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Abstract. We give a survey of a generalization of Quillen-Sullivan rational
homotopy theory which gives spectral algebra models of unstable vn-periodic

homotopy types. In addition to describing and contextualizing our original ap-

proach, we sketch two other recent approaches which are of a more conceptual
nature, due to Arone-Ching and Heuts. In the process, we also survey many

relevant concepts which arise in the study of spectral algebra over operads, in-

cluding topological André-Quillen cohomology, Koszul duality, and Goodwillie
calculus.
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1. Introduction

In his seminal paper [Qui69], Quillen showed that there are equivalences of homo-
topy categories

Ho(Top≥2
Q ) ' Ho(DGCoalg≥2

Q ) ' Ho(DGLie≥1
Q )

between simply connected rational spaces, simply connected rational differential
graded commutative coalgebras, and connected rational differential graded Lie al-
gebras. In particular, given a simply connected space X, there are models of its
rational homotopy type

CQ(X) ∈ DGCoalgQ,

LQ(X) ∈ DGLieQ

such that

H∗(CQ(X)) ∼= H∗(X;Q) (isomorphism of coalgebras),

H∗(LQ(X)) ∼= π∗+1(X)⊗Q (isomorphism of Lie algebras).

In the case where the space X is of finite type, one can also extract its rational
homotopy type from the dual CQ(X)∨, regarded as a differential graded commuta-
tive algebra. This was the perspective of Sullivan [Sul77], whose notion of minimal
models enhanced the computability of the theory.

The purpose of this paper is to give a survey of an emerging generalization of this
theory where unstable rational homotopy is replaced by vn-periodic homotopy.

Namely, the Bousfield-Kuhn functor ΦK(n) is a functor from spaces to spectra, such
that the homotopy groups of ΦK(n)(X) are a version of the unstable vn-periodic
homotopy groups of X. We say that a space X is ΦK(n)-good if the Goodwillie
tower of ΦK(n) converges at X. A theorem of Arone-Mahowald [AM99] proves
spheres are ΦK(n)-good.

The main result is the following theorem (Theorem 6.4, Corollary 8.3).

Theorem 1.1. There is a natural transformation (the “comparison map”)

c
K(n)
X : ΦK(n)(X)→ TAQSK(n)

(SXK(n))

which is an equivalence on finite ΦK(n)-good spaces.

Here the target of the comparison map is the topological André-Quillen cohomology
of the K(n)-local Spanier-Whitehead dual of X (regarded as a non-unital commu-
tative algebra over the K(n)-local sphere), where K(n) is the nth Morava K-theory
spectrum. We regard SXK(n) as a commutative algebra model of the unstable vn-

periodic homotopy type of X, and the theorem is giving a means of extracting the
unstable vn-periodic homotopy groups of X from its commutative algebra model. A
result of Ching [Chi05] implies that the target of the comparison map is an algebra
over a spectral analog of the Lie operad. As such, we regard the target as a Lie
algebra model for the unstable vn-periodic homotopy type of X.

The original results date back to 2012, and are described in a preprint of the authors
[BR15] which has (still?) not been published. The paper is very technical, and the
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delay in publication is due in part to difficulties in getting these technical details
correct. In the mean-time, Arone-Ching [AC] and Heuts [Heu] have announced
proofs which reproduce and expand on the authors’ results using more conceptual
techniques.

The idea of this survey is to provide a means to disseminate the authors’ original
work until the original account is published. As [BR15] is more of a forced march
than a reflective ramble, it also seemed desirable to have a discussion which ex-
plained the main ideas without getting bogged down in the inevitable details one
must contend with (which involve careful work with the Morava E-theory Dyer-
Lashof algebra, amongst other things). The approach of Arone-Ching uses a local-
ized analog of their classification theory for Taylor towers, together with Ching’s
Koszul duality for modules over an operad. Heuts’ approach is a byproduct of his
theory of polynomial approximations of ∞-categories. Both of these alternatives,
as we mentioned before, are more conceptual than our computational approach,
but require great care to make precise.

This survey, by contrast, is written to convey the ideas behind all three approaches,
without delving into many details. We also attempt to connect the theory with
many old and new developments in spectral algebra. We hope that the interested
reader will consult cited sources for more careful treatments of the subjects herein.
In particular, all constructions are implicitly derived/homotopy invariant, and we
invite the reader to cast them in his/her favorite model category or ∞-category.

Organization of the paper.

Section 2: We describe the general notion of stabilization of a homotopy theory,
and the Hess/Lurie theory of homotopy descent as a way of encoding unstable
homotopy theory as “stable homotopy theory with descent data”.

Section 3: The equivalence between rational differential graded Lie algebras and
rational differential graded commutative coalgebras is an instance of Koszul duality.
We describe the theory of Koszul duality, which provides a correspondence between
algebras over an operad, and coalgebras over its Koszul dual.

Section 4: We revisit rational homotopy theory and recast it in spectral terms. We
also describe Mandell’s work, which gives commutative algebra models of p-adic
homotopy types.

Section 5: We give an overview of chromatic (vn-periodic) homotopy theory, both
stable and unstable, and review the Bousfield-Kuhn functor.

Section 6: We define the comparison map, and state the main theorem in the case
where X is a sphere.

Section 7: We give an overview of the proof of the main theorem in the case where
X is a sphere. The proof involves Goodwillie calculus and the Morava E-theory
Dyer-Lashof algebra, both of which we review in this section.
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Section 8: We explain how the main theorem extends to all finite ΦK(n)-good
spaces. We also discuss computational consequences of the theorem, most notably
the work of Wang and Zhu.

Section 9: After summarizing Ching’s Koszul duality for modules over an operad,
we give an exposition of the Arone-Ching theory of fake Taylor towers, and their
classification of polynomial functors. We then explain how they use this theory,
in the localized context, to give a different proof (and strengthening) of the main
theorem.

Section 10: We summarize Heuts’ theory of polynomial approximations of ∞-
categories, and his general theory of coalgebra models of homotopy types. We
discuss Heuts’ application of his general theory to Koszul duality, and to unstable
vn-periodic homotopy, where his theory also reproves and strengthens the main
theorem.

Conventions.

• For a commutative (E∞) ring spectrum R, we shall let ModR denote the
category of R-module spectra, with symmetric monoidal structure given
by ∧R. For X,Y in ModR, we will let FR(X,Y ) denote the spectrum of
R-module maps from X to Y , and X∨ := FR(X,R) denotes the R-linear
dual. For a pointed space X, We shall let RX denote the function spectrum
F (Σ∞X,R).

• For X a space or spectrum, we shall use X∧p to denote its p-completion with
respect to a prime p, XE to denote its Bousfield localization with respect
to a spectrum E, and X≥n to denote its (n− 1)-connected cover.

• For all but the last section, our homotopical framework will always implic-
itly take place in the context of relative categories: a category C with a
subcategory W of “equivalences” [DHKS04] (in the last section we work
in the context of ∞-categories). The homotopy category will be denoted
Ho(C), and refers to the localization C[W−1]. Functors between homotopy
categories are always implicitly derived. We shall use C(X,Y ) to refer to
the maps in C, and [X,Y ]C to denote the maps in Ho(C). We shall use
C(X,Y ) to denote the derived mapping space.

• Top∗ denotes the category of pointed spaces (with equivalences the weak
homotopy equivalences), Sp the category of spectra (with equivalences the
stable equivalences), and for a spectrum E, (Top∗)E and SpE denote the
variants where we take the equivalences to be the E-homology isomor-
phisms.

• All operads O in ModR are assumed to be reduced, in the sense that
O0 = ∗ and O1 = R. We shall let AlgO denote the category of O-algebras.

As spelled out in greater detail in Section 3, TAQO will denote topolog-
ical André-Quillen homology, and TAQO will denote topological André-
Quillen cohomology (its R-linear dual). In the case where O = CommR,
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the (reduced) commutative operad in ModR, we shall let TAQR (respec-
tively TAQR) denote the associated topological André-Quillen homology
(respectively cohomology).1

Acknowledgments. The authors benefited greatly from conversations with Greg
Arone, Michael Ching, Bill Dwyer, Rosona Eldred, Sam Evans, John Francis, John
Harper, Gijs Heuts, Mike Hopkins, Nick Kuhn, Jacob Lurie, Mike Mandell, Akhil
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The authors are grateful to Norihiko Minami for encouraging this submission to
these conference proceedings, honoring the memory of Tetsusuke Ohkawa. The
authors would also like to thank the referee for his/her many useful comments and
corrections. Both authors were supported by grants from the NSF.

2. Models of “unstable homotopy theory”

The approach to unstable homotopy theory we are considering fits into a general
context, which we will now describe.

Stable homotopy theories. As Quillen points out in [Qui67], any pointed model
category C comes equipped with a notion of suspension ΣC and loops ΩC , given by

ΣCX = hocolim(∗ ← X → ∗),
ΩCX = holim(∗ → X ← ∗).

This gives the notion of a category Sp(C) of spectra in C. With hypotheses on
C, and a suitable notion of stable equivalence (see, for example, [Sch97], [Hov01]),
Sp(C) is a model for the stabilization of C (in the sense of [Lur16]). There are
adjoint functors

(2.1) Σ∞C : Ho(C)� Ho(Sp(C)) : Ω∞C .

We regard Ho(C) as the unstable homotopy theory of C, and Ho(Sp(C)) as the stable
homotopy theory of C.

The fundamental question. Typically, the unstable homotopy theory is more
complicated than the stable homotopy theory. One would therefore like to think
that an unstable homotopy type is a stable homotopy type with extra structure.
More specifically:

Question 2.2. Is there an algebraic structure “?” on Sp(C) and functors:

A : Ho(C)� Ho(Alg?(Sp(C))) : E

so that X ' EA(X) (natural isomorphism in the homotopy category)?

If so, we say that ?-algebras model the unstable homotopy types of C.

Remark 2.3.

1This is slightly non-standard, as Comm-algebras are the same thing as non-unital commuta-
tive algebras in ModR. However, as we explain in Section 3, the category of such is equivalent to

the category of augmented commutative R-algebras.
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(1) Often, one must restrict attention to certain subcategories of Ho(C), Ho(Alg?)
to get something like this (e.g. 1-connected rational unstable homotopy
types).

(2) One can hope for more: is A fully faithful? Can we then characterize the
essential image?

(3) When (A,E) form an adjoint pair, we can say something sharper: in this
case, there is always a canonical equivalence between the full subcategories

Ho
{
X ∈ C s.t. X ' EA(X)

}
' Ho

{
A ∈ Alg?(Sp(C)) s.t. A ' AE(A)

}
.

This identifies both the “good” subcategory of Ho(C) and its essential image
under A, and shows that A is fully faithful on this subcategory.

Example 2.4. In the case of C = (Top∗)Q — rational pointed spaces — the
stabilization is rational spectra SpQ. We have

Ho(SpQ) ' Ho(ChQ),

where ChQ denotes rational Z-graded chain complexes. In this context Quillen’s
work provides two answers to Question 2.2: the algebraic structure can be taken to
be either commutative coalgebras or Lie algebras.

Homotopy descent. The theory of homotopy decent of Hess [Hes10] and Lurie
[Lur16] (see also [AC15]) provides a canonical candidate answer to Question 2.2.
Namely, the adjunction (2.1) gives rise to a comonad Σ∞C Ω∞C on Sp(C), and for any
X ∈ C, the spectrum Σ∞C X is a coalgebra for this comonad.2 Thus one can regard
the functor Σ∞C as refining to a functor

A : Ho(C)→ Ho(CoalgΣ∞C Ω∞C
).

Asking for this to be an equivalence is asking for the adjunction to be “comonadic”.
It is typically only reasonable to expect that one gets an equivalence between suit-
able subcategories of these two categories. Even then, this may be of little use if
there is no explicit understanding of what it means to be a Σ∞C Ω∞C -coalgebra.

Example 2.5. Suppose that C = Top∗, the category of pointed spaces. Then there
is always a map

(2.6) X → C(Ω∞,Σ∞Ω∞,Σ∞X)

where C(−,−,−) denote the comonadic cobar construction. Explicitly,

C(Ω∞,Σ∞Ω∞,Σ∞X) = Tot(QX ⇒ QQX V · · · ),

the Bousfield-Kan Q-completion of X. It follows that the map (2.6) is an equiva-
lence for X nilpotent, and for nilpotent spaces the unstable homotopy type can be
recovered from the Σ∞Ω∞-comonad structure on Σ∞X. But what does it mean
explicitly to endow a spectrum with a Σ∞Ω∞-coalgebra structure? This seems to
be a difficult question, but Arone, Klein, Heuts, and others have partial informa-
tion (see [Kle05], [Heu16]). Rationally, however, Σ∞Ω∞ is equivalent (on connected
spaces) to the free commutative coalgebra functor, and coalgebras for this comonad
are therefore rationally equivalent to commutative coalgebras.

2One should regard this coalgebra structure as “descent data”.
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3. Koszul duality

The equivalence

Ho(DGCoalg≥2
Q ) ' Ho(DGLie≥1

Q )

mentioned in the introduction is an instance of Koszul duality [GK94], [GJ], [FG12],
[Fre04], [AF15], [Lur16], [CH15]. In this section we will attempt to summarize the
current state of affairs to the best of our abilities.

Let R be a commutative ring spectrum, and let O be an operad in ModR. All
operads O in this paper are assumed to be reduced: O0 = ∗ and O1 = R.

We shall let AlgO = AlgO(ModR) denote the category of O-algebras. An equiv-
alence of O-algebras is a map of O-algebras whose underlying map of spectra is
an equivalence.3 Note that since the operad O is reduced, the category AlgO is
pointed, with ∗ serving as both the initial and terminal object. There is a free-
forgetful adjunction

FO : ModR � AlgO : U
where

(3.1) FO(X) =
∨
i

(
Oi ∧R X∧Ri

)
Σi

is the free O-algebra generated by X. We shall abusively also use FO to denote the
associated monad on ModR, so that O-algebras are the same thing as FO-algebras:

AlgO ' AlgFO .

Topological André-Quillen homology. Because O is reduced, there is a natural
transformation of monads

ε : FO → Id.

For A an O-algebra, its module of indecomposables QA is defined to be the co-
equalizer of ε and the FO-algebra structure map:

FO(A)⇒ A→ QA.

The functor Q has a right adjoint

Q : AlgO � ModR : triv

where, for an R-module X, the O-algebra trivX is given by endowing X with
O-algebra structure maps:

O1 ∧R X = R ∧R X
≈−→ X,

On ∧R Xn ∗−→ X, n 6= 1.

The topological André-Quillen homology of A is defined to be the left derived functor

TAQO(A) := LQA.
It is effectively computed as the realization of the monadic bar construction:

TAQO(A) ' B(Id,FO, A).

3We refer the reader to [HH13] for a thorough treatment of the homotopy theory of O-algebras
suitable for our level of generality. We advise the reader that some of the technical details in this

reference are correctly dealt with in [Per16], [KP17].
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The Topological André-Quillen cohomology is defined to be the R-linear dual of
TAQO:

TAQO(A) := TAQO(A)∨.

Suppose R = Hk is the Eilenberg-MacLane spectrum associated to a Q-algebra
k, O is the commutative operad (see Example 3.2 below), and A is the Eilenberg-
MacLane O-algebra associated to an ordinary augmented commutative k-algebra.
Then we can regard TAQO as being an object of the derived category of k under
the equivalence

Ho(ModHk) ' Ho(Chk)

and we recover classical André-Quillen homology. Basterra defined TAQ for com-
mutative R-algebras for arbitrary commutative ring spectra R, and showed that the
monadic bar construction gives a formula for it [Bas99]. The case of general topo-
logical operads was introduced in [BM05]; this work was extended to the setting of
spectral operads in [Har10] (see also [GH00]).

The important properties of TAQO are:

(1) TAQO is excisive — it takes homotopy pushouts of O-algebras to homotopy
pullbacks of R-modules (which are the same as homotopy pushouts in this
case),

(2) TAQO(FO(X)) ' X — this is a consequence of the fact that QFOX ≈ X.

(1) and (2) above imply that if A is built out of free O-algebra cells, TAQO(A)
is built out of R-module cells in the same dimensions. In this way, TAQ provides
information on the “cell structure” of an O-algebra.

Example 3.2. The (reduced) commutative operad Comm = CommR is given by

Commi =

{
∗, i = 0,

R, i ≥ 1.

A CommR-algebra is a non-unital commutative R-algebra. The category of non-
unital commutative R-algebras is equivalent to the category of augmented commu-
tative R-algebras:

AlgCommR
' (AlgR)/R.

Given an augmented commutative R-algebra A, the augmentation ideal IA given
by the fiber

IA→ A
ε−→ R

is the associated non-unital commutative algebra. In this setting, we have

TAQCommR(IA) ' TAQR(A)

where TAQR(−) is the TAQ of [Bas99].

The stable homotopy theory of O-algebras. The following theorem was first
proven in the context of simplicial commutative rings in [Sch97], in the context of
R arbitrary and O = Comm in [BM02] and [BM05], and R and O arbitrary in
[Per13] (see also [FG12], [Lur16, Thm. 7.3.4.13]).
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Theorem 3.3. There is an equivalence of categories

Ho(Sp(AlgO)) ' Ho(ModR).

Under this equivalence, the functors

Σ∞AlgO
: Ho(AlgO)� Ho(ModR) : Ω∞AlgO

are given by

Σ∞AlgO
A ' TAQO(A),

Ω∞AlgO
X ' trivX.

The adjunction above extends to derived mapping spaces, and gives the following
(compare with [Bas99]).

Corollary 3.4. The spaces of the TAQO-spectrum are given by

Ω∞Σn TAQO(A) ' AlgO(A, trivΣnR).

Proof. We have

AlgO(A, trivΣnR) ' ModR(TAQO(A),ΣnR)

' ModR(R,Σn TAQO(A))

' Ω∞Σn TAQO(A).

�

Divided power coalgebras. Question 2.2 clearly has a tautological answer when
C = AlgO: it consists of O-algebras in Sp(C) ' ModR. However, this is not
the canonical spectral algebra model given by the theory of homotopy descent of
Section 2 — we should be considering the Σ∞AlgO

Ω∞AlgO
-coalgebra TAQO(A) as a

candidate spectral algebra model for A.

But what does it mean to be a Σ∞AlgO
Ω∞AlgO

-coalgebra? The answer, according to

[FG12] and [CH15], is a divided power coalgebra over the Koszul dual BO. Let us
unpack what this means.

For any symmetric sequence Y = {Yi} of R-modules, one can use (3.1) to define a
functor

FY : ModR → ModR.

The category of symmetric sequences of R-modules possesses a monoidal structure
◦ called the composition product, such that

FY ◦ FZ = FY◦Z .

The monoids associated to the composition product are precisely the operads in
ModR. The unit for this monoidal structure is the symmetric sequence 1R with

(1R)i =

{
R, i = 1,

∗, i 6= 1.
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Every reduced operad O in ModR is augmented over 1R. The Koszul dual of O is
the symmetric sequence obtained by forming the bar construction with respect to
the composition product

BO := B(1R,O, 1R) = |1⇐ O W O ◦ O · · · |.

Ching showed that BO admits a cooperad structure [Chi05].

Example 3.5. Suppose R = HQ, so we can replace ModR with ChQ. Take O =
LieQ, the Lie operad. Then we have BLieQ = sComm∨Q the suspension of the

commutative cooperad [GK94], [Chi05].4

Example 3.6. In the case of R = S, the sphere spectrum, and O the commutative
operad, Ching showed that

BCommS ' (∂∗IdTop∗)
∨

the duals of the Goodwillie derivatives of the identity functor on Top∗
5 [Chi05].

He also showed that with respect to the resulting operad structure on ∂∗IdTop∗ , we
have

sH∗∂∗IdTop∗
∼= LieZ.

As such, we will define the shifted spectral Lie operad as

s−1LieS := ∂∗IdTop∗ .

Following [CH15], we have for an R-module X:

Σ∞AlgO
Ω∞AlgO

X ' TAQO(trivX)

' B(Id,FO, trivX)

' FBOX.

If R and O are connective, and X is connected, we have

FBOX '
∏
i

(
BOi ∧R X∧Ri

)
Σi
.

Thus, at least on the level of the homotopy category, the data of a Σ∞AlgO
Ω∞AlgO

-

coalgebra C corresponds to the existence of a collection of coaction maps:

ψi : C →
(
BOi ∧R C∧Ri

)
Σi
.

The term divided power comes from the fact that a standard coalgebra over a
cooperad consists of coaction maps into the Σi-fixed points rather than the Σi-
orbits.

The general notion of a divided power (co)algebra over a (co)operad goes back to
Fresse (see[Fre00], [Fre04]). For a precise definition of divided power coalgebras in
the present homotopy-coherent context, we refer the reader to [FG12], [Heu16]. In
this language, we have functors

(3.7) TAQO : Ho(AlgO)� Ho(d.p.CoalgBO) : E.

4In general, for a (co)operad O, the suspension of the (co)operad sO is a new (co)operad for

which (sO)i ' Σi−1Oi (nonequivaraintly), with the property that an sO-(co)algebra structure on

X is the same thing as an O-(co)algebra structure on ΣX [MSS02], [AK14].
5This identification used the computation of ∂∗IdTop∗ of [Joh95] and [AM99] as input.
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Instances of Koszul duality. The following “Koszul Duality” theorem (a spe-
cial case of a general conjecture of Francis-Gaitsgory [FG12]) generalizes Quillen’s
original theorem, as well as subsequent work in the algebraic context [GK94], [GJ],
[Fre04], [SS85].

Theorem 3.8 (Ching-Harper [CH15]). In the case where R and O are connective,
the functors (3.7) restrict to give an equivalence of categories

Ho(Alg≥1
O ) ' Ho(d.p.Coalg≥1

BO).

Example 3.9. Returning to the context of R = HQ, and O = LieQ of Example 3.5,
Theorem 3.8 recovers Quillen’s original theorem:

Ho(Alg≥1
LieQ

) ' Ho(Coalg≥1
sComm∨Q

) ' Ho(Coalg≥2
Comm∨Q

).

Note that we have not mentioned divided powers. This is because, rationally,
coinvariants and invariants with respect to finite groups are isomorphic via the
norm map, so every rational coalgebra is a divided power coalgebra.

4. Models of rational and p-adic homotopy theory

In this section we will return to Quillen-Sullivan theory, and a p-adic analog studied
by Kriz, Goerss, Mandell, and Dwyer-Hopkins.

Rational homotopy theory, again. We begin by recasting Quillen-Sullivan the-
ory into the language of spectral algebra. This in some sense defeats the original
purpose of the theory — which was to encode rational homotopy theory in an
algebraic category where you can literally write down the models in terms of gener-
ators, relations and differentials, but our recasting of the theory will motivate what
follows.

Consider the functors

HQ ∧ − : Ho((Top∗)Q)→ Ho(CoalgComm∨HQ
),

HQ− : Ho((Top∗)Q)op → Ho(AlgCommHQ
).

Essentially, for X ∈ Top∗, HQ ∧X is a spectral model for the reduced chains on
X, and HQX is a spectral model for the reduced cochains of X. The commutative
coalgebra/algebra structures come from the diagonal

∆ : X → X ∧X.

The two functors are related by HQX = (HQ ∧X)∨. If X is of finite type, there
is no loss of information in using the cochains HQX . There is a definite advantage
to working with algebras rather than coalgebras if you like model categories.6

6For suitable monads M on cofibrantly generated model categories C it is typically straightfor-

ward to place induced model structures on AlgM [Hir03] — coalgebras over comonads are more

difficult to handle. This may be an instance where there is a definite advantage in working with
∞-categories. However, we also point out that Hess-Shipley [HS14] give a useful framework which

in practice can often give model category structures on categories of coalgebras over comonads.
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Quillen’s theorem implies these functors restrict to give equivalences of categories:

HQ ∧ (−) : Ho(Top≥2
Q )

'−→ Ho(Coalg≥2
Comm∨HQ

),

HQ(−) : Ho(Top≥2,f.t.
Q )

'−→ Ho(Alg≤−2,f.t.
CommHQ

).

His Lie algebra models then come from applying Koszul duality (see Example 3.9).

p-adic homotopy theory. Fix a prime p. Analogous approaches to p-adic ho-
motopy theory using cosimplicial commutative algebras, simplicial commutative
coalgebras, E∞-algebras in chain complexes, and commutative algebras in spectra
were developed respectively by Kriz [Kř́ı93], Goerss [Goe95], Mandell [Man01], and
Dwyer-Hopkins (see [Man01]). We will focus on the spectral algebra setting, which
is closely tied to Mandell’s algebraic setting.

The basic idea in these approaches is to replace the role of HQ with the role of
HF̄p. Consider the cochain functor with F̄p-coefficients on p-complete spaces:

HF̄(−)
p : Ho((Top∗)Zp

)op → Ho(AlgCommHF̄p
).

Theorem 4.1 (Mandell [Man01]). The F̄p-cochains functor gives a fully faithful
embedding

(4.2) HF̄(−)
p : Ho((Top∗)

nilp,f.t.
Zp

)op ↪→ Ho(AlgCommHF̄p
).

of the homotopy category of nilpotent p-complete spaces of finite type into the ho-
motopy category of commutative HF̄p-algebras.

Remark 4.3. Actually, the functor (4.2) induces an equivalence on derived map-
ping spaces. Mandell also computes the effective image of this functor.

Remark 4.4. The approach of [Goe95] suggests that the finite type hypothesis
could be removed if one worked with HF̄p-coalgebras.

What goes wrong when using HFp instead of HF̄p? Because the F̄p-cochains are
actually defined over Fp, there is a continuous action of

Gal := Gal(F̄p/Fp) ∼= Ẑ

on HF̄Xp , with homotopy fixed points:

(HF̄Xp )hGal(F̄p/Fp) ' HFXp .

It follows that for X, Y nilpotent and of finite type, we have

Alg
CommHFp

(HFYp , HFXp ) ' Alg
CommHF̄p

(HF̄Yp , HF̄Xp )hGal

' Top∗(X
∧
p , Y

∧
p )hGal.

However, the action of Gal on Top∗(X
∧
p , Y

∧
p ) is trivial, so we have

Top∗(X
∧
p , Y

∧
p )hGal ' Top∗(X

∧
p , Y

∧
p )BZ

' LTop∗(X
∧
p , Y

∧
p ) (the free loop space).
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In unpublished work (closely related to [Man06]), Mandell has shown the same holds
for HFp replaced by Sp, the p-adic sphere spectrum when X and Y are additionally
assumed to be finite:

Alg
Comm

(SYp , S
X
p ) ' LTop∗(X

∧
p , Y

∧
p ).

In fact, Mandell has shown the integral cochains functors gives a faithful embedding
of the integral homotopy category into the category of integral E∞-algebras [Man06]

Ho(Topnilp,f.t.
∗ )op ↪→ Ho(AlgE∞(ChZ))

Medina has recently proven a related statement using E∞-coalgebras [Med], and
Blomquist-Harper have recently announced another setup using coalgebra struc-
tures on integral chains [BH16a]. In unpublished work, Mandell has a similar result
for commutative S-algebras: the Spanier-Whitehead dual functor gives a faithful
embedding:

S(−) : Ho(Topnilp,finite
∗ )op ↪→ Ho(AlgComm(Sp)).

Where are the p-adic Lie algebras? There is no known “Lie algebra model”
for unstable p-adic homotopy theory. One of the problems is that, unlike the
rational case, commutative HF̄p-coalgebras do not automatically come equipped
with divided power structures, so Koszul duality does not seem to apply (cf. the
rational analogue of Example 3.5). Applying Koszul duality in the other direction,
to get a “divided power Lie coalgebra model” (via a Koszul duality equivalence

with commutative algebras) is fruitless as well, since TAQHF̄p(HF̄Xp ) