5], the satellites were assumed to have
an omnidirectional antenna beam. In contrast, in [6], a perfect
beam alignment with the terrestrial base station was assumed,
causing no interference to the other devices. To the best of
our knowledge, the SIR MDs for the LEO uplink are yet to
be explored.

The following literature review focuses on papers on the
proposed state-of-the-art stochastic geometry frameworks in
the LEO uplink. A comprehensive literature review addressing
other LEO scenarios can be found in [8]. Furthermore, the
book [9] has been published on the subject. The work in [10] is
one of the first papers addressing the stochastic geometry mod-
eling of the LEO uplink, where the coverage probability and
average throughput were studied assuming omnidirectional
antennas for both the satellite and the transmitters. As in many
similar works, the PPP model for the satellites has proven
effective in approximating deterministic constellations. In [11],
the SIR distribution was studied for large network densities in
an interference-only channel with a Gaussian antenna beam
under Rician fading with a two-tier shadowing model. A

1Although strictly speaking, the HPPP is not ergodic on the sphere, the
condition for the ergodicity [7, Def. 2.30] holds approximately for large
densities.
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TABLE I: Stochastic geometry LEO uplink and LEO SIR MD models in the literature

Proposed Scenario Earth Satellite Earth-to-satellite System metrics and results System type Satellite
by transmitter constellation fading and in C=closed-form expression antenna

model model shadowing A=analytic expression model
model M=mathematical expression

This paper Uplink direct HPPP Uniform Nakagami SIR MD (M for the moments), Interference-limited, Narrow
communication constellation fading Coverage probability (A), Interference-plus- Gaussian

Average throughput (C) noise-limited beam
[5] Downlink direct HPPP HPPP Nakagami fading SIR MD Interference-limited Omni-

communication (A for the moments) directional
[6] Downlink hybrid HPPP HBPP Nakagami fading SIR MD Interference-limited Perfect beam

network (A for the moments) alignment
[10] Uplink direct HPPP HPPP Shifted exponential Coverage probability (M), Interference-limited Omni-

communication power fading Average throughput (M) directional
[11] Uplink direct HPPP Uniform Rician fading Coverage probability (A) Interference-limited Narrow

communication constellation with a two-tier Gaussian
shadowing model beam

[12] Uplink direct HPPP HPPP, Shadowed Rician Coverage probability (M), Interference-plus- ITU-R
communication Walker-Star, fading Average throughput (M) noise-limited beam

[13] Uplink direct HPPP Deterministic Shadowed Rician Coverage probability (M), Interference-plus- ITU-R
communication polar constellation fading Average throughput (M) noise-limited beam

[14] Uplink direct HBPP HBPP, Gaussian mixture Coverage probability (M) Interference-plus- Boxcar
communication Walker-Star, shadowing model noise-limited function

Walker-Delta
[15] Uplink hybrid HPPP HPPP, Gaussian mixture Coverage probability (M) Interference-plus- Boxcar

communication Walker-Star, shadowing model noise-limited function
Walker-Delta

[16] Uplink direct and Poisson cluster HBPP Shadowed Rician Coverage probability (M) Interference-plus- Boxcar
hybrid communication process fading noise-limited function

[17] Uplink direct HPPP, Deterministic Rician Coverage probability (A) Interference-plus- Perfect beam
communication Poisson two altitude fading noise-limited alignment and

hard-core p.p. circular orbits constant sidelobes

shadowed Rician model and a realistic ITU-R antenna beam
were used in [12] and [13]. Similar to this paper, in [12], it
was noted that a particular constellation density maximizes
the throughput. The system model is realistic; however, the
derived formulas are complicated to evaluate and may lack
clear insight. A Gaussian mixture model for the fading with a
boxcar-type antenna beam model was used in [14] and [15].
Modeling was based on working with the mean interference
from the transmitters, which may be accurate with wide
antenna beams; however, the mean fails to grasp the highly
varying nature of the interference in narrow antennas. Uplink
hybrid and direct communication with IoT devices, including
battery lifetime, were studied in [16]. Similar to this paper and
[12], in [16], an optimal density for the satellites (proportional
to the number of Earth transmitters) was found to maximize
the performance. Similar to this paper, a planar HPPP model
was used in [17]. Additionally, in [17], the Poisson hard-core
model was introduced. All of the mentioned papers and the
system model details are summarized in Table I.

We present a tractable analytical framework for the narrow-
beam LEO that yields insightful results distinct from previous
works. Additionally, our paper offers a fine-grained analysis
of the variation in the uplink quality of the SBSs, which has
yet to be addressed in the existing literature.

C. Our contributions
The contributions of the work are listed as follows.
• We present a novel, simplified, narrow-beam LEO system

model that provides a tractable analytical framework for
stochastic geometry analysis.

• We derive the moments of the SIR MD and study user
experiences in different network settings through the
distribution.

• We derive the SIR distribution in a closed form and the
signal-to-interference-plus-noise ratio (SINR) distribution
in analytic form.

• We derive the average throughput in a simple closed form
and an optimal density for the Poisson layout of UEs that
maximizes the average rate.

• We observe a significant trade-off between the optimal
average throughput and user experience consistency re-
garding the link quality.

D. Organization of the paper

In Section II, we formulate and compare the planar and
spherical system models and introduce the fading and antenna
pattern models. Section III derives the moments of the SIR
MD and provides two different approximations based on the
moments: beta distribution and Chebyshev-Markov inequali-
ties. In Section IV, we study the SIR, SINR, and throughput
distributions. The key insights of the results are summarized
in Section V.

II. SYSTEM MODEL

We present two system models: the simplified planar system
model used in the analysis and the spherical system model
used in the simulations. A sketch of the simplified planar
system model is depicted in Figures 1a and 1b.
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(a) Interpretation of the planar system model with the SBSs in adjacent
orbits serving an urban area and a realization of the UEs. The altitudes are

not to scale.

(b) The typical SBS as seen from the side. The transmitters are projected into
line (0,∞) according to their norm.

Fig. 1: The simplified narrow-beam LEO uplink system model. The SBS
antenna boresight is oriented towards o, the focus point of the elliptical
footprint. The omnidirectionally transmitting UEs {xi} are located according
to the HPPP on the plane. The nearest transmitter, x0, is the served UE.

A. Approximate planar model of the narrow-beam LEO
uplink

We study a short period of use over multiple coherence
times in a high-frequency narrow-band terrestrial-satellite up-
link Nakagami fast-fading channel in a single-tier network.
The link quality from the perspective of a SBS is investigated.
We assume that UEs with omnidirectional antennas, like
mobile phones, are randomly located on the Earth surface,
represented as a plane. The SBSs can work as an independent
network or complement a terrestrial network, and the inter-
fering transmitters can be considered to be within the same
cell, adjacent cells, overlapping cells, or part of a terrestrial
network served by a terrestrial BS.

The UEs form a HPPP Φ ⊂ R2 of density λ. The Poisson
assumption can be justified by the independent mobility pat-
terns of UEs. Furthermore, the multipath fading of the signals
can make an arbitrary network seem Poisson at the receiver
[18, Sec. 4.3]. The SBSs form a homogeneous point pattern
(deterministic or random), allowing the ergodic interpretation

TABLE II: Glossary of principal symbols

Symbol Explanation

h Altitude of the SBSs.
ϵ Elevation angle of the SBSs.

