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Abstract

We give a simplification of the proof of the Bott periodicity theorem presented by Aguilar and
Prieto. These methods are extended to provide a new proof of the real Bott periodicity theorem. The
loop spaces of the group® andU are identified by considering the fibers of explicit quasifibrations
with contractible total spaces. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In [1], Aguilar and Prieto gave a new proof of the complex Bott periodicity theorem
based on ideas of McDuff [4]. The idea of the proof is to use an appropriate restriction
of the exponential map to construct an explicit quasifibration with base s@jaaad
contractible total space. The fiber of this map is seen 8Ue Z. This proofis compelling
because it is more elementary and simpler than previous proofs. In this paper we present
a streamlined version of the proof by Aguilar and Prieto, which is simplified by the
introduction of coordinate free vector space notation and a more convenient filtration for
application of the Dold—Thom theorem. These methods are then extended to prove the real
Bott periodicity theorem.

2. Preliminaries

We shall review the necessary facts about quasifibrations that will be used in the proof
of the Bott periodicity theorem, as well as prove a technical result on the behavior of the
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classical groups under linear isometries. The latter will be essential for our applications of
the Dold—Thom theorem. A surjective map X — Y is a quasifibration if for every € Y
andx € p~1(y), the natural map

(X, pTr ()i x) > mi(Yiy)

is an isomorphism for everny It follows immediately that ifF is a fiber ofp, then there is
a long exact homotopy sequence associated to

If X is contractible, we obtain a map of the quasifibration sequence to the path space
fibration.

F——X——>Y

|

QY ——=PY ——=>Y

It follows from the long exact homotopy sequences and the five lemmathaf2 Y.

The definition of a quasifibration does not lend itself to easy verification. The following
theorem of Dold and Thom [2] gives a more practical program. Recall that for a map
p:X — Y, asubsef§ CY is said to bedistinguished if for every openU C §, the map
p~1(U) — U is a quasifibration.

Theorem 2.1. Suppose p: X — Y is a surjection. Suppose that X is endowed with an
increasing filtration { F; Y}, such that the following conditions hold.
(1) F,Y — F,_1Y isdistinguished for every n.
(2) For every n there exists a neighborhood N of F,_1Y in F,Y and a deformation
h:N x I — N suchthat hg =Id and h1(N) C F,,_1Y.
(3) Thisdeformation is covered by a deformation H : p~1(N) x I — p~1(N) such that
Ho =1d, and for every y € N, the induced map

Hi:p7t(y) — p~H(ha(y)
is a weak homotopy equivalence.

Then p isa quasifibration.

Let A beR, C, orH, and letZ(W, V) denote the space of linear isometries frémto
V, whereW andV are (possibly countably infinite dimensional) inner product spaces over
A topologized as the unions of their finite dimensional subspaces [8t) be O (W),
U (W), or p(W), whereG (W) is the space finite type linear automorphismsiof We
define a continuous map

I'yy:Z(W,V)— Map(G(W), G(V)).
Writing I'w,v (¢) = ¢x, if X € G(W), theng,(X):V — V is defined by

G(X) =X~ @ Iy
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under the orthogonal decompositidh= ¢ (W) @ ¢(W)*. Let &/ andV be countably
infinite dimensionalA inner product spaces. In [3, II.1.5] it is proven tHa@/, V) is
contractible. So we have the following lemmas.
Lemma?2.2. Let ¢, ¢’ € Z(U, V). Then theinduced maps

b, . GU) — G(V)

are homotopic.

Lemma23. Let ¢ € Z(U, V). Then ¢, isa homotopy equivalence.

3. Complex Bott periodicity

The existence of the fiber sequence
U— EU—BU
yields that 2BU >~ U. We aim to prove the following theorem, which implies that
£2?BU ~BU x Z.
Theorem 3.1. Let U denote the infinite unitary group. There exists a quasifibration
sequence
BUxZ—FE—U
such that E is contractible. Consequently, 2U ~ BU x Z.
Fix a complex infinite dimensional inner product spdée= C*. For W Cc U, a

finite dimensional complex subspace, &W @ W) denote complex linear isometries
of W@ W. If VC W, then there is a natural map,w :U(V & V) - U(W & W) given

by
ivwX)=X® Iw-vyew-v)
whereW — V denotes the orthogonal complementbfn W. Then
U=IlimyUW o W),
N

where the colimit is taken over all finite dimensional subspates /.
Let H(W & W) denote the hermitian linear transformationdotp W. Define

EW)={Alo(A)SI=[01]}SHW&W),
whereo (A) is the spectrum ofA. Define
pw EW)—>UW®W)

by pw(A) = exp(2riA). Analogous toU, define a mapt (V) — E(W) for V.C W by
sendingA to A @ m(w—v)g0. Here,ry denotes orthogonal projection onto the subsgace
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It will become apparent that this map is defined so that, upon stabilization, the fibers are
BU x Z. Then the following diagram commutes, siné&'e= €°.

