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Abstract

We give a simplification of the proof of the Bott periodicity theorem presented by Aguilar and
Prieto. These methods are extended to provide a new proof of the real Bott periodicity theorem. The
loop spaces of the groupsO andU are identified by considering the fibers of explicit quasifibrations
with contractible total spaces. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In [1], Aguilar and Prieto gave a new proof of the complex Bott periodicity theorem
based on ideas of McDuff [4]. The idea of the proof is to use an appropriate restriction
of the exponential map to construct an explicit quasifibration with base spaceU and
contractible total space. The fiber of this map is seen to beBU×Z. This proof is compelling
because it is more elementary and simpler than previous proofs. In this paper we present
a streamlined version of the proof by Aguilar and Prieto, which is simplified by the
introduction of coordinate free vector space notation and a more convenient filtration for
application of the Dold–Thom theorem. These methods are then extended to prove the real
Bott periodicity theorem.

2. Preliminaries

We shall review the necessary facts about quasifibrations that will be used in the proof
of the Bott periodicity theorem, as well as prove a technical result on the behavior of the
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classical groups under linear isometries. The latter will be essential for our applications of
the Dold–Thom theorem. A surjective mapp : X → Y is a quasifibration if for everyy ∈ Y

andx ∈ p−1(y), the natural map

πi

(
X,p−1(y);x

) → πi(Y ;y)

is an isomorphism for everyi. It follows immediately that ifF is a fiber ofp, then there is
a long exact homotopy sequence associated top.

If X is contractible, we obtain a map of the quasifibration sequence to the path space
fibration.

F X Y

ΩY P Y Y

It follows from the long exact homotopy sequences and the five lemma thatF � ΩY .
The definition of a quasifibration does not lend itself to easy verification. The following

theorem of Dold and Thom [2] gives a more practical program. Recall that for a map
p : X → Y , a subsetS ⊆ Y is said to bedistinguished if for every openU ⊆ S, the map
p−1(U) → U is a quasifibration.

Theorem 2.1. Suppose p : X → Y is a surjection. Suppose that X is endowed with an
increasing filtration {FiY }, such that the following conditions hold.

(1) FnY − Fn−1Y is distinguished for every n.
(2) For every n there exists a neighborhood N of Fn−1Y in FnY and a deformation

h : N × I → N such that h0 = Id and h1(N) ⊆ Fn−1Y .
(3) This deformation is covered by a deformation H : p−1(N) × I → p−1(N) such that

H0 = Id, and for every y ∈ N , the induced map

H1 : p−1(y) → p−1(h1(y)
)

is a weak homotopy equivalence.
Then p is a quasifibration.

Let Λ beR, C, or H, and letI(W,V ) denote the space of linear isometries fromW to
V , whereW andV are (possibly countably infinite dimensional) inner product spaces over
Λ topologized as the unions of their finite dimensional subspaces. LetG(W) be O(W),
U(W), or Sp(W), whereG(W) is the space finite type linear automorphisms ofW . We
define a continuous map

ΓW,V :I(W,V ) → Map
(
G(W),G(V )

)
.

Writing ΓW,V (φ) = φ∗, if X ∈ G(W), thenφ∗(X) : V → V is defined by

φ∗(X) = φXφ−1 ⊕ Iφ(W)⊥
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under the orthogonal decompositionV = φ(W) ⊕ φ(W)⊥. Let U andV be countably
infinite dimensionalΛ inner product spaces. In [3, II.1.5] it is proven thatI(U,V) is
contractible. So we have the following lemmas.

Lemma 2.2. Let φ,φ′ ∈ I(U,V). Then the induced maps

φ∗, φ′∗ : G(U) → G(V)

are homotopic.

Lemma 2.3. Let φ ∈ I(U,V). Then φ∗ is a homotopy equivalence.

3. Complex Bott periodicity

The existence of the fiber sequence

U → EU → BU

yields that ΩBU � U . We aim to prove the following theorem, which implies that
Ω2BU � BU × Z.

Theorem 3.1. Let U denote the infinite unitary group. There exists a quasifibration
sequence

BU × Z → E → U

such that E is contractible. Consequently, ΩU � BU × Z.

Fix a complex infinite dimensional inner product spaceU ∼= C∞. For W ⊂ U , a
finite dimensional complex subspace, letU(W ⊕ W) denote complex linear isometries
of W ⊕ W . If V ⊆ W , then there is a natural mapiV ,W : U(V ⊕ V ) → U(W ⊕ W) given
by

iV ,W (X) = X ⊕ I(W−V )⊕(W−V ),

whereW − V denotes the orthogonal complement ofV in W . Then

U = lim→ W U(W ⊕ W),

where the colimit is taken over all finite dimensional subspacesW ⊂ U .
Let H(W ⊕ W) denote the hermitian linear transformations ofW ⊕ W . Define

E(W) = {
A | σ(A) ⊆ I = [0,1]} ⊆ H(W ⊕ W),

whereσ(A) is the spectrum ofA. Define

pW : E(W) → U(W ⊕ W)

by pW (A) = exp(2π iA). Analogous toU , define a mapE(V ) → E(W) for V ⊆ W by
sendingA to A⊕π(W−V )⊕0. Here,πY denotes orthogonal projection onto the subspaceY .
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It will become apparent that this map is defined so that, upon stabilization, the fibers are
BU × Z. Then the following diagram commutes, since e2π i = e0.

E(V )

pV

E(W)

pW

U(V ⊕ V ) U(W ⊕ W)

So taking colimits we obtain

p : E → U,

whereE = lim→ W E(W). We claim that this map is a quasifibration.E is clearly contract-

ible, by the contracting homotopyht (A) = tA.
To fix notation define

BUn(Y ) = {V | V ⊆ Y, dimC V = n}
for anyY ⊂ U ⊕U . ForV ⊆ W ⊂ U , there is a natural mapBUn(V ⊕V ) → BUm(W ⊕W)

given by sendingV ′ to V ′ ⊕ ((W − V ) ⊕ 0). Letting BU(Y ) = ∐
n BUn(Y ), define

BU × Z = lim→ W BU(W ⊕ W).

Lemma 3.2. Let X ∈ U(W ⊕ W). Then p−1
W (X) ∼= BU(ker(X − I)).

Proof. Defineφ : p−1
W (X) → BU(ker(X−I)) by φ(A) = ker(A−I). In order for this map

to make sense, we must verify that ker(A − I) ⊆ ker(X − I). SupposeAv = v. Then

Xv = exp(2π iA)v =
∑

n

(2π i)n

n! Anv = e2π iv = v

sov ∈ ker(X − I). Suppose the spectral decomposition ofX is

X = πV +
∑

i

λiπVi ,

whereλi �= λj for i �= j , λi �= 1, andπV ′ denotes orthogonal projection onto the subspace
V ′ of W ⊕ W . Note thatV = ker(X − I) and sinceX is unitary,|λi | = 1 for all i and
W ⊕ W = V ⊕ ⊕

i Vi . Suppose thatA ∈ p−1
W (X). ThenA, being hermitian, possesses a

spectral decomposition

A = πV ′ + 0 · πV ′′ +
∑

i

µiπWi ,

whereW ⊕ W = V ′ ⊕ V ′′ ⊕ ⊕
i Wi . Since

exp(2π iA) = πV ′⊕V ′′ +
∑

i

e2π iµi πWi = X

we conclude thatV ′ ⊕ V ′′ = V , Vi = Wi , and the eigenvaluesµi are uniquely determined
by the non-unital eigenvaluesλi of X. It is clear then thatφ(A) = V ′ possesses a
continuous inverseψ : BU(V ) → p−1

W (X) given by

ψ
(
V ′) = πV ′ +

∑
i

µiπVi . ✷
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We shall now prove thatp : E → U is a quasifibration. Define a filtration ofU by letting

FnU = {
X | dimC

(
ker(X − I)⊥

)
� n

} ⊆ U.

Let Bn = FnU − Fn−1U . The following lemma proves thatBn is distinguished.

Lemma 3.3. p−1(Bn) → Bn is a Serre fibration.

Proof. Suppose we are presented with the following commutative diagram.

{0} × Ik α
p−1(Bn)

Ik+1
β

Bn

We wish to give a lift of this diagram. By compactness, there exists a finite dimensional
W ⊂ U such that the diagram factors as

{0} × Ik α′
E(W) ∩ p−1(Bn) p−1(Bn)

Ik+1
β ′ U(W ⊕ W) ∩ Bn Bn

Now, let A(0, t1, . . . , tk) = α′(t1, . . . , tk) andX(t0, . . . , tk) = β ′(t0, . . . , tk). Then we may
write spectral decompositions, fort ∈ Ik, I k+1, respectively, as

A(t) = πW0(t) +
∑

l

µl(t)πWl(t),

X(t) = πV0(t) +
∑

l

λl (t)πVl(t),

where e2π iµl(t) = λl(t), W0(t) ⊆ V0(t), andWl(t) = Vl(t) for all t ∈ Ik . Consider, for an
n-dimensional complex subspaceW of U , the homogeneous space

Perpi,j (W ⊕ W) = {(
V ′,V ′′) | V ′,V ′′ ⊆ W ⊕ W, V ′ ⊥ V ′′,

dimC V ′ = i, dimC V ′′ = j
}

∼= U2n/Ui × Uj × U2n−(i+j).

There is a natural mapping

P : Perpi,j (W ⊕ W) → BUi+j (W ⊕ W)

given byP (V ′,V ′′) = V ′ ⊕ V ′′. Under the isomorphismBUi+j (W ⊕ W) ∼= U2n/Ui+j ×
U2n−(i+j), we see thatP is the natural projection map, and therefore is a fibration. Let
α′′ : Ik → Perpi,j (W ⊕ W) wherei = dimW0(0) andj = dim(V0(0) − W0(0)) be given
by α′′(t) = (W0(t),V0(t) − W0(t)), and letβ ′′ : Ik+1 → BUi+j (W ⊕ W) be given by
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β ′′(t) = V0(t). Our filtration is defined so that these maps make sense. Then, sinceP

is a fibration, there exists a liftω′′ making the diagram below commute.

{0} × Ik α′′
Perpi,j (W ⊕ W)

P

Ik+1
β ′′

ω′′

BUi+j (W ⊕ W)

Let µl(t) ∈ (0,1) be the unique solutions to e2π iµl(t) = λl(t), and write ω′′(t) =
(W ′

0(t),V0(t) − W ′
0(t)). Then lettingω′ : Ik+1 → E(W) ∩ p−1(Bn) be defined by

ω′(t) = πW ′
0(t) +

∑
l

µl(t)πVl(t)

we obtain a lift to our original diagram.✷
Define

BUV,W = lim→ W ′�W BU
(
V ⊕ (

W ′ − W
) ⊕ (

W ′ − W
))

for W finite dimensional andV ⊆ W ⊕ W . It is clear thatBUV,W
∼= BU × Z, by a

(non-canonical) choice of isometryV ⊕ W⊥ ⊕ W⊥ ∼= U ⊕ U . Then if X ∈ U(W ⊕ W),
p−1(X) ∼= BUker(X−I ),W .

Define a neighborhoodNn of Fn−1U in FnU to be

Nn = {X ∈ FnU : dimC Eige2π i[1/3,2/3]X < n} ⊆ FnU,

where EigSX is the direct sum of the eigenspaces ofX corresponding to eigenvalues
in S. In other words,Nn is simply the space of unitary matrices with “extra eigenvalues”
in a neighborhood of 1 that we shall deform to 1, pushing the matrix intoFn−1U . Let
f : I → I be defined by

f (x) =




1, x � 2
3,

3x − 1, 1
3 � x � 2

3,

0, x � 1
3 .

Clearlyf � Id rel∂I . Let H be such a homotopy. Then, sinceH fixes∂I , there exists an
h : S1 × I → S1 such that the following diagram commutes.

I

e2π i(·)

Ht
I

e2π i(·)

S1
ht

S1

Then forA ∈ E, whereA = ∑
i µiπWi , define a new hermitian matrixHt(A) where for

t ∈ I ,

Ht(A) =
∑

i

Ht (µi)πWi .
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We may similarly defineht : U → U . Observe that theht : Nn → Nn satisfyh1 = Id and
h0(Nn) ⊆ Fn−1U . Furthermore,ht is covered byHt : p−1(Nn) → p−1(Nn).

Consider the induced map on fibersH0 : p−1(X) → p−1(h0(X)). We need only prove
that this map is a weak equivalence to complete the proof thatp is a quasifibration. This
follows from the following lemma.

Lemma 3.4. Suppose V ⊆ V ′ ⊆ W ⊕ W and V ′′ ⊆ V ′ − V . Then the map BUV,W →
BUV ′,W given by sending Y to Y ⊕ V ′′ is a weak equivalence.

Proof. If C is a pointed compact space, then the induced map on reducedK-theory

K̃C(C) ∼= [
C, BUV,W

] → [
C, BUV ′,W

] ∼= K̃C(C)

is just the addition of a trivial bundle, so induces an isomorphism. In particular, letting
C = Si , we get an isomorphism of homotopy groups.✷

4. Real Bott periodicity

The same methods used in the complex case lend themselves to computing the iterated
loop spaces ofBO as well.

Theorem 4.1. The loops of BO may be identified as follows.

ΩBO � O,

ΩO � O/U,

ΩO/U � U/Sp,

ΩU/Sp � BSp × Z,

ΩBSp � Sp,

ΩSp � Sp/U,

ΩSp/U � U/O,

ΩU/O � BO × Z.

We shall prove this theorem one loop at a time by constructing quasifibrations with
contractible total spaces. Note thatΩBO � O andΩBSp � Sp are obvious.

4.1. ΩO � O/U

Let U ∼= C∞ be an infinite dimensional complex inner product space. For finite
dimensional complexW ⊂ U , let O(W) denote the real linear isometries ofW . Define

E(W) = {
A | σ(A) ⊆ [−i, i]} ⊆ o(W),

where o(W) is the lie algebra ofO(W); it consists of skew symmetric real linear
transformations. Observe thatE(W) is contractible. Define

pW : E(W) → O(W)
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by pW (A) = −exp(πA). If V ⊆ W then we have mapsO(V ) → O(W) given by sending
X to X ⊕ IW−V , andE(V ) → E(W) given by sendingA to A ⊕ i wherei is viewed
as a skew symmetric real transformation ofW − V . Upon taking colimits over finite
dimensional subspaces ofU , these maps yield a mapp : E → O . We claim this map is
a quasifibration ontoSO, with fiberO/U .

We need a convenient way to think aboutO/U . For any finite dimensionalW ⊂ U ,
let CX(W) denote the space of complex structures onW , that is, the space of real linear
isometriesJ : W → W such thatJ 2 = −I .

Proposition 4.2. Let W ⊂ U be finite dimensional. Then O/U(W) ∼= CX(W).

Proof. O(W) acts transitively onCX(W) by conjugation, with stabilizerU(W). ✷
The fiber ofp is therefore identified in the following lemma.

Lemma 4.3. For X ∈ SO(W), p−1
W (X) ∼= CX(ker(X − I)).

Proof. Regardingo(W) ⊆ u(W ⊗R C), we see that ifA ∈ p−1(X) then

A = iπV ′ − iπV ′′ +
∑

j

µj πWj ,

whereµj ∈ (−i, i). If we regardO(W) ⊆ U(W ⊗R C), then we may write

X = πV +
∑

j

λj πVj ,

whereλj �= 1. Thus,V = V ′ ⊕ V ′′ = ker(X − I) ⊗R C, Vj = Wj andµj is completely
determined byλj for all j . We conclude thatA(ker(X − I)) ⊆ ker(X − I), and
A2|ker(X−I ) = −Iker(X−I ). Therefore A ∈ CX(ker(X − I)). Conversely, givenJ ∈
CX(ker(X − I)), let A = J + ∑

j µj πVj . ThenA ∈ p−1
W (X). ✷

Define

O/UV,W = lim→ W ′�W O/U
(
V ⊕ (

W ′ − W
))

for V ⊆ W ⊂ U whereW is a complex space andV is a real even dimensional subspace.
Then it is clear that forX ∈ SO(W), we havep−1(X) ∼= (O/U)ker(X−I ),W . Define a
filtration onSO by letting

FnSO = {
X ∈ SO: dimR ker(X − I)⊥ � 2n

}
.

We wish to show thatBn = FnSO − Fn−1SO is distinguished. Observe thatBn is the set of
X ∈ SO such that dimker(X − I)⊥ = 2n. We claim thatp−1(Bn) → Bn is actually a Serre
fibration. The proof of this is completely analogous to the proof of Lemma 3.3; it amounts
to observing that the natural mapOm/Un × Om−2n → Om/O2n × Om−2n is a fibration.

We define a neighborhoodNn of Fn−1SO in FnSO by

Nn = {X | dimR Eige2π i[1/4,3/4]X < 2n} ⊆ FnSO.
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Let f : [−i, i] → [−i, i] be defined by

f (x) =




−i, Im(x) < −1
2,

2x, −1
2 � Im(x) � 1

2,

i, Im(x) > 1
2.

Thenf � Id rel{−i, i}. Let H be such a homotopy, and leth : S1 × I → S1 be such that
the following diagram commutes for allt ∈ I .

[−i, i] Ht

−eπ(·)

[−i, i]
−eπ(·)

S1
ht

S1

ThenH andh induce the deformations ofNn into Fn−1SO as required in the Dold–Thom
theorem. The fact thatH0 induces weak equivalences on fibers follows from the following
lemma, which is proved by Lemma 2.3.

Lemma 4.4. Let V ⊆ V ′ be even dimensional real subspaces of a finite dimensional
complex space W ⊂ U . Then the map f : O/UV,W → O/UV ′,W given by sending A to
A ⊕ J for some fixed complex structure J on V ′ − V is a homotopy equivalence.

4.2. ΩO/U � U/Sp

Let U ∼= H∞ be an infinite dimensional quaternionic inner product space. For finite
dimensionalW ⊂ U , O(W) is the space of real linear isometries ofW , andU(W) is the
space of complex linear isometries ofW . ThenO/U = lim→ W O/U(W). Define

E(W) = {
A | A is conjugate linear andσ(A) ⊆ [−i, i]} ⊆ o(W).

Note thatu(W)⊥ ⊆ o(W) is the collection of all skew symmetric conjugate linear trans-
formations ofW . This implies that every coset[X] ∈ SO/U(W) has a representative
X ∈ O(W) such thatX = exp(A) for some skew symmetric conjugate linear transfor-
mationA. Also observe thatE(W) is contractible. Define

pW : E(W) → O/U(W)

by pW (A) = i exp(1
2πA). If V ⊆ W then we have mapsO/U(V ) → O/U(W) given by

sending[X] to [X ⊕ IW−V ], andE(V ) → E(W) given by sendingA to A ⊕ j wherej

is viewed as a conjugate linear skew-symmetric transformation ofW − V . Upon taking
colimits over finite dimensional quaternionic subspaces ofU , we obtainp : E → O/U ,
which we wish to show is a quasifibration overSO/U , with fiberU/Sp.

For W ⊂ U , let QS(W) denote the space of quaternionic structures onW . These are the
conjugate linear isometriesJ of W such thatJ 2 = −I .

Proposition 4.5. Let W ⊂ U be a finite dimensional quaternionic subspace. Then
U/Sp(W) ∼= QS(W).
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Proof. U(W) acts transitively onQS(W) with stabilizerSp(W). ✷
With the intent of understanding the coset representatives ofO/U(W), we give the

following two lemmas.

Lemma 4.6. Suppose that Y = exp(A), where A ∈ o(W) is conjugate linear. Then Y i =
iY −1.

Proof.

−iY i = −i exp(A)i = exp(−iAi) = exp(−A) = Y −1. ✷
Lemma 4.7. Suppose that Y,Z ∈ O(W) satisfy −iY i = Y −1 and −iZi = Z−1. Then
there is an X ∈ U(W) such that Y = XZ if and only if Y 2 = Z2.

Proof. Suppose that there is anX ∈ U(W) such thatY = XZ. Observe that

Z−1X−1i = Y −1i = iY = iXZ = XZ−1i

and thereforeXZX = Z. But thenY 2 = XZXZ = Z2.
Conversely, suppose thatY 2 = Z2. ThenY = (Y −1Z)Z, so we need only show that

Y −1Z ∈ U(W). But Y Z−1 = Y −1Z, soY −1Zi = iY Z−1 = iY −1Z. ✷
We shall say thatX ∈ SO(W) is a special representative of the equivalence class

[X] ∈ SO/U(W) if X = exp(A) for some conjugate linearA ∈ o(W). Observe that by
the previous two lemmas, any two special representatives are in the same equivalence class
if and only if they have identical squares.