G[·] The SBS antenna gain.
φRX Halfwidth of the SBSs −3 dB gain.

Θ ⊂ E HPPP on the Earth surface E ⊂ R3 of density λ.
Φ ⊂ R2 HPPP on the plane of density λ.
∥x∥ Distance of x ∈ Φ from the origin o = (0, 0) ∈ R2.
x0 Nearest point to the origin in Φ.

Dh,ϵ A scaling constant of ∥x∥; Dh,ϵ = sin2(ϵ)/h.
κ Parameter that reflects the approximate mean number of UEs

inside a SBS −3 dB footprint; κ = λπ(hφRX/ sin
2(ϵ))2.

κ̃ κ/ log(2).
m Nakagami-m fading parameter.
gx The power fading gain of mean 1 of a transmitter x ∈ Φ or

x ∈ Θ. Corresponds to a Nakagami-m distributed amplitude
fading; m = 1 corresponds to the exponential distribution,
and m = ∞ is deterministic.

θ SIR or SINR threshold for a successful transmission.
I Interference at the typical SBS in the planar model.
S The signal power of the served UE at the typical SBS in the

planar model.
I̊ Interference at the typical SBS in the spherical model.
S̊ The signal power of the served UE at the typical SBS in the

spherical model.
d̂h,ϵ/d0 The distance between the SBS and the focus point in the

planar model divided by a normalizing distance.
W Constant noise power.
γ Power path loss exponent.

of the performance metrics over the SBSs. Because the HPPP
is translation invariant, all points are statistically equivalent.
Therefore, we can refer to the concept of a typical SBS. The
SBS antennas are narrow-beam considered to serve a local
homogeneous environment, such as a rural or urban area.
Consequently, the scattering and attenuation caused by the
weather conditions and Doppler shifts are the same for all
relevant UEs, thus not affecting their relative signal strengths
at the SBS.

We study the SIR and SINR distributions at the typical SBS
serving the terrestrial UE from which it receives the maximum
mean signal power. The UEs are transmitting at the normalized
power P = 1. The typical SBS is at altitude h, and its Gaussian
antenna’s G[·] gain boresight is directed toward a point on the
Earth surface for which the SBS is at the elevation angle ϵ—
this is a focus point of the elliptical footprint, considered the
origin o ≜ (0, 0) ∈ R2. The values of h and ϵ determine the
distance to the satellite from o, given by the geometric relation
d̂h,ϵ ≜ h/ sin(ϵ). In this work, we focus on LEO altitudes of
h ∈ [200, 2000] km. We will consider that ϵ ≥ 45°. (We
restrict the elevation angle to ensure the simplified narrow-
beam LEO model is accurate. However, we make an exception
in Figures 3a, 3b and 4, where we compare the spherical and
the planar models with the elevation angle ϵ = 35°, which is
the minimum elevation angle in a LEO system proposed in
[19].)

This work focuses on the SIR and SINR of the nearest
transmitter. The served UE is formally defined as

x0 ≜ argmin{x ∈ Φ : ∥x∥}, (1)
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where ∥ · ∥ is the Euclidean distance.
In the following, we write f(x) ∼ g(x), as x → a, if the

limit limx→a f(x)/g(x) = 1. Considering Figure 1b, for each
angle φx between the transmitter x ∈ Φ and the typical SBS
antenna boresight, we have

φx ∼ Dh,ϵ∥x∥, ∥x∥ → 0, (2)

where Dh,ϵ ≜ sin2(ϵ)/h is the derivative of the function
∥x∥ 7→ φx at ∥x∥ = 0 (the details given in Appendix A).
Note that (2) is only the first-order Taylor expansion of φx at
∥x∥ = 0; the approximation is sufficient if the antenna pattern
decays fast for large φx.

Let us define the path loss law by

ℓ(x) ≜
G[φx]

(dx/d0)γ
, γ ≥ 0, (3)

where dx is the distance between the UE and the SBS, and
d0 is a normalizing distance. Combining (2) with (3) yields
ℓ(x) ∼ G[Dh,ϵ∥x∥]/(dx/d0)γ , ∥x∥ → 0.

Furthermore, we assume a narrow antenna beam and the
relevant transmitters are located in a small region close to each
other around o and dx ≈ d̂h,ϵ for the relevant x ∈ Φ. Along
these lines, the random process of path losses {x ∈ Φ : ℓ(x)}
is approximated with the gain process (GP)

G = {x ∈ Φ : G[Dh,ϵ∥x∥]} (4)

multiplied by the constant (d̂h,ϵ/d0)−γ .
G is a particular case of the projection process that has

been extensively studied in the literature [18, Ch. 4]. By the
mapping theorem [7, Thm. 2.34], it is a PPP on (0, 1). 2

Because of its analytical tractability, we model the small-
scale fading with the Nakagami-m fading model, where
m ∈ N is the Nakagami fading parameter. For each UE
x ∈ Φ, the amplitude fading gain follows an independent
Nakagami distribution with shape parameter m and spread
parameter 1. Hence, each transmission power is multiplied by
an independent gamma-distributed fading gain gx of mean 1
with shape and scale parameters m and 1/m, respectively.
The Nakagami distribution closely approximates the Rician
distribution, widely utilized as a fading model in satellite
communications [20, Sec. 6.7.1]. Furthermore, the gamma
distributed power fading can be used to approximate the
shadowed Rician power fading distribution [16].

The antenna gain G[·] : [0,∞) → (0, 1] is assumed to be
Gaussian, i.e.,

G[φ] = 2−φ2/φ2
RX , (5)

where φRX is the halfwidth of the −3 dB antenna gain. Except
Section II-C, we use the value φRX = 1.6°, corresponding
to the LEO antenna pattern proposed in the International
Telecommunication Union Recommendations (ITU-R) [21].
Despite being an idealized antenna pattern, the Gaussian
response accurately models the main lobe (−10 dB lobe)
of many antenna patterns, particularly the ITU-R pattern, cf.
Figure 2. This work considers the interference energy from

2Interestingly, incorporating independent fading r.v.’s {Hx} the projection
process with the fading {x ∈ Ψ : HxG[Dh,ϵ∥x∥]} can appear Poisson, even
if the underlying Ψ is not a PPP [18, Sec. 4.3].

Fig. 2: Comparison between the Gaussian and [21, ITU-R LEO reference
radiation patterns]. The gain of the Gaussian antenna in the main lobe (−10
dB lobe) is almost identical to the ITU-R main lobe. However, there is a slight
difference towards the edges of the main lobe. The fast-decaying Gaussian
beam essentially corresponds to the main lobe component.

the sidelobes a nonnegative constant noise but is not explicitly
characterized. This approach works as long as the UE density
is high enough and the served UE is likely to be in the main
lobe. 3

B. Spherical system model and Monte Carlo simulation
A sketch of the geometry of the spherical model is presented

in Appendix B.
We compare the analytical results from the planar model to

Monte Carlo simulations of the spherical model. The Monte
Carlo simulations assume a spherical Earth with a radius of
R⊕ = 6378 km. We denote the HPPP of the UEs visible to
the satellite of density λ on the Earth surface by Θ ⊂ E.
The number of samples depends on the density: we simulate,
on average, 106 UEs inside the −100 dB footprint (of the
Gaussian beam). The elliptical footprint’s antenna boresight
location is the ellipse’s nearest focus point, oE—the ellipse
represented in terms of latitude and longitude. The PPP on the
sphere can be constructed from the PPP on the plane by the
area-preserving mapping (x1, x2) 7→ (1, x1, sin

−1(x2)) from
the rectangle [−π, π]×[−1, 1] to the spherical coordinates. We
use a homography from the ellipse to a circle to find the SBS
antenna gain of each UE. In the Monte Carlo simulations, the
angles {φu}, the distances {du}, u ∈ Θ, and consequently the
path loss law (3) are based on the spherical Earth model and
calculated by basic geometry. For example, we have

dh,ϵ ≜ doE =
√

R2
⊕ + (R⊕ + h)2 − 2R⊕(R⊕ + h) cos(ξ)

(6)
for the distance between the SBS and the focus point oE ,
where ξ = ξ(ϵ) is the central angle between oE and the sub-
satellite point on the spherical Earth’s surface (the details given
in Appendix B). The fading model is the Nakagami-m, and
the antenna gain is Gaussian (5).

3Analogously to the semi-analytical simulation methods [22], the possible
interference component from the sidelobes can be modeled with a constant
corresponding to the mean aggregate power from the interferers outside the
main lobe because of the relatively small variance of the total interference.
Hence, the sidelobe component can be incorporated in a constant noise term.
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C. Total received power and its convergence properties in
the planar model w.r.t. the spherical model

In this section, we compare the total received power from
all transmitters in the system model presented in Section II
with that of the spherical model in Section II-B.

We define u0 ≜ argmin{u ∈ Θ : du}. The total received
power at the typical SBS from the UEs in the PPP Θ on the
Earth’s surface above the horizon is defined as

P̊tot ≜ I̊ + S̊ =
∑
u∈Θ

guℓ(u) =
∑
u∈Θ

guG[φu]

(du/d0)γ
, (7)

where S̊ is the signal strength at the receiver of the nearest
transmitter u0, and I̊ is the interference component consisting
of the received signal powers from Θ \ {u0}.

We validate the approximate system model by studying the
convergence properties of the mean and the second moment
of the simulated P̊tot to the mean and the second moment of

Ptot ≜ I + S =

∑
x∈Φ

gxG[Dh,ϵ∥x∥]

(d̂h,ϵ/d0)γ
=

∑
x′∈G

gxx
′

(d̂h,ϵ/d0)γ
. (8)

The fading models are equal in the planar and spherical
models, and the difference is in the geometry. Hence, we focus
on the geometric accuracy of the approximate model and set
gx ≡ 1, i.e., m = ∞, in this subsection. The fading does
not affect the first moment of the total received power. In
the following, we refer to Lemma 1 regarding the density
λG(r) = κ̃/r, κ̃ = λπ

(
hφRX/ sin

2(ϵ)
)2

/ log(2), and the
Poisson property of the GP (which is needed for the variance).
For gx ≡ 1, [7, Cor. 4.8] gives the expected value and the
variance, var(Ptot) = E(P 2

tot)− E(Ptot)
2, of Ptot:

E(Ptot) =

(
d0

d̂h,ϵ

)γ ∫
R2

G[Dh,ϵ∥x∥]λdx

=

(
d0

d̂h,ϵ

)γ ∫ 1

0

rλG(r)dr =
dγ0h

2−γπλφ2
RX

sin4−γ(ϵ) log(2)
, (9)

var(Ptot) =

(
d0

d̂h,ϵ

)2γ ∫
R2

G[Dh,ϵ∥x∥]2λdx

=

(
d0

d̂h,ϵ

)2γ ∫ 1

0

r2λG(r)dr =
dγ0 sin

γ(ϵ)

2hγ
E(Ptot). (10)

An interesting observation from (9) and (10) is that for the
free-space path loss exponent γ = 2, for given λ, ϵ, and φRX,
the mean of the total received power does not depend on the
altitude of the typical SBS; the path loss becomes increasingly
prominent, but there are more UEs present in the main lobe
as we increase h. However, var(Ptot) rapidly increases when
we decrease the altitude. On the other hand, Ptot approaches
a constant for large h. For γ > 2, the expected total received
power decreases as the altitude increases. For γ = 4, E(Ptot)
does not depend on the elevation angle of the SBS.

Figures 3a and 3b show the total received powers P̊tot and
Ptot for γ ∈ {2, 4} for different ϵ and h. The insights derived
from the theoretical model of mean and variance apply to
the spherical model, especially for γ = 2. For γ = 2, the
average total received power is approximately independent of

(a) The average total received power for the path loss exponent γ = 2 as a
function of altitude h.

(b) The average total received power for the path loss exponent γ = 4 as a
function of elevation angle ϵ.

Fig. 3: Comparison of the expected total received power based on the
simulated spherical model and the theoretical planar model. The parameters
φRX = 1.6°, P = 1, λ = 1/km2, γ ∈ {2, 4}, h ∈ [200, 2000] km, ϵ ∈
[35°, 90°] are used.

the altitude, and for γ = 4, the received power is almost
independent of the elevation angle.

Fig. 4: The ratio of the second moments of the simulated and theoretical
total received powers. The parameters h ∈ {600, 1500, 2000} km, λ =
1/km2, ϵ = 35°, φRX ∈ [0.6°, 6.7°] and γ ∈ {2, 4} are used.

Figure 4 shows the ratio of the second moments
E(P̊ 2

tot)/E(P 2
tot) w.r.t. the antenna width φRX ∈ [0.6°, 6.7°]

for different values of h and γ. The density λ = 1/km2,
and the elevation angle ϵ = 35°, which is the minimum
elevation angle in a LEO system proposed in [19]. Due to the
geometry, it is the worst-case scenario for the error between
the models. The ratios for ϵ > 35° are closer to 1 for each
h. The ratios tend to 1 for γ = 2 as φRX → 0. There is
a threshold after which E(P̊ 2

tot) becomes exponentially larger
than E(P 2

tot). This is caused by the differences in the geometry.
However, the horizon restricting the energy from the UEs in
the spherical model limits this exponential increase for larger
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φRX. For γ = 4, convergence to 1 does not happen. This is due
to the difference in the averages of {du}u∈Θ and {dx}x∈Φ,
which cancels out for γ = 2. The theoretical model could be
improved using the more complicated dh,ϵ instead of d̂h,ϵ in
(8). However, the theoretical SIR is independent of the path
loss exponent, which also holds (up to the accuracy we are
interested in) in the spherical model. We will validate this
using the path loss exponents γ ∈ {2, 4} in the simulations in
Sections III and IV.

Similar but faster convergence to 1 was observed for the
first moments E(P̊tot)/E(Ptot) than for E(P̊ 2

tot)/E(P 2
tot).

Based on these observations, we put forth that, for γ = 2 or
ϵ = π/2, E(Ptot) ∼ E(P̊tot) and E(P 2

tot) ∼ E(P̊ 2
tot) as φRX → 0.

Furthermore, it is natural to conjecture that the convergence
holds for any moment and thus for the distribution. Hence,
in distribution, P̊tot ≈ Ptot for the narrow beams. We will
demonstrate that similar convergence also applies to the SIR
and SINR.

D. Relative Gain Process
The analysis of Sections III and IV is based on the following

formulation of the relative gain process.

DEFINITION 1 (Relative gain process (RGP)). Let Φ ⊂ R2 be
a HPPP. The relative gain process is defined as

G ≜

{
x ∈ Φ \ {x0} :

G[Dh,ϵ∥x∥]
G[Dh,ϵ∥x0∥]

}
. (11)

The following lemma gives the density function of the
RGP. The equivalence GP=RGP is a useful implication of the
lemma, with the GP defined in (4).

LEMMA 1. The GP and the RGP are inhomogeneous PPPs on
(0, 1) ∋ r with the density function

λG(r) = κ̃/r, (12)

where κ̃ = κ/ log(2) and

κ ≜ λπ

(
hφRX

sin2(ϵ)

)2

(13)

is approximately the mean number of UEs inside a SBS −3
dB footprint.

Proof. The process {x ∈ Φ : ∥x∥2} is Poisson distributed on
(0,∞) with the density 2πλ [7, Example 2.9]. Consequently,
the distances ∥xk∥2 −∥x0∥2 in G[Dh,ϵ∥xk∥]/G[Dh,ϵ∥x0∥] =
2−(∥xk∥2−∥x0∥2)/φ2

RX between the kth nearest point and the
nearest point are Erlang distributed with parameters k ≥ 1
and 2πλ regardless of x0. Hence, without loss of generality,
we can condition x0 = o. Furthermore, by Slivnyak’s theorem,
{x ∈ Φ \ {x0} : ∥x∥2 − ∥x0∥2} reduces to the process {x ∈
Φ : ∥x∥2} for x0 = o, and the result follows by applying the
mapping theorem [7, Thm. 2.34] to the GP;∫ 1

r

λG(y)dy = λπ

(
G−1[r]

Dh,ϵ

)2

= λπ

(
hφRX

√
− log(r)

sin2(ϵ)
√
log(2)

)2

for 0 < r < 1. G−1[·] is the inverse function of G[·]. λG(r)
follows by derivation w.r.t. r and taking the minus sign.

The interpretation of κ as the mean number of UEs inside
the −3 dB footprint follows by solving Dh,ϵ∥xRX∥ = φRX for
the distance ∥xRX∥ to the edge of the −3 dB footprint and
from the area formula of a circle and Campbell’s theorem.
In line with (2), this interpretation of κ is exact in the limit
φRX → 0.

For any measurable function v(·) : Rd → [0, 1] such
that

∫
Rd | log v(x)|λΨ(x)dx < ∞, the probability-generating

functional (PGFL) GΨ(·) of a point process (p.p.) Ψ is defined
by

GΨ[v] ≜ E
∏
x∈Ψ

v(x). (14)

We use Lemma 1 to derive the PGFL of the RGP [18, Eq.
(3.30)];

GG [v] = exp

{
−
∫
R
(1− v(r))λG(r)dr

}
= exp

{
−κ̃

∫ 1

0

(1− v(r))/rdr

}
. (15)

E. The signal-to-interference ratio
The SIR at the typical SBS can be represented in terms of

the GP. It is defined as

SIRκ,m ≜
S

I
=

(
I

S

)−1

=


∑

x∈Φ\{x0}
PgxG[Dh,ϵ∥x∥]/(d̂h,ϵ/d0)γ

Pgx0G[Dh,ϵ∥x0∥]/(d̂h,ϵ/d0)γ


−1

= gx0
/
∑
x′∈G

gxx
′, (16)

where x′ = G[Dh,ϵ∥x∥]/G[Dh,ϵ∥x0∥] and {gx}x∈Φ are i.i.d.
Gamma distributed r.v.’s. We represent the SIR in terms of the
interference-to-signal ratio (ISR) in order to represent the SIR
in terms of the relative gain process G. The terms (d̂h,ϵ/d0)

γ

are canceled; therefore, the spatial path loss does not affect
the SIR. This property follows from the planar system model
of the narrow-beam LEO with equal spatial path losses for
all UEs. However, this also holds for the performance metrics
using the spherical model, namely for S̊IR ≜ S̊/I̊ , where S̊
and I̊ are defined in (7); this is a substantial difference from
the usual terrestrial models, where the SIR depends strongly
on the path loss exponent [18, Eq. (6.64)].

Note that, from Lemma 1, the GP=RGP: the nearest trans-
mitter distance ∥x0∥ in G can be conditioned arbitrarily or
have an arbitrary distribution as long as the p.p. of the other
transmitters is a HPPP of density λ. It follows that, after
decoding and canceling the signal of the nearest UEs, the
SIR distribution remains the same for the second nearest
transmitters (considered now the nearest). Therefore, for such
successive interference cancellation, the model describes the
SIR at the nearest UEs to their serving SBS and the second
nearest, third nearest, and so on. This property is due to the
second power exponential path loss function, i.e., the Gaussian
antenna gain, that preserves the Poisson property of the RGP
(11).
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III. META DISTRIBUTION OF THE SIR
The SIR MD at the typical SBS is the distribution of the r.v.

Pκ,m(θ) ≜ P(SIRκ,m > θ|Φ), and it is defined for 0 ≤ y ≤ 1
as

P(Pκ,m(θ) > y) = P(P(SIRκ,m > θ|Φ) > y)

= EΦ1(P(SIRκ,m > θ|Φ) > y), (17)

where 1(·) is the indicator function.
The averaging in (17) is taken over the ensemble of Φ at the

typical location. However, because Φ is ergodic, the ensemble
average is equal to the spatial average, given a realization of
Φ. In this sense, the SIR MD describes the SBS reliability
in a uniform (or homogeneous) constellation. The SIR MD
gives the fraction of SBSs that reach reliability y, which is
the fraction of time during a short use period that the SIR
threshold θ is reached.

A. Moments of the SIR MD
We use multi-indices to simplify the notation. For

the nonnegative integer tuples Γ = (Γ1,Γ2, . . . ,Γm)
and B = (B1, B2, . . . , Bm), we define the product
BΓ = BΓ1

1 BΓ2
2 · · ·BΓm

m , the multinomial coefficient
(
b
Γ

)
=

b!/(Γ1!Γ2! · · ·Γm!), and the absolute value |Γ| = Γ1 + Γ2 +
· · ·+Γm. We are ready to derive the moments of the SIR MD
M b

κ,m(θ) ≜ E[Pκ,m(θ)b].

PROPOSITION 1 (Moments of the SIR MD). The bth moment
in a narrow-beam LEO uplink when all transmitters experience
Nakagami-m fading is approximately given as a sum over all
Γ such that |Γ| = b:

M b
κ,m(θ) ≈ M̂ b

κ,m(θ)

≜
∑
|Γ|=b

(
b

Γ

)
exp

{
−κ̃

∫ 1

0

1−A(θ, r)Γ

r
dr

}
BΓ, (18)

where An(θ, r) =
(
1 +m!−1/mθnr

)−m
and Bn =(

m
n

)
(−1)n+1, n = 1, . . . ,m. For m = 1, M̂ b

κ,m(θ) =
M b

κ,m(θ).