E(V)—EW)
pv pw
UvevV)—UWaeWw)
So taking colimits we obtain
p E—U,
whereE = ”E' wE(W). We claim that this map is a quasifibratid.is clearly contract-

ible, by the contracting homotopy (A) =tA.
To fix notation define

BU,(Y)={V |V CY, dimcV =n}

foranyY cUeU.ForV C W Cc U, thereis anatural mapu, (Ve V) — BU,,, (W W)
given by sendingV’ to V' @ (W — V) @ 0). Letting BU(Y) = ][, BU,(Y), define
BU x Z = lim yBU(W & W).

Lemma3.2. Let X e U(W @ W). Then pv‘vl(X) =BUkkern(X —I)).

Proof. Defineg: pv_vl(X) — BU(kern( X — 1)) by ¢ (A) = ker(A —I). In order for this map

to make sense, we must verify that kér— 1) C ker(X — I). Supposedv = v. Then

2ri)"
n!

Ay =¥y =u

Xv=exp2ridy=>

n

sov € ker(X — I). Suppose the spectral decompositiorkoi
X=ny+ Z)\.[ﬂvi ,

1
wherex; # A; fori # j, A; # 1, andry, denotes orthogonal projection onto the subspace
V' of W @ W. Note thatV = kern(X — I) and sinceX is unitary, |A;| = 1 for all i and
WeWwW=Vaed,V: Suppose that € p‘;,l(X). Then A, being hermitian, possesses a
spectral decomposition

AZNV'+0'7TV"+ZMWW,"

1

whereW @ W =V' @ V" @ @, W;. Since
exp2riA) = myigyr + Y € iy, =X

1
we conclude thaV’ @ V" =V, V; = W;, and the eigenvalugs; are uniquely determined
by the non-unital eigenvalues; of X. It is clear then thaip(A) = V' possesses a
continuous inversg :BU(V) — p;‘,l(X) given by
I/I(V/)Zﬂv/-i-zuiﬂvi. O

1
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We shall now prove that : E — U is a quasifibration. Define a filtration &f by letting
F,U = {X |dimg(ker(X — )*) <n} CU.

Let B, = F,U — F,,_1U. The following lemma proves thad, is distinguished.
Lemma3.3. p~1(B,) — B, isa Serrefibration.

Proof. Suppose we are presented with the following commutative diagram.

{0} x I¥—*=p~L(B,)

|

Ik+l T B,

We wish to give a lift of this diagram. By compactness, there exists a finite dimensional
W C U such that the diagram factors as

(0} x 1¥—* > E(W) N p~L(B,) — p~L(B,)

l | |

1= UW @ W) N B, ——B,

Now, let A0, 11, ...,t%) =a'(t1, ..., 1) and X (1o, ..., tx) = B(to, . .., tx). Then we may
write spectral decompositions, foe 1%, I¥+1, respectively, as

A1) = Twoy + Y 1OTw;0).
1

X(t) = vy + Z)»l(f)ifv,(z),
/

where &%) = 3,(1), Wo(t) C Vo(t), andW;(r) = V;(¢) for all t € I*. Consider, for an
n-dimensional complex subspa®é of ¢/, the homogeneous space
Perp’j(W ewW) = {(V’, V//) | V/, v’ CWeW, vV L V”,
dimc V' =i, dimc V" = j}
= U /Ui xUj X Ugp—(itj)-
There is a natural mapping
P: Perp,j(W @eW)—BU;L;(WoW)

givenbyP(V', V") =V’ @ V". Under the isomorphisBU,  ; (W @ W) = U,/ U, x
Uo,—(i+j), we see that is the natural projection map, and therefore is a fibration. Let
o Ik > Perp ;(W & W) wherei = dimWp(0) and j = dim(Vo(0) — Wo(0)) be given

by (1) = (Wo(t), Vo(t) — Wo(t)), and letg”: I**1 — BU,4;(W @ W) be given by
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B’ (t) = Vo(r). Our filtration is defined so that these maps make sense. Then, Bince
is a fibration, there exists a lift” making the diagram below commute.

{0} x IkL”>Per9,j(W® W)

e

Ik+1T>BUi+j(W o W)

Let w;(t) € (0,1) be the unique solutions toZ84®) = ,(r), and write 0’ (1) =
(W§(0), Vo(t) — Wi(#)). Then letting’ : 1+t1 — E(W) N p~1(B,) be defined by

o' (1) = Ty + D 1Oy
I
we obtain a lift to our original diagram.o

Define
BUyw =lim y>wBU(V & (W - W) & (W — W))

for W finite dimensional andV € W @ W. It is clear thatBUy w = BU x Z, by a
(non-canonical) choice of isometly ® W+ @& W= @ U. Thenif X e UW @ W),
p~H(X) = BUkerx—1),w-

Define a neighborhood,, of F,,_1U in F,U to be

N, ={X € F,U: dimc Eiggriiyzza X <n} € F,U,

where Eig X is the direct sum of the eigenspacesXfcorresponding to eigenvalues
in S. In other words ), is simply the space of unitary matrices with “extra eigenvalues”
in a neighborhood of 1 that we shall deform to 1, pushing the matrix fitoU. Let
f:1— I be defined by

1, x> 3,
f@=13x-1 i<x<3
0, xg%).

Clearly f ~Id reldaI. Let H be such a homotopy. Then, singefixesal, there exists an
h: St x I — St such that the following diagram commutes.

L

ezni(-)i ieZnit)

S]'TS]'

Then forA € E, whereA = ), u;mw,, define a new hermitian matrik; (A) where for
tel,

Hi(A) =) Hi(ui)mw;.
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We may similarly definé:, : U — U. Observe that thé, : N, — N, satisfyh; =Id and
ho(N,) C F,_1U. Furthermorel, is covered byH, : p~1(N,) — p~L(N,).

Consider the induced map on fibei: p~1(X) — p~L(ho(X)). We need only prove
that this map is a weak equivalence to complete the proofghata quasifibration. This
follows from the following lemma.

Lemma 3.4. Suppose VSV C W@ W and V” C V' — V. Then the map BUy y —
BUy/ w given by sending Y to Y @ V” isa weak equivalence.

Proof. If C is a pointed compact space, then the induced map on reddktedory
Kc(©)=[C,BUy,w] — [C,BUy w] = Kc(C)

is just the addition of a trivial bundle, so induces an isomorphism. In particular, letting
C = S', we get an isomorphism of homotopy groupss

4. Real Bott periodicity

The same methods used in the complex case lend themselves to computing the iterated
loop spaces oBO as well.

Theorem 4.1. The loops of BO may be identified as follows.

2BO ~ O,
20~ 0/U,

R0/U ~ U/,

QU/ ~ B x Z,

2B ~ N,
2~ /U,

Rp/U ~U/O,

2U/0 ~ BO x Z.

We shall prove this theorem one loop at a time by constructing quasifibrations with
contractible total spaces. Note thaBO ~ O and$2 B~ P are obvious.

41. R20~0/U
Let 4 = C* be an infinite dimensional complex inner product space. For finite
dimensional compleX c U, let O(W) denote the real linear isometriesf. Define
EW)= {A lo(A) C [—i,i]} Co(W),

where o(W) is the lie algebra ofO(W); it consists of skew symmetric real linear
transformations. Observe thB(W) is contractible. Define

pw:E(W)— OW)
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by pw(A) = —exp(w A). If V € W then we have map8 (V) — O (W) given by sending
XtoXe&ly_y,andE(V) — E(W) given by sendingA to A & i wherei is viewed
as a skew symmetric real transformation Wf— V. Upon taking colimits over finite
dimensional subspaces &f, these maps yield a magp: E — 0. We claim this map is
a quasifibration ont&0O, with fiber O/ U.

We need a convenient way to think aba@y U. For any finite dimensionalV C U,
let CX(W) denote the space of complex structuresionthat is, the space of real linear
isometries/ : W — W such that/? = —1.

Proposition 4.2. Let W c U befinite dimensional. Then O /U (W) = CX(W).

Proof. O (W) acts transitively oif€X(W) by conjugation, with stabilizet/ (W). O
The fiber ofp is therefore identified in the following lemma.

Lemma4.3. For X € SO(W), py,*(X) = CX(ker(X — 1)).

Proof. Regarding(W) C u(W ®g C), we see thatifd € p~1(X) then
A=iny —imyr + Z/“LJ'”W./’
J
whereu ; € (—i, i). If we regardO (W) € U(W ®g C), then we may write

X:T[V‘FZ)\jan
J

wherex; # 1. Thus,V =V' @ V" =kernX — I) @r C, V; = W; andu; is completely
determined bya; for all j. We conclude thatA(kerX — I)) € kenX — I), and
A2|ker(x_,) = —Ikerx—1). Therefore A € CX(ker(X — I)). Conversely, givenJ €
CX(ker(X — 1)), letA=J+ ) pujmy;. ThenA € pt(X). O

Define
O/Uyw=limy>w0/U(V& (W -W))

for V. € W c U whereW is a complex space arld is a real even dimensional subspace.
Then it is clear that forX € SO(W), we havep=1(X) = (O/U)yerx—_p).w- Define a
filtration on SO by letting

F, 0= {X € SO: dimg ker(X — I)* < 2n}.

We wish to show thaB,, = F,,SO — F,,_1S0 is distinguished. Observe tha}, is the set of
X € SO such that dimkeX — 1)L = 2n. We claim thatp~1(B,) — B, is actually a Serre
fibration. The proof of this is completely analogous to the proof of Lemma 3.3; it amounts
to observing that the natural map, /U, x Oy—2, — O,/ 02, x On—2, is a fibration.

We define a neighborhoad, of F,_1S0in F,SO by

N, ={X | dimg Eigerin/a3a X < 2n} € F, 0.
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Let f:[—i,i]— [—i,{] be defined by

—i, Im(x) < -3,
f@ =42, —3i<Im@x) <3,

i, Im@x) > 3.

Then f ~ Idrel{—i, i}. Let H be such a homotopy, and et S x I — S be such that
the following diagram commutes for alk 1.

.. H, ..
[—i,i]——=[—i,i]
—e™() \L_eﬂ(-)

SlTSl

ThenH andh induce the deformations @V, into F,,_1 S0 as required in the Dold—Thom
theorem. The fact thatly induces weak equivalences on fibers follows from the following
lemma, which is proved by Lemma 2.3.

Lemma 4.4. Let V € V’ be even dimensional real subspaces of a finite dimensional
complex space W Cc U. Thenthe map f:0/Uy w — O/Uy y given by sending A to
A @ J for some fixed complex structure J on V' — V is a homotopy equivalence.

42. 20/U~U/

Let &/ = H* be an infinite dimensional quaternionic inner product space. For finite
dimensionalWw c U, O(W) is the space of real linear isometriesWf andU (W) is the
space of complex linear isometriesWwf. ThenO /U =lim y O /U (W). Define

E(W)={A| Alis conjugate linear and(A) C [—i,i]} S o(W).

Note thatu(W)+ C o(W) is the collection of all skew symmetric conjugate linear trans-
formations of W. This implies that every coséX] € SO/U (W) has a representative
X € O(W) such thatX = exp(A) for some skew symmetric conjugate linear transfor-
mationA. Also observe thak (W) is contractible. Define

pw: E(W)— 0/UW)

by pw(A) =i exp(%nA). If Vv C W then we have map&/U (V) — O/U (W) given by
sending[X] to [X & Iw-v], andE(V) — E(W) given by sendingd to A & j wherej
is viewed as a conjugate linear skew-symmetric transformatidir ef V. Upon taking
colimits over finite dimensional quaternionic subspace& pfve obtainp: E — O/U,
which we wish to show is a quasifibration ov&d/ U, with fiber U /Sp.

ForW c U, let QS(W) denote the space of quaternionic structure$iormThese are the
conjugate linear isometries of W such that/2 = —1.

Proposition 45. Let W C U be a finite dimensional quaternionic subspace. Then
U/Sp(W) = QSW).
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Proof. U (W) acts transitively oiQS(W) with stabilizerSp(W). 0O

With the intent of understanding the coset representative8 4dff (W), we give the
following two lemmas.

Lemma 4.6. Supposethat Y = exp(A), where A € o(W) is conjugate linear. Then Yi =
iy—L

Proof.
—iYi=—iexp(A)i =exp(—iAi)=exp—A) =YL 0O
Lemma 4.7. Suppose that ¥, Z € O(W) satisfy —iYi = Y~ and —iZi = Z~1. Then
thereisan X € U(W) suchthat Y = X Z if and only if Y2 = Z2.
Proof. Suppose that there is d&he U(W) such thatr = XZ. Observe that
Zzxli=yli=zivy=ixz=xz"%
and therefor& ZX = Z. ButthenY?2 = XZXZ = Z2.

Conversely, suppose th&? = Z2. ThenY = (Y~1Z)Z, so we need only show that
Y 1Zeuw).ButyZzl=v1Z sovy1zi=ivyzl=ivy1z. o

We shall say thatX € SO(W) is a special representative of the equivalence class
[X] € SO/UW) if X =exp(A) for some conjugate linead € o(W). Observe that by
the previous two lemmas, any two special representatives are in the same equivalence class
if and only if they have identical squares.

Lemma4.8. Every [X] € SO/ U (W) hasa special representative.

Proof. SO/U (W) is geodesically complete, and the geodesicsf SO/ U (W) all take
the form y(r) = [Y exp(tB)] for Y € SO(W) and B € u(W)* (see, for example, [5,
VI.2.15]). O

Lemma 4.9. Supposethat W C U is a finite dimensional quaternionic space. Let X bea
special representative of theclass[X] € SO/ U (W). Then p;‘,l([X]) = U/Sp(ker(X%—1)).

Proof. We claim that if A € pv‘vl([X]), then A defines a quaternionic structure on
ker(X? — I), that is, A(ker X2 — I)) C ker(X2 — I), and A% = —1. If A € E(W) we
may regardd as an element af(W ®g C), and write a spectral decomposition
A=imy — iy + Y .
I
whereu; € (—i,i). RegardingX € U(W ®g C), its spectral decomposition is

X=ny —myr + Z(?»NTV/ —MTyy),
1
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where |1, = 1 and Im(x;) < 0. If pw(A) =i exp(%nA)] = [X], then we have
—expmA)=X2,s0V' @V =W @ W’ =kerX%2—1)Qr C. S0A € QS(ker(X? —1)).
Conversely, suppose thats a quaternionic structure on k&2 — I). Then, regarding as
an element ofi(ker(X? — I) ®g C) we obtain a spectral decompositidnr= iy — iy .
Let

A = i]TW/ — ijTW// —|— ZMI]TV[/@V]H’
l

wherew; € (—i, i) are the unique solutions in the given range to the equatigi = Alz.
Then(i exp(37A))? = X2, 504 € ppH(X]). O

Forvcwclu,let
U/Spyw=lim y>wU/Sp(V & (W —W)).

Then for a special representati¥es SO(W), p~1([X]) may be canonically identified with

U/a)ker(X2—1),W- Oof CourseU/SpV’W ~ U/33
Define a filtration ofSO/ U by

F,S0/U = {[X]| X is a special representativeimc ker(X2 — I)l < 2n}.

We are implicitly using the fact that any two special representatives of the same coset have
identical squares in making this definition. Then the same argument used for the previous
spaces works for our present situation, to prove that(F,S0/U — F,_10/U) —
F,SO/U — F,_10/U is a Serre fibration. The key point is th&, /S, x Upn—2n —
U /U2y x Uy—2, is afibration. Thereforé,, U/ — F,—1U /S is distinguished.

Just as in the previous section, one may define a neighborNpaxf F,_1S0/U in
F,S0/U by

N, ={[X]] X is a special representative, dim Big/ 232 X2 < 2n}.

Let f and H, be defined as in the previous section. These yield the deformations required
by the Dold—Thom theorem. One verifies that the induced maps on fibers are weak
equivalences by the same methods in the previous section, by the following consequence
of Lemma 2.3.

Lemma 4.10. Supposethat V € V' C W where V and V'’ are even dimensional complex
spaces and W is a finite dimensional quaternionic subspace of /. Fix a quaternionic
structure J on V' — V. Thenthemap U/Spy y — U/Spy y givenby sending Ato A@ J
is a homotopy equivalence.

43. QU/P=BP x Z

Let = H* be a countably infinite dimensional quaternionic inner product space. For
finite dimensionaW c U, U(W @ W) is the collection of complex linear isometries of
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W@ W, andSp(W & W) is the subgroup of quaternion linear isometrie$of W. Then
U/Sp=IlimwyU/PW @ W). Define

EW)={A|jA=Aj, c(A)CI}CHW & W),

whereH (W @ W) is the collection of all complex linear transformations®f W which

are hermitian. Observe that(W @ W)L = {4 e w(W @ W): Aj = —jA}. Define a map

pw . EW)— U/SW & W) by pw(A) = [exp(iA)]. Then, analogous to the previous
section, we have the following two lemmas which allow us to understand a system of coset
representatives dff /Sp. The proofs are nearly identical to those of Lemmas 4.6 and 4.7,
respectively.

Lemma4.11. Let W C U befinitedimensional. If A € H(W @& W) hasthe property that
Aj = jA,then X = exp(iA) hasthe property that Xj = j X 1.

Lemma 4.12. Supposethat Y, Z € U(W @& W) have the property that —jYj = Y~1 and
—jZj = Z71. Then there exists an X € Sp(W @ W) such that ¥ = XZ if and only if
Y2=122

We shall callX € U(W & W) such thatX = exp(riA) for someA € E(W) a special
representative for the class[X] € U/Sp(W & W). Note that the previous two lemmas
ensure that two special representatives are in the same equivalence class if and only if
they have the same squares. An argument similar to that of Lemma 4.8 ensures that every
coset ofU/Sp(W & W) has a special representative. Define, for a quaternionic gpace

BS(Y) = ]_[{V | V is a quaternionic supspace Bf dim Vi = n}.

n

ForVCwWcUu,Bp(VaeV)— BP(W e W)isgivenbysending toY (W —-V)aO0,
so thatB x Z = lim w BSp(W @ W). The fiber ofpy can now be identified.

Lemma 4.13. Let W C U be finite dimensional. If X is a special representative for
[X1€ U/Sp(W), then pi,}(1X1) = BSp(ker(X2 — 1)),

Proof. SupposeA € E(W). Write the spectral decomposition afas
A=mw, + Z,uzﬂw,,
l

whereu; € (0,1) and W and W; are complex subspaces & @& W. These are actually
guaternionic subspaces becausgif= uv, thenAjv = jAv = juv = ujv, sinceuw must
be real. Similarly, write the spectral decomposition of the special representatige

X =myr —myr + Z(Mﬂv/ —MTyy),
I

where Im2;) > 0 and|1;| = 1. Now, pw(A) = [X] if and only if Wy - VeV =
ker(x2 — 1), W, = V/ @ V/, andy, € (0, 1) is the unique solution of & = )2, It is
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then clear that the map;vl([X]) — Bp(ker(X? — I)) given by sending\ to ker(A — I)
is a homeomorphism.O

ForV € W, defineE(V) — E(W) by sendingA to A @ m(w—v)go0, andU/Sp(V &
V) — U/SPW & W) by sending X] to [X & I(w—v)ew-v)]. Taking colimits overW
we obtainp : E — U/Sp, which we shall see is a quasifibration. Define

By =M o BSH(V & (W — W) & (W' — W),
whereV C W@ W c U &U. Upon stabilization, the above lemma yields that for a special
representativel € (W), p~1([X1) = BPyerx2_ 1. w- Define a filtration oft /Sp by
F,U/S={[X]] X is a special representativelim ker(X? — I)l < 2n}.

Then the techniques used in the previous sections go through in this instance to prove
that p~Y(F,U/Sp — F,_1U/Sp) — F,U/Sp — F,_1U /S is a Serre fibration, hence
F,U/— F,—1U /S is distinguished. Techniques completely analogous to those used in
the previous sections provide the neighborhoods and deformations required by the Dold—
Thom theorem. By a proof similar to that of Lemma 3.4, one obtains the following lemma,
which verifies that the induced maps on fibers are homotopy equivalences.

Lemma 4.14. Suppose that we have finite dimensional quaternionic spaces V C V' C
W@ W.Let V/ C V' — V. Then the natural map BSpy y, — By given by sending
X to X @ V" is a homotopy eguivalence.

44. Q~P/U

Let = H* be a countably infinite dimensional quaternionic inner product space. For
finite dimensionalW c U, Sp(W) is the space of quaternionic isometries Wt Then
S= Ii@ w P(W). Define
EW)={Alo(A) C[-1,1], Aj=—jA} S HW),

where H (W) is the space of all complex linear hermitian operators Wn Define
pw.EW) - (W) by pw(A) = —exp(wriAd). We need a convenient model for
S/UW).

Lemma4.15. Let W C U be a finite dimensional quaternionic subspace. Then thereisan
isomorphism

/UMW) ={V | Visacomplex subspaceof W, W=V @ jV}.
Proof. Sp(W) acts transitively on this space, with stabiliZé(w). O
With this in mind we may identify the fiber gfy .

Lemma4.16. Let W C U be a finite dimensional quaternionic subspace. For X € Sp(W),
Py (X) = /U ker(X — 1))
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Proof. For A € E(W), write the spectral decomposition af

A=mw —mwr + Y (uy — wmw),
l

wherep; € (0,1) and jW = W” and jW/ = W/". The latter conditions are seen to be
necessary since kv = uv, thenAjv = —jAv = — juv = —pjv. Similarly, write X as

X=ny—my,+ Z()\Iﬂv/ + My,
l
where |3;| = 1, Im(%;) < 0, V and Vp are quaternionic subspaces ®f, and jV, =
V/’. This condition is required since v = Av, then Xjv = jXv = jiv =Ajv. So
pw@A) =X ifandonly it W e W' =V, W =V/, W =V, andy € (0,1) are
the unique solutions to the equatier®™ * = 1;. It follows immediately thagu‘;,l(X) =
S/UkerX —1)). O

Let Y be a quaternionic vector space, and defifte= {v | iv =vi} C Y. ForV C W,
define mapsE(V) — E(W) by sendingA to A & 7y, _yc. Taking the colimit over all
W c U yields p: E — . The proof that this is a quasifibration is completely analogous
to the previous sections. Singg W) is contractible for allW, E is contractible, and the
previous lemma implies that the fiber pfis Sp/ U .

45. 2/U~U/O

Let &/ = H* be an infinite dimensional quaternionic space endowed with a real inner
product such that multiplication by and multiplication by; are real isometries. For a
finite dimensional right quaternionic subspd&ec U/, regardp(W) as the collection of
real isometriesX of W that are right quaternion linear, in the sense that fowad H,

X (va) = (Xv)a. The elements ofp(W) may be regarded as matrices with quaternion
coefficients. Therl/ (W) is the subgroup ofSp(W) consisting of allX which are left
complex linear, in the sense th&tiv) =i X (v). Let WR be the real subspace 8f given

by {v | vi =iv andvj = jv}. The Lie algebra ofp is given by

sp(W) =o(WE) @is(WF) @ jS(WF) @ ksS(WF),

where S(X) denotes symmetric linear transformations of a speic@he Lie subalgebra
corresponding ta(W) is o(WR) & i S(WR). We let

EW)={jA+kB|o(A), o(B) C[-1,11} C jS(WF) @kS(WF).
Define pw: E(W) — S/U W) by pw(A) = [i exp(%nA)]. We identify U/O in the
following proposition.
Proposition 4.17. Let W be a finite dimensional quaternionic inner product space. Then
there is an isomor phism

U/O(W)={V | Visaright complex subspaceof W, W=V @iV =V @ V/}.
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Proof. U(W) acts transitively on this space, with stabilizetw). O

To understand the coset representativdg 60 (W), we give the following two lemmas.
Their proofs are completely analogous to the proofs of Lemmas 4.6 and 4.7.

Lemma 4.18. Let W C U be a right quaternionic subspace of finite dimension. Suppose
that A € sp(W) hasthe property that Ai = —i A. Then X = exp(A) has the property that
Xi=iX"1

Lemma 4.19. Supposethat W C U is a right quaternionic subspace of finite dimension.
If Y, Z € Sp(W) possessthe property that —iYi = Y ~t and —i Zi = Z~1, then there exists
anX € U(W) suchthat Y = X Z if and only if Y2 = Z2.

We shall call anX € Sp(W) such that there exists ah e sp(W) such thatdi = —i A,
yielding X = exp(A) a special representative of [X] € So/ U (W). The above two lemmas
imply that two special representatives are in the same coset if and only if they have identical
squares. The argument of Lemma 4.8 shows that any coset has a special representative.
With this knowledge we may proceed to identify the fibepgf.

Lemma 4.20. Let W C U/ be a finite dimensional right quaternionic subspace. For a
special representative X of [X] € Sp/ U (W), we have p;‘,l([X]) >~ U/0Kker(X?—1)).

Proof. SupposeA € E(W). Being careful to write our eigenvalues on the right sidcis
a right skew-hermitian operator, we may express a spectral decompositioasof

A=y —srwri + ) (i — i),
1

wherew; € (0,1), W', W”, W/, andW," are right complex spacesy’ = W”, W'j = W”,
iW, =W/, andW/j = W/'. For if Av=vipu, thenAiv=—iAv = —ivip =iv(—ip)
andA(vj) = (Av)j = viuj = vj(—iw). Similarly, write the spectral decomposition of the
special representativé as

X=ny —myr+ nvéi - nvgi + Z(n"/)" + JTV[HM - nV/M - ﬂ“/‘l//)\.[),
!

where|xy| =1, Im(A,Z) <0, Im(x;) >0, V' and V" are quaternionic spacesy,/ = V/,
V/j=V/. iV/=V/ andV/j = V/. For if Xv = vA, then Xiv =iX~1v = ivx, and
Xvj = vAj = vjr. Now, if —exp(riA) = X2, we see thajy € (0,1) are the unique
solutions to—€"# =22, W @ W' =V @ V' =kenX? —1), W =V/ & ‘7/, and
wW'=v'e® \7,”. The result follows immediately. O

ForV Cc W, defineiy w: E(V) — E(W) by

iy, w(A) =A@ (T w-v)® — T(i—jy(W—v)R)-

Taking the colimit ove C U, we obtain a map : E — /U, which, by repeating the
techniques of the previous sections, is a quasifibration with tiby&.
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46. QU/O=BOxZ

Leti = C*. Fix a complex conjugation: U/ — U. For the purposes of this section, all
finite dimensional complex subspaceg6re assumed to be closed under the conjugation
mapc. For a complex finite dimension& c U, thereal subspace of W is defined to be
WR ={veW: v=T}. UW @ W) is the collection of complex isometries &f @ W, and
O(W @ W) is the collection of allX € U(W @ W) such thatX = X. Define

EW)={A|A=A, c(A)C[0,1]}JCHW®W).

Define pw : E(W) — U/O(W) by pw(A) = [exp(riA)]. Observe that we have the
following two lemmas, whose proofs are analogous to those of Lemmas 4.6 and 4.7.

Lemma 4.21. Let W be a finite dimensional complex space. Then if A € (W @ W) has
the property that A = —A, then X = exp(A) hasthe property that X1 = X.

Lemma 4.22. Suppose that W is a finite dimensional complex space. Then if Y, Z €
U(W @ W) have the property that Y1 =Y and Z~1 = Z, then there exists an X ¢
O(W @& W) suchthat Y = X Z if and only if Y2 = Z2.

If X e U(W@W),andX = exp(A) for someA € u(W & W) suchthatd = —A, then we
shall say thatX is aspecial representative of [X] € U/O(W & W). Evidently two special
representatives represent the same equivalence class if and only if they have identical
squares. The argument of Lemma 4.8 implies that every coset has a special representative.
The following lemma identifies the fiber @fyy .

Lemma 4.23. Let W C U be a finite dimensional complex space. If X e U(W & W) isa
special representativefor [X1€ U/O(W & W), then py,}([X1) = BO(ker(X? — DF).

Proof. If A € E(W), thenA admits a spectral decomposition

A=mw, + Zmnw,,
l
whereu; € (0,1). We claim that the spacég; are closed under the conjugation W.
Indeed, ifAv = v, thenAv = Av = tv = uv. The special representatisehas a spectral
decomposition

X :vaé —ﬂvé/ + Z()\.[JTVI/ — )\.[T[Vl//),
1

where In(%;) > 0. We claim that//, V;" are closed under conjugation. Indeedif = Av
thenXv = X—1v = 2v = 0. So if exp27iA) = X2, then the eigenvalugsg < (0, 1) must
be the unique solutions to the equatidi'é’ = 2. Also W; = V/ @ V/’ for all [ # 0 and
Wo C Vy @ Vg is simply a subspace closed under conjugation. Deﬁinp‘;,l([X]) —
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BO(ker(X2 — ®) by ¢(A) = ker(A — I)®. This map clearly has a continuous inverse
namely, for a real subspace,C ker(x2 — R, let Wo =V @i V. Then define

Y(A) =mwo+ Y _umw. O
1

For V. € W c U, complex finite dimensional subspaces closed under conjugation,
define vu/oveV)—-U/OWeeW) by sendingX o X & I(W—V)GB(W—V)- Define
E(V) — E(W) by sendingA to A @ m(w-v)go. Taking the colimit over, we obtain
a mapp:E — U/O, which, by arguments completely analogous to those given in the
previous sections, is a quasifibration. Roic W, let BO(VE @ VE) - BOWR @ WR)
be defined by sendingto Y & (W — V)R @0, and defin@0 x Z = lim wBO(WE @ Wk,

Upon stabilization the previous lemma yields that!([X]) ~ BO x Z, which completes
the proof of the real Bott periodicity theorem.
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