Lemma 4.8. Every [X] ∈ SO/U(W) has a special representative.

Proof. SO/U(W) is geodesically complete, and the geodesicsγ of SO/U(W) all take
the form γ (t) = [Y exp(tB)] for Y ∈ SO(W) and B ∈ u(W)⊥ (see, for example, [5,
VI.2.15]). ✷
Lemma 4.9. Suppose that W ⊂ U is a finite dimensional quaternionic space. Let X be a
special representative of the class [X] ∈ SO/U(W). Then p−1

W ([X]) = U/Sp(ker(X2−I)).

Proof. We claim that if A ∈ p−1
W ([X]), then A defines a quaternionic structure on

ker(X2 − I), that is,A(ker(X2 − I)) ⊆ ker(X2 − I), and A2 = −I . If A ∈ E(W) we
may regardA as an element ofu(W ⊗R C), and write a spectral decomposition

A = iπW ′ − iπW ′′ +
∑

l

µlπWl ,

whereµl ∈ (−i, i). RegardingX ∈ U(W ⊗R C), its spectral decomposition is

X = πV ′ − πV ′′ +
∑

l

(λlπV ′
l
− λlπV ′′

l
),
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where |λl | = 1 and Im(λj ) < 0. If pW (A) = [i exp(1
2πA)] = [X], then we have

−exp(πA) = X2, soV ′ ⊕V ′′ = W ′ ⊕W ′′ = ker(X2 − I)⊗R C. SoA ∈ QS(ker(X2 − I)).
Conversely, suppose thatJ is a quaternionic structure on ker(X2−I). Then, regardingJ as
an element ofu(ker(X2 − I) ⊗R C) we obtain a spectral decompositionJ = iπW ′ − iπW ′′ .
Let

A = iπW ′ − iπW ′′ +
∑

l

µlπV ′
l ⊕V ′′

l
,

whereµl ∈ (−i, i) are the unique solutions in the given range to the equation−eπµl = λ2
l .

Then(i exp(1
2πA))2 = X2, soA ∈ p−1

W ([X]). ✷
ForV ⊆ W ⊂ U , let

U/SpV,W = lim→ W ′�W U/Sp
(
V ⊕ (

W − W ′)).
Then for a special representativeX ∈ SO(W), p−1([X]) may be canonically identified with
U/Spker(X2−I ),W . Of course,U/SpV,W

∼= U/Sp.
Define a filtration ofSO/U by

FnSO/U = {[X] | X is a special representative, dimC ker
(
X2 − I

)⊥ � 2n
}
.

We are implicitly using the fact that any two special representatives of the same coset have
identical squares in making this definition. Then the same argument used for the previous
spaces works for our present situation, to prove thatp−1(FnSO/U − Fn−1SO/U) →
FnSO/U − Fn−1SO/U is a Serre fibration. The key point is thatUm/Spn × Um−2n →
Um/U2n × Um−2n is a fibration. ThereforeFnU/Sp − Fn−1U/Sp is distinguished.

Just as in the previous section, one may define a neighborhoodNn of Fn−1SO/U in
FnSO/U by

Nn = {[X] | X is a special representative, dimEigeπ i[1/2,3/2]X2 < 2n
}
.

Let f andHt be defined as in the previous section. These yield the deformations required
by the Dold–Thom theorem. One verifies that the induced maps on fibers are weak
equivalences by the same methods in the previous section, by the following consequence
of Lemma 2.3.

Lemma 4.10. Suppose that V ⊆ V ′ ⊆ W where V and V ′ are even dimensional complex
spaces and W is a finite dimensional quaternionic subspace of U . Fix a quaternionic
structure J on V ′ −V . Then the map U/SpV,W → U/SpV ′,W given by sending A to A⊕J

is a homotopy equivalence.

4.3. ΩU/Sp � BSp × Z

Let U ∼= H∞ be a countably infinite dimensional quaternionic inner product space. For
finite dimensionalW ⊂ U , U(W ⊕ W) is the collection of complex linear isometries of
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W ⊕ W , andSp(W ⊕ W) is the subgroup of quaternion linear isometries ofW ⊕ W . Then
U/Sp = lim→ W U/Sp(W ⊕ W). Define

E(W) = {
A | jA = Aj, σ(A) ⊆ I

} ⊆ H(W ⊕ W),

whereH(W ⊕W) is the collection of all complex linear transformations ofW ⊕W which
are hermitian. Observe thatsp(W ⊕ W)⊥ = {A ∈ u(W ⊕ W): Aj = −jA}. Define a map
pW : E(W) → U/Sp(W ⊕ W) by pW (A) = [exp(π iA)]. Then, analogous to the previous
section, we have the following two lemmas which allow us to understand a system of coset
representatives ofU/Sp. The proofs are nearly identical to those of Lemmas 4.6 and 4.7,
respectively.

Lemma 4.11. Let W ⊂ U be finite dimensional. If A ∈ H(W ⊕ W) has the property that
Aj = jA, then X = exp(iA) has the property that Xj = jX−1.

Lemma 4.12. Suppose that Y,Z ∈ U(W ⊕ W) have the property that −jYj = Y −1 and
−jZj = Z−1. Then there exists an X ∈ Sp(W ⊕ W) such that Y = XZ if and only if
Y 2 = Z2.

We shall callX ∈ U(W ⊕ W) such thatX = exp(π iA) for someA ∈ E(W) a special
representative for the class[X] ∈ U/Sp(W ⊕ W). Note that the previous two lemmas
ensure that two special representatives are in the same equivalence class if and only if
they have the same squares. An argument similar to that of Lemma 4.8 ensures that every
coset ofU/Sp(W ⊕ W) has a special representative. Define, for a quaternionic spaceY ,

BSp(Y ) =
∐

n

{V | V is a quaternionic supspace ofY, dimVH = n}.

ForV ⊆ W ⊂ U , BSp(V ⊕V ) → BSp(W ⊕W) is given by sendingY to Y ⊕(W −V )⊕0,
so thatBSp × Z = lim→ W BSp(W ⊕ W). The fiber ofpW can now be identified.

Lemma 4.13. Let W ⊂ U be finite dimensional. If X is a special representative for
[X] ∈ U/Sp(W), then p−1

W ([X]) ∼= BSp(ker(X2 − I)).

Proof. SupposeA ∈ E(W). Write the spectral decomposition ofA as

A = πW0 +
∑

l

µlπWl ,

whereµl ∈ (0,1) andW0 andWl are complex subspaces ofW ⊕ W . These are actually
quaternionic subspaces because ifAv = µv, thenAjv = jAv = jµv = µjv, sinceµ must
be real. Similarly, write the spectral decomposition of the special representativeX as

X = πV ′ − πV ′′ +
∑

l

(λlπV ′
l
− λlπV ′′

l
),

where Im(λl) > 0 and |λl | = 1. Now, pW (A) = [X] if and only if W0 ⊆ V ′ ⊕ V ′′ =
ker(X2 − I), Wl = V ′

l ⊕ V ′′
l , andµl ∈ (0,1) is the unique solution of e2π iµl = λ2

l . It is
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then clear that the mapp−1
W ([X]) → BSp(ker(X2 − I)) given by sendingA to ker(A − I)

is a homeomorphism.✷
For V ⊆ W , defineE(V ) → E(W) by sendingA to A ⊕ π(W−V )⊕0, andU/Sp(V ⊕

V ) → U/Sp(W ⊕ W) by sending[X] to [X ⊕ I(W−V )⊕(W−V )]. Taking colimits overW
we obtainp : E → U/Sp, which we shall see is a quasifibration. Define

BSpV,W = lim→ W ′�W BSp
(
V ⊕ (

W ′ − W
) ⊕ (

W ′ − W
))

,

whereV ⊆ W ⊕W ⊂ U ⊕U . Upon stabilization, the above lemma yields that for a special
representativeX ∈ Sp(W), p−1([X]) = BSpker(X2−I ),W . Define a filtration ofU/Sp by

FnU/Sp = {[X] | X is a special representative, dimC ker
(
X2 − I

)⊥ � 2n
}
.

Then the techniques used in the previous sections go through in this instance to prove
that p−1(FnU/Sp − Fn−1U/Sp) → FnU/Sp − Fn−1U/Sp is a Serre fibration, hence
FnU/Sp − Fn−1U/Sp is distinguished. Techniques completely analogous to those used in
the previous sections provide the neighborhoods and deformations required by the Dold–
Thom theorem. By a proof similar to that of Lemma 3.4, one obtains the following lemma,
which verifies that the induced maps on fibers are homotopy equivalences.

Lemma 4.14. Suppose that we have finite dimensional quaternionic spaces V ⊆ V ′ ⊆
W ⊕ W . Let V ′′ ⊆ V ′ − V . Then the natural map BSpV,W → BSpV ′,W given by sending
X to X ⊕ V ′′ is a homotopy equivalence.

4.4. ΩSp � Sp/U

Let U ∼= H∞ be a countably infinite dimensional quaternionic inner product space. For
finite dimensionalW ⊂ U , Sp(W) is the space of quaternionic isometries ofW . Then
Sp = lim→ W Sp(W). Define

E(W) = {
A | σ(A) ⊆ [−1,1], Aj = −jA

} ⊆ H(W),

where H(W) is the space of all complex linear hermitian operators onW . Define
pW : E(W) → Sp(W) by pW (A) = −exp(π iA). We need a convenient model for
Sp/U(W).

Lemma 4.15. Let W ⊂ U be a finite dimensional quaternionic subspace. Then there is an
isomorphism

Sp/U(W) ∼= {V | V is a complex subspace of W, W = V ⊕ jV }.

Proof. Sp(W) acts transitively on this space, with stabilizerU(W). ✷
With this in mind we may identify the fiber ofpW .

Lemma 4.16. Let W ⊂ U be a finite dimensional quaternionic subspace. For X ∈ Sp(W),
p−1

W (X) ∼= Sp/U(ker(X − I)).
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Proof. For A ∈ E(W), write the spectral decomposition ofA

A = πW ′ − πW ′′ +
∑

l

(µlπW ′
l
− µlπW ′′

l
),

whereµl ∈ (0,1) and jW ′ = W ′′ and jW ′
l = W ′′

l . The latter conditions are seen to be
necessary since ifAv = µv, thenAjv = −jAv = −jµv = −µjv. Similarly, writeX as

X = πV − πV0 +
∑

l

(
λlπV ′

l
+ λlπV ′′

l

)
,

where |λl | = 1, Im(λl) < 0, V and V0 are quaternionic subspaces ofW , and jV ′
l =

V ′′
l . This condition is required since ifXv = λv, then Xjv = jXv = jλv = λjv. So

pW (A) = X if and only if W ′ ⊕ W ′′ = V , W ′
l = V ′

l , W ′′
l = V ′′

l , and µl ∈ (0,1) are
the unique solutions to the equation−eπ iµl = λl . It follows immediately thatp−1

W (X) =
Sp/U(ker(X − I)). ✷

Let Y be a quaternionic vector space, and defineY C = {v | iv = vi} ⊆ Y . For V ⊆ W ,
define mapsE(V ) → E(W) by sendingA to A ⊕ π(W−V )C . Taking the colimit over all
W ⊂ U yieldsp : E → Sp. The proof that this is a quasifibration is completely analogous
to the previous sections. SinceE(W) is contractible for allW , E is contractible, and the
previous lemma implies that the fiber ofp is Sp/U .

4.5. ΩSp/U � U/O

Let U ∼= H∞ be an infinite dimensional quaternionic space endowed with a real inner
product such that multiplication byi and multiplication byj are real isometries. For a
finite dimensional right quaternionic subspaceW ⊂ U , regardSp(W) as the collection of
real isometriesX of W that are right quaternion linear, in the sense that for allα ∈ H,
X(vα) = (Xv)α. The elements ofSp(W) may be regarded as matrices with quaternion
coefficients. ThenU(W) is the subgroup ofSp(W) consisting of allX which are left
complex linear, in the sense thatX(iv) = iX(v). Let WR be the real subspace ofW given
by {v | vi = iv andvj = jv}. The Lie algebra ofSp is given by

sp(W) = o
(
WR

) ⊕ iS
(
WR

) ⊕ jS
(
WR

) ⊕ kS
(
WR

)
,

whereS(X) denotes symmetric linear transformations of a spaceX. The Lie subalgebra
corresponding tou(W) is o(WR) ⊕ iS(WR). We let

E(W) = {
jA + kB | σ(A), σ (B) ⊆ [−1,1]} ⊆ jS

(
WR

) ⊕ kS
(
WR

)
.

Define pW : E(W) → Sp/U(W) by pW (A) = [i exp(1
2πA)]. We identify U/O in the

following proposition.

Proposition 4.17. Let W be a finite dimensional quaternionic inner product space. Then
there is an isomorphism

U/O(W) ∼= {V | V is a right complex subspace of W, W = V ⊕ iV = V ⊕ Vj }.
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Proof. U(W) acts transitively on this space, with stabilizerO(W). ✷
To understand the coset representatives ofU/O(W), we give the following two lemmas.

Their proofs are completely analogous to the proofs of Lemmas 4.6 and 4.7.

Lemma 4.18. Let W ⊂ U be a right quaternionic subspace of finite dimension. Suppose
that A ∈ sp(W) has the property that Ai = −iA. Then X = exp(A) has the property that
Xi = iX−1.

Lemma 4.19. Suppose that W ⊂ U is a right quaternionic subspace of finite dimension.
If Y,Z ∈ Sp(W) possess the property that −iY i = Y −1 and −iZi = Z−1, then there exists
an X ∈ U(W) such that Y = XZ if and only if Y 2 = Z2.

We shall call anX ∈ Sp(W) such that there exists anA ∈ sp(W) such thatAi = −iA,
yielding X = exp(A) a special representative of [X] ∈ Sp/U(W). The above two lemmas
imply that two special representatives are in the same coset if and only if they have identical
squares. The argument of Lemma 4.8 shows that any coset has a special representative.
With this knowledge we may proceed to identify the fiber ofpW .

Lemma 4.20. Let W ⊂ U be a finite dimensional right quaternionic subspace. For a
special representative X of [X] ∈ Sp/U(W), we have p−1

W ([X]) ∼= U/O(ker(X2 − I)).

Proof. SupposeA ∈ E(W). Being careful to write our eigenvalues on the right sinceA is
a right skew-hermitian operator, we may express a spectral decomposition ofA as

A = πW ′ i − πW ′′ i +
∑

l

(πW ′
l
iµl − πW ′′

l
iµl),

whereµl ∈ (0,1), W ′,W ′′,W ′
l , andW ′′

l are right complex spaces,iW ′ = W ′′, W ′j = W ′′,
iW ′

l = W ′′
l , and W ′

l j = W ′′
l . For if Av = viµ, thenAiv = −iAv = −iviµ = iv(−iµ)

andA(vj) = (Av)j = viµj = vj (−iµ). Similarly, write the spectral decomposition of the
special representativeX as

X = πV ′ − πV ′′ + πV ′
0
i − πV ′′

0
i +

∑
l

(
πV ′

l
λl + πV ′′

l
λl − πṼ ′

l
λl − πṼ ′′

l
λl

)
,

where|λl | = 1, Im(λ2
l ) < 0, Im(λl) > 0, V ′ andV ′′ are quaternionic spaces,iV ′

l = V ′′
l ,

V ′
l j = V ′′

l . iṼ ′
l = Ṽ ′′

l , and Ṽ ′
l j = Ṽ ′′

l . For if Xv = vλ, then Xiv = iX−1v = ivλ, and
Xvj = vλj = vjλ. Now, if −exp(π iA) = X2, we see thatµl ∈ (0,1) are the unique
solutions to−eπ iµl = λ2

l , W ′ ⊕ W ′′ = V ′ ⊕ V ′′ = ker(X2 − I), W ′
l = V ′

l ⊕ Ṽ ′
l , and

W ′′
l = V ′′

l ⊕ Ṽ ′′
l . The result follows immediately.✷

ForV ⊆ W , defineiV ,W : E(V ) → E(W) by

iV ,W (A) = A ⊕ (π(k+1)(W−V )R − π(i−j)(W−V )R).

Taking the colimit overW ⊂ U , we obtain a mapp : E → Sp/U , which, by repeating the
techniques of the previous sections, is a quasifibration with fiberU/O .
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4.6. ΩU/O = BO × Z

Let U ∼= C∞. Fix a complex conjugationc :U → U . For the purposes of this section, all
finite dimensional complex subspaces ofU are assumed to be closed under the conjugation
mapc. For a complex finite dimensionalW ⊂ U , thereal subspace of W is defined to be
WR = {v ∈ W : v = v}. U(W ⊕W) is the collection of complex isometries ofW ⊕W , and
O(W ⊕ W) is the collection of allX ∈ U(W ⊕ W) such thatX = X. Define

E(W) = {
A | A = A, σ(A) ⊆ [0,1]} ⊆ H(W ⊕ W).

Define pW : E(W) → U/O(W) by pW (A) = [exp(π iA)]. Observe that we have the
following two lemmas, whose proofs are analogous to those of Lemmas 4.6 and 4.7.

Lemma 4.21. Let W be a finite dimensional complex space. Then if A ∈ u(W ⊕ W) has
the property that A = −A, then X = exp(A) has the property that X−1 = X.

Lemma 4.22. Suppose that W is a finite dimensional complex space. Then if Y,Z ∈
U(W ⊕ W) have the property that Y −1 = Y and Z−1 = Z, then there exists an X ∈
O(W ⊕ W) such that Y = XZ if and only if Y 2 = Z2.

If X ∈ U(W ⊕W), andX = exp(A) for someA ∈ u(W ⊕W) such thatA = −A, then we
shall say thatX is aspecial representative of [X] ∈ U/O(W ⊕ W). Evidently two special
representatives represent the same equivalence class if and only if they have identical
squares. The argument of Lemma 4.8 implies that every coset has a special representative.
The following lemma identifies the fiber ofpW .

Lemma 4.23. Let W ⊂ U be a finite dimensional complex space. If X ∈ U(W ⊕ W) is a
special representative for [X] ∈ U/O(W ⊕ W), then p−1

W ([X]) ∼= BO(ker(X2 − I)R).

Proof. If A ∈ E(W), thenA admits a spectral decomposition

A = πW0 +
∑

l

µlπWl ,

whereµl ∈ (0,1). We claim that the spacesWl are closed under the conjugation inW .
Indeed, ifAv = µv, thenAv = Av = µv = µv. The special representativeX has a spectral
decomposition

X = πV ′
0
− πV ′′

0
+

∑
l

(λlπV ′
l
− λlπV ′′

l
),

where Im(λl) > 0. We claim thatV ′
l , V ′′

l are closed under conjugation. Indeed, ifXv = λv

thenXv = X−1v = λv = λv. So if exp(2π iA) = X2, then the eigenvaluesµl ∈ (0,1) must
be the unique solutions to the equation e2π iµl = λ2

l . Also Wl = V ′
l ⊕ V ′′

l for all l �= 0 and
W0 ⊆ V ′

0 ⊕ V ′′
0 is simply a subspace closed under conjugation. Defineφ : p−1

W ([X]) →
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BO(ker(X2 − I)R) by φ(A) = ker(A − I)R. This map clearly has a continuous inverseψ ,
namely, for a real subspace,V ⊆ ker(X2 − I)R, let W0 = V ⊕ iV . Then define

ψ(A) = πW0 +
∑

l

µlπWl . ✷

For V ⊆ W ⊂ U , complex finite dimensional subspaces closed under conjugation,
defineU/O(V ⊕ V ) → U/O(W ⊕ W) by sendingX to X ⊕ I(W−V )⊕(W−V ). Define
E(V ) → E(W) by sendingA to A ⊕ π(W−V )⊕0. Taking the colimit overW , we obtain
a mapp : E → U/O , which, by arguments completely analogous to those given in the
previous sections, is a quasifibration. ForV ⊆ W , let BO(V R ⊕ V R) → BO(WR ⊕ WR)

be defined by sendingY to Y ⊕ (W −V )R ⊕0, and defineBO×Z = lim→ W BO(WR ⊕WR).

Upon stabilization the previous lemma yields thatp−1([X]) � BO × Z, which completes
the proof of the real Bott periodicity theorem.
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