Proof. We utilize the PGFL of the RGP (15). The proof is
given in Appendix C.

For Rayleigh fading, we provide multiple representations
(19)-(23) for the moments.

COROLLARY 1 (Moments of the SIR MD for Rayleigh fading).
With m = 1, the expression (18) can be further evaluated as
follows. The first and the second moments of the SIR MD in
a narrow-beam LEO uplink, when all transmitters experience
Rayleigh fading, are given by (recall that M̂ b

κ,1(θ) = M b
κ,1(θ))

M1
κ,1(θ) = (1 + θ)−κ̃, (19)

M2
κ,1(θ) = e−κ̃θ/(1+θ)(1 + θ)−κ̃, (20)

respectively. The general moments b ∈ C are given by

M b
κ,1(θ) = exp

{
−κ̃

∫ 1

0

(
1− 1

(1 + θr)b

)
/rdr

}
(21)

= exp {−θbκ̃ 3F 2(1, 1, 1 + b; 2, 2;−θ)} , (22)

where 3F2(·) is the hypergeometric function. Furthermore, for
b ∈ N,

M b
κ,1(θ) = exp

{
κ̃

(b− 1)!

b∑
k=1

[
b

k

]
Li2−k(−θ)

}
, (23)

where
[
n
k

]
is the unsigned Stirling number of the first kind,

and Li2−k(·) is the polylogarithm.

Proof. Equation (21) follows from (18) for m = 1. The first
two moments can be evaluated through elementary integration
methods from (21). The derivation of (23) is given in Appendix
D.

As a mathematical curiosity, Li2−k(−θ) also has closed-
form expressions for k ≥ 3 [23, Eq. (6.3)], although relatively
complicated.

B. Approximation of the SIR MD
Using the moments, we present two ways to approximate

the SIR MD: the beta distribution and Chebyshev-Markov
Inequalities.

1) The beta distribution
The beta distribution effectively approximates the SIR MD,

especially if no inflection points exist. If α and β are the
shape parameters of the beta distribution, the first and the
second moments are given by α/(α+β) and α(α+1)/((α+
β)(α + β + 1)), respectively. Using the expression (18), or
in the Rayleigh fading case, (19) and (20) for the first two
moments and matching them to the corresponding moments
of the beta distribution, we can solve for α and β:

PROPOSITION 2 (Approximation of the SIR MD with the beta
distribution). The parameters α and β for the beta distribution
are given as

α =

(
M̂1

κ,m(θ)(1− M̂1
κ,m(θ))

M̂2
κ,m(θ)− M̂1

κ,m(θ)2
− 1

)
M̂1

κ,m(θ)

β =

(
M̂1

κ,m(θ)(1− M̂1
κ,m(θ))

M̂2
κ,m(θ)− M̂1

κ,m(θ)2
− 1

)
(1− M̂1

κ,m(θ)) (24)

The SIR MD can be approximated by the beta distribution:

P(Pκ,m(θ) > y) ≈


1− Iy(α, β), y ∈ [0, 1],

1, y < 0,

0, y > 1,

(25)

where I(·)(α, β) is the regularized incomplete beta function.

2) Chebyshev-Markov inequalities
Given a moment sequence (M̂ b

κ,m(θ))nb=0, the order n CM
inequalities give the pointwise infimum and supremum

inf
F∈Fn

F (y), sup
F∈Fn

F (y) (26)

for any y ∈ [0, 1], where Fn is the set of the distributions that
agree with the moment sequence. The inequalities established
by the infima and suprema are called the CM inequalities [24,
Th. 1]. We use the CM inequalities to validate the theory by
comparing the CM inequalities derived from the moments (18)
to the simulated SIR MD in the spherical model.
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(a) No LoS component, m = 1, with a small κ. (b) Few scattered paths, m = 5, with a small κ.

(c) No LoS component, m = 1, with a large κ. (d) Few scattered paths, m = 5, with a large κ.

Fig. 5: Simulated SIR MD and the beta distribution approximations with different SIR thresholds θ and fading variables m ∈ {1, 5}. We plot the thresholds
θ ∈ {−10,−3, 0, 3, 10} dB and θ ∈ {−20,−17,−13,−10,−3} dB (from top to bottom) for κ ∈ {log(2), 10 log(2)}, respectively. The path loss exponent
γ = 2 (recall that, like in the analysis, this does not notably affect the distribution) and the parameters λ ∈ 1.9 · {10−3, 10−4}/km2, h = 1200 km, ϵ = 80°
and φRX = 1.6° corresponding to κ ∈ {log(2), 10 log(2)}, respectively. (Recall that the only essential spatial system parameter is κ. The other parameters
have only a minor impact on the simulated values.) Order 15 CM inequalities are depicted for θ ∈ {0,−13} dB for κ ∈ {log(2), 10 log(2)}, respectively.

C. SIR MD numerical results

Figure 5 depicts the SIR MDs for varying densities and
fading parameters. The beta distribution approximations are
shown with the simulated SIR MD P(P(S̊IR > θ|Θ) > y)
using the spherical model, S̊IR = S̊/I̊ . We also plot order 15
CM inequalities for different θ (we omit the other inequalities
to avoid cluttering the figures). The beta distribution approxi-
mation is particularly feasible for the Rayleigh fading. One can
see that for κ = log(2), the variance in reliability is significant:
some SBSs have relatively good reliability, whereas others
have a bad connection. In particular, for m = 5, 1/5 of the
SBSs reach θ = 10 dB during the use period, and the rest
are experiencing an outage at this threshold. On the contrary,

for κ = 10 log(2), especially in the Rayleigh fading case, the
variance in the reliability is small. With m = 5, the variance is
more considerable for θ = −10 dB. Otherwise, the reliability
is near 0 or 1; depending on the SIR threshold needed for the
transmission, all SBSs perform very well, or the connection
is permanently down.

IV. SIR, SINR AND THROUGHPUT DISTRIBUTIONS

A. SIR distribution
The SIR distribution is straightforward to obtain from the

SIR MD since the first moment is just the complemen-
tary cumulative distribution function (CCDF) F SIR

κ,m(θ) ≜
P(SIRκ,m > θ) = M1

κ,m(θ) of the SIR. We denote F̂ SIR
κ,m(θ) ≜



9

Fig. 6: Simulated SIR distributions using the spherical model and the
corresponding theoretical distribution for κ ∈ log(2) · {0.1, 1, 10} and
m ∈ {1, 2, 5}. The parameters γ = 4, h = 600 km, ϵ = 80°, φRX = 1.6°
and λ ∈ 7.4 · {10−5, 10−4, 10−3}/km2 were used, which match the
respective κ. (Recall that the only essential spatial system parameter is κ.
The other parameters have only a minor impact on the simulated values.)

M̂1
κ,m(θ) the approximation of the SIR distribution. If θ is

the SIR threshold needed for successful transmission, F̂ SIR
κ,m(θ)

is the transmission success probability. We provide multiple
representations (27) − (30) for the transmission success prob-
ability.

COROLLARY 2 (SIR distribution). The transmission suc-
cess probability in a narrow-beam LEO Nakagami-m fading
interference-only uplink channel is given for m ∈ {1, 2} by

F SIR
κ,1 (θ) = F̂ SIR

κ,1 (θ) = M̂1
κ,1(θ) = (1 + θ)−κ̃, (27)

F SIR
κ,2 (θ) ≈ F̂ SIR

κ,2 (θ) = M̂1
κ,2(θ)

= 2e
−

√
2θκ̃√
2θ+2

(
θ√
2
+ 1

)−κ̃

− e
−

√
2θκ̃√
2θ+1

(√
2θ + 1

)−κ̃

,

(28)

respectively. The expression for general m ∈ N is

F SIR
κ,m(θ) ≈ F̂ SIR

κ,m(θ) = M̂1
κ,m(θ)

=

m∑
n=1

exp

{
−κ̃

∫ 1

0

1− (1 + Cnθr)
−m

r
dr

}
Bn (29)

=

m∑
n=1

exp

{
κ̃

(m− 1)!

m∑
k=1

[
m

k

]
Li2−k (−Cnθ)

}
Bn, (30)

where
[
m
k

]
is the unsigned Stirling number of the first kind,

Bn =
(
m
n

)
(−1)n+1 and Cn = (m!)−1/mn, n = 1, . . . ,m.

In the Rayleigh fading case, F SIR
1,κ (θ) = F̂ SIR

1,κ (θ). Recall that
the exponent also has the hypergeometric representation as in
(22).

Proof. The first moment follows directly by substituting b = 1
to (18). The polylogarithmic expression of the integral in (29)
is derived in Appendix D. The Rayleigh case follows directly
from (19), and the m = 2 case follows from substituting

Li1(−Cnθ) = − log(1+Cnθ) and Li0(−Cnθ) = −Cnθ/(1+
Cnθ) to (30).

With Rayleigh fading, the SIR distribution (27) is a Lomax
(Pareto Type II) distribution with the shape parameter κ̃.

1) Average SIR and variance
Fading has little effect on the first moment of the SIR (cf.

Section IV-C). Hence, an expression for the average SIR over
the uniformly distributed SBSs is simply given by integrating
the SIR CCDF in the Rayleigh fading case over the positive
half-line:

E(SIRκ,m) ≈ E(SIRκ,1) =

∫ ∞

0

F SIR
κ,1 (y)dy =

1

κ̃− 1
, (31)

for κ̃ > 1. The mean is divergent for κ̃ ≤ 1, that is,
κ ≤ log(2): On average, having less than log(2) UEs inside
the −3 dB footprint, a significant fraction of SBSs have a
very high SIR, and a significant fraction has a low SIR.
Consequently, the expected SIR and the variance are unde-
fined. Under this threshold, the interference-only channel is
inadequate in modeling the mean SINR even for minimal noise
values—physically bounded by the noise. Furthermore, the nth
moment of the Lomax distribution exists if and only if κ̃ > n,
implying that the variance of the SIR is infinite for 1 < κ̃ ≤ 2
and undefined for 0 < κ̃ ≤ 1.

2) Decay rate of the tail
The asymptotic decay rate helps to gain insight

into the SIR distribution. Heuristically, we know that
limy→∞ Li2−k(−Cny) = 0 for k > 2; otherwise, the term
exp{Li2−2(−Cny)} = exp{−Cny/(1 + Cny)} decays the
slowest in (30). Estimating the polylogarithm, the asymptotic
decay rate

ρSIR ≜ − lim
y→∞

log(F̂ SIR
κ,m(y))

y
≤ 0. (32)

The condition ρSIR = 0 is equivalent to the heavy-tailed
distribution in that the exponential moment E(etSIRκ,m) is
divergent for any t > 0 [25, Th. 2.6]. The SIR distribution
has a slowly decaying tail for all κ and m. In practice, one
may expect frequent outliers in the SIR.

3) SIR numerical results
In Figure 6, we plot the theoretical and simulated transmis-

sion success probability for various κ: F̂ SIR
κ,m(θ) and P(S̊IR >

θ), respectively. The Lomax distribution (27) approximates all
SIR distributions in the tail. It can generally be used to model
the SIR distribution in the simple coverage region θ ≥ 1.
Other than the tail distribution, the Lomax distribution gives
pessimistic values for the probability of coverage.

B. SINR distribution
The tail behavior observed in the model is due to the

lack of sidelobes or noise. In this section, we add a constant
dimensionless noise power term W > 0 to I and analyze the
SINRκ,W,m ≜ S/(I + W ). Define the transmission success
probability F SINR

κ,W,m(θ) ≜ P(SINRκ,W,m > θ).

PROPOSITION 3 (SINR distribution). In the interference-plus-
noise-limited channel, for m = 1;

F SINR
κ,W,1(θ) = (1 + θ)−κ̃Eκ̃+1

(
W (d̂h,ϵ/d0)

γθ
)
κ̃, (33)
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and for general m ∈ N;

F SINR
κ,W,m(θ) ≈ F̂ SINR

κ,W,m(θ)

≜
m∑

n=1

exp

{
κ̃

(m− 1)!

m∑
k=1

[
m

k

]
Li2−k (−Cnθ)

}
Bn

· Eκ+1

(
mCnW (d̂h,ϵ/d0)

γθ
)
κ̃, (34)

where Eκ̃+1(·) is the generalized exponential integral,
[
m
k

]
is the unsigned Stirling number of the first kind, Bn =(
m
n

)
(−1)n+1 and Cn = (m!)−1/mn, n = 1, . . . ,m. Recall

that the exponent has the integral and hypergeometric repre-
sentations (21) and (22), respectively.

Proof. We give the proof with Rayleigh fading. The proof for
the general m is analogous by using the exponential form to
approximate the CCDF of the gamma distributed gx0 , similar
to the derivation given in Appendix C.

F SINR
κ,W,1(θ) = P

(
gx0 >

∑
x∈G

gxx+
W (d̂h,ϵ/d0)

γθ

G[Dh,ϵ∥x0∥]

)
(a)
= EΦEg

(
e−θ

∑
x∈G gxx

)
EΦ

(
e−W (d̂h,ϵ/d0)

γθ/G[Dh,ϵ∥x0∥]
)

(b)
= E

∏
x∈G

1

1 + θx
Eκ̃+1

(
W (d̂h,ϵ/d0)

γθ
)
κ̃

(c)
= (1 + θ)−κ̃Eκ̃+1

(
W (d̂h,ϵ/d0)

γθ
)
κ̃. (35)

(a) follows from the equivalence of the GP and RGP, and thus,
G is independent of the served UE x0, and the expectation
of the exponential term (that follows from the CCDF of
the exponential r.v. gx0

) can be separated into the product.
In (b), we used the Laplace transform L1/G[Dh,ϵ∥x0∥](s) ≜
E exp{−s/G[Dh,ϵ∥x0∥]} = Eκ̃+1(s)κ̃ of the inverse largest
gain, which can be derived directly from the definition of
the Laplace transform using the (derivative of the) CDF
P(1/G[Dh,ϵ∥x0∥] < r) = 1 − (1/r)κ̃, which is not difficult
to establish by using the nearest-neighbor distribution of the
PPP on R2 [7, Example 2.11]. (c) follows by evaluating the
PGFL (15) of G.

For W = 0, we directly retrieve the SIR distribution;
F SINR
κ,0,m(θ) = F SIR

κ,m(θ).
1) SINR numerical results
In Figure 7, we plot the theoretical SINR distribution and

the simulated P( ˚SINR > θ) ≜ P(S̊/(I̊+W ) > θ) distribution
for various κ. The noise is set to W = 0.2 · (dh,ϵ/d0)−γ ,
or equivalently, measured in decibels w.r.t. the average signal
strength of a UE at o is 10 log10(W/(d̂h,ϵ/d0)

−γ) = −7
dB. Contrary to the SIR distribution, smaller κ does not
necessarily produce better coverage probabilities: With a small
κ, the served UE is likely to be far away from the SBS, and
because of the path loss, the noise will restrict the SINR.
Approximately at κ = log(2), the coverage probabilities are
at maximum.

The error, particularly visible for κ = 0.1 log(2), is due to
the low elevation angle ϵ = 45°, which causes a significant
difference between d̂h,ϵ and dh,ϵ and a significantly elliptical
main lobe footprint in the simulations.

Fig. 7: Simulated SINR distributions using the spherical model and the
corresponding theoretical distribution for κ ∈ log(2) · {0.1, 1, 10} and
m ∈ {1, 2, 5}. The parameters γ = 2, h = 200 km, ϵ = 45°, φRX = 1.6°,
W = (d̂h,ϵ/d0)

−γ and λ ∈ 1.8 · {10−4, 10−3, 10−2}/km2 were used,
which match the respective κ. (Recall that the only essential spatial system
parameter is κ. The other parameters have only a minor impact on the
simulated values.)

The simple analytic expression F SINR
κ,W,1(θ) (33) derived for

the exponential power fading can be used to model the SINR
tail distribution, generally in the simple coverage region θ ≥ 1.
Other than the tail distribution, F SINR

κ,W,1(θ) gives pessimistic
values for the probability of coverage.

C. Throughput distribution

The instantaneous channel capacity is defined by Tκ,W,m ≜
log(1 + SINRκ,W,m)/ log(2) [18, Eq. (7.19)]. As observed
from Figure 8, the type of fading has a negligible effect on the
average normalized throughput, or spectral efficiency. Being
simplest, we derive the throughput for the Rayleigh fading
and denote τ̂κ,W ≜ E (Tκ,W,1). For other fading cases, the
exact values can be derived similarly to τ̂κ,W .

1) Average throughput in the interference-limited channel
Recall the SIR distribution F SIR

κ,1 (·) (27). Without noise, one
can evaluate the average throughput:

τ̂κ,0 =
1

log(2)

∫ ∞

0

P(SIRκ,1 > et − 1)dt

=

∫ ∞

0

F SIR
κ,1 (e

t − 1)

log(2)
dt

(a)
=

∫ ∞

0

(1 + v)−κ̃−1

log(2)
dv = 1/κ,

(36)

where we use the integration by substitution v = et − 1 in
(a). Recall that κ = κ̃ log(2) (13) is the mean number of UEs
inside the −3 dB footprints of the SBSs.
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2) Average throughput in the interference-plus-noise-
limited channel

Recall the SINR distribution F SINR
κ,W,1(·) (33). With noise,

similar to (36), the average throughput is given by

τ̂κ,W =
1

log(2)

∫ ∞

0

F SINR
κ,W,1(v)

1 + v
dv

=
1

log(2)

∫ ∞

0

(1 + v)−κ̃−1Eκ̃+1

(
W (d̂h,ϵ/d0)

γv
)
κ̃dv.

(37)

Throughout the rest of the work, let us (vaguely) mean by
moderate noise that the expected SNR is around 1 for the
served UE at o, i.e., W ≈ (d̂h,ϵ/d0)

−γ , or equivalently, the
decibels w.r.t. the average signal strength of a UE at o is
10 log10(W/(d̂h,ϵ/d0)

−γ) ≈ 0 dB.
τ̂κ,W is complex to evaluate other than numerically for

W > 0. For this reason, we will utilize two approximations of
the exponential integral Eκ̃+1(y) to help evaluate the integral
(37). The following closed-form approximation of the average
throughput is simple yet suitable for moderate or large noise.
It is pessimistic except, not visibly, optimistic for small κ.
Furthermore, Tκ,W ∼ τ̂κ,W ∼ τ̂κ,0 = 1/κ, κ → ∞.

APPROXIMATION 1 (A simple approximation of the average
throughput). For moderate to large noise, the average normal-
ized throughput can be approximated by

τ̂κ,W ≈ Tκ,W ≜
κ̃

(κ̃+ 1)(κ̃+W (d̂h,ϵ/d0)γ) log(2)
. (38)

Proof. First, we use the first order asymptotic approx-
imation Eκ̃+1(y) ≈ e−y/(κ̃ + 1) [26, Th. 51] for
Eκ̃+1(W (d̂h,ϵ/d0)

γv) to help to evaluate (37):

τ̂κ,W ≈ κ̃eW (d̂h,ϵ/d0)
γ

Eκ̃+1(W (d̂h,ϵ/d0)
γ)

(κ̃+ 1) log(2)
.

The final result is achieved by using approximation
Eκ̃+1(y) ≈ e−y/(κ̃ + y) instead of the exponential inte-
gral.

3) Optimal average throughput
We can solve dTκ,W /dκ = 0 for κ, and get the maximizing

κmax
τ ≜ argmax{κ : Tκ,W } =

√
W (d̂h,ϵ/d0)γ log(2). (39)

For W = (d̂h,ϵ/d0)
−γ , κmax

τ = log(2): This follows the
intuition that, with moderate noise, the performance metric is
maximized at UE density where the expected SIR approaches
infinity (recall (31)). By the void probability of the PPP, at
κ = log(2), the served UE is inside the −3 dB footprint at
the probability 1− exp{− log(2)} = 1/2 and inside the −10
dB footprint at the probability 1− exp{− log(10)} = 9/10—
this reflects a physically sensible cell size. For W → 0,
we approach the interference-only channel, and κmax

τ = 0
reflects the no-noise-nor-interferers case, trivially maximizing
the throughput (recall (16) and the independence of the SIR
from the distance to the served UE).

Fig. 8: Simulated actual and the theoretical expected normalized throughput
for κ ∈ [0, 15] and W ∈ {0, 0.2, 1, 5} · (d̂h,ϵ/d0)−γ (from top to bottom)
and m ∈ {1, 2,∞}. The parameters γ = 4, h = 1200 km, ϵ = 85°, φRX =
1.6 and λ ∈ [0, 4.2 · 10−3]/km2 were used, which match the respective
κ. (Recall that the only essential spatial system parameter is κ. The other
parameters have only a minor impact on the simulated values.)

4) Average throughput numerical results
In Figure 8, we plot the average throughput for various

κ and W and compare the theoretical E(Tκ,0,m) ≈ 1/κ
and E(Tκ,W,m) ≈ τ̂κ,W to the simulated E log(1 + S̊IR)
and E log(1 + ˚SINR), respectively. We show the simulated
values in Rayleigh, Nakagami-2, and Nakagami-∞ scenarios.
The simulated results are similar in all fading scenarios. The
simple approximation Tκ,W is very good for moderate and
large noise. For W = 0.2 · (d̂h,ϵ/d0)−γ , the interference-only
expression (36) closely approximates the throughput for κ > 1.
The optimal κ is close to log(2) with all depicted noise values,
as implied by (39). Further, the average spectral efficiency is
relatively flat w.r.t. κ for large noise.

Recall the SIR MD analysis in Section III and Figure 5:
Even though κ ≈ log(2) maximizes the average throughput
for moderate noise, the SBS reliability significantly vary at
this κ. The same insight is reflected in the undefined or infinite
variance of the Lomax SIR distribution (27) for κ ≤ 2 log(2).

V. CONCLUSIONS

We derived the SIR and its meta distribution (MD), as
well as the SINR distribution and the expected throughput
in a narrow-beam LEO uplink Nakagami channel in the
presence of Poisson distributed interferers. Some expressions
of the distributions are very simple; the SIR follows a Lomax
distribution in the simple coverage region (and in the general
coverage region for the Rayleigh fading), and the average
throughput is proportional to the inverse of the density of
the user equipments (UEs) in the interference-only channel.
In the interference-plus-noise-limited channel, we obtained a
UE density maximizing the average throughput. Regardless
of the antenna gain width, altitude, or elevation angle, with
moderate noise levels, the maximizing density approximately
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corresponds to, on average, κ ≈ log(2) UEs inside the satellite
base stations (SBS) −3 dB footprints. On the contrary, it was
observed that to maintain a consistent user experience, we
must make the distribution of UEs dense because of the highly
varying received signal strengths from the UEs if they are
sparsely located (the Lomax distribution representing the SIR
distribution has a divergent variance for κ ≤ 2 log(2)).

In other words, maximizing average performance by opti-
mizing the UE density comes with the cost of reduced user
fairness. In light of the presented model, a possible solution
for maintaining a consistent user experience is to increase
the density of the constellation: should we consider that each
UE has a serving satellite, the density of UEs determines the
satellite constellation density directly. Furthermore, interfer-
ence cancellation and combination can be implemented so
that a single SBS can serve single or even multiple densely
located UEs with satisfactory SIR and SINR. Alternatively,
it is possible to complement the satellite network with a
terrestrial network that serves the UEs during an outage in the
LEO network. This work helps to characterize the achievable
average performance and the SBS reliability with different
co-channel UE densities, altitudes, elevation angles, and SBS
antenna gain widths.

The paper introduces a novel and analytically tractable
framework for modeling narrow-beam LEO communications
using stochastic geometry. The approach yields simpler results
than existing models in the literature while maintaining high
accuracy. Future research could improve the model’s applica-
bility by investigating explicit shadowing effects and the more
realistic distribution of UEs, particularly regarding the impact
of interference on the narrow-beam and narrowband LEO per-
formance. Furthermore, studying interference cancellation and
signal combination within the framework would be interesting.
The proposed model and the insights of this paper also apply
to the downlink, considering that the SBS footprint locations
on the Earth are distributed according to the HPPP.

APPENDIX A
SCALING CONSTANT

See Figure 9. We have that ζz = tan−1(z/h). The derivative
of φx around o is given approximately by

d

d∥x∥
φx =

d

dz
ζz =

d tan−1(z/h)

dz
=

h

h2 + z2

(a)
≈ h

h2 − h2 + d̂2h,ϵ

(b)
=

h

h2/ sin2(ϵ)
=

sin2(ϵ)

h
= Dh,ϵ, (40)

where (a) follows from Pythagoras’s theorem, and (b) is
standard trigonometry.

APPENDIX B
GEOMETRY OF THE SPHERICAL SYSTEM MODEL

See Figure 10. Directly from the law of cosines, we have

dh,ϵ(ξ) =
√
R2

⊕ + (R⊕ + h)2 − 2R⊕(R⊕ + h) cos(ξ). (41)

Furthermore, we may derive the relation between ϵ and ξ:
The law of cosines states that

(R⊕+h)2 = dh,ϵ(ξ)
2+R2

⊕−2dh,ϵ(ξ)R⊕ cos(π/2+ϵ), (42)

Fig. 9: Geometric interpretation of the variables in Appendix A

oE

dh;0

R) + h
R)

SBS

Sub-satellite point

9

0

Fig. 10: Sketch of the geometry of the spherical model

which is analytically solvable for ξ.

APPENDIX C
MOMENTS OF THE SIR MD WITH NAKAGAMI FADING

The moments of the SIR MD are derived as follows.

M (b)
κ,m(θ) = E

P(gx0 > θ
∑
x∈G

gxx

∣∣∣∣Φ
)b


(a)
≈ E

[(
1−

Eg

[(
1− exp

{
−m(m!)−1/mθ

∑
x∈G

gxx

})m])b]
(b)
= E

[(
m∑

n=1

(
m

n

)
(−1)n+1·

Eg exp

{
−nm(m!)−1/mθ

∑
x∈G

gxx

})b]
(c)
=

∑
k1+···+km=b;
k1,...,km≥0

(
b

k1, . . . , km

)
·

exp

−κ̃

∫ 1

0

[
1−

∏m
n=1

(
1 + (m!)−1/mθnr

)−knm
]

r
dr

 ·

m∏
n=1

(
m

n

)kn

(−1)kn(n+1). (43)

In (a), we use the upper bound for the incomplete gamma
function presented in the proof of Theorem 2 in [27]. In (b),
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we use the binomial theorem. In (c), we use the multinomial
theorem and the Laplace transform of the gamma distribution
and PGFL (15) of the GP. We denote (43) as M̂

(b)
κ,m(θ). With

m = 1, the approximation is exact: M (b)
κ,m(θ) = M̂

(b)
κ,m(θ).

APPENDIX D
POLYLOGARITHMIC REPRESENTATION

It is straightforward to see that for m = 1, the moment
(43) can be expressed with an exponential with the follow-
ing integral, which is further represented as the generalized
hypergeometric function.∫ 1

0

(
1− 1

(1 + θr)b

)
/rdr = θb3F2(1, 1, 1 + b; 2, 2;−θ)

(44)

for b ∈ C, θ ∈ C \{−1}. Furthermore, the hypergeometric se-
ries have a polylogarithmic representation. Using the definition
of the hypergeometric series, for |θ| < 1 and b ∈ N;

3F2(1, 1, 1 + b; 2, 2;−θ) =

∞∑
n=0

(1)n(1)n(1 + b)n
(2)n(2)n

(−θ)n

n!

=

∞∑
n=0

(1 + b)n
(n+ 1)2n!

(−θ)n =
1

b!

∞∑
n=0

(n+ 1)b
(n+ 1)2

(−θ)n

(a)
=

1

b!

∞∑
n=0

∑b
k=0

[
b
k

]
(n+ 1)k

(n+ 1)2
(−θ)n

=
1

b!

b∑
k=0

[
b

k

] ∞∑
n=0

(−θ)n

(n+ 1)2−k

(b)
= − 1

b!

b∑
k=0

[
b

k

]
Li2−k(−θ)

θ
.

(45)

In (a), we used the expansion of the rising Pochhammer
factorial; in (b), we used the definition of the polylogarithm.
The expression can be generalized for θ ∈ C \ {−1} through
the analytic continuation of the polylogarithm. 4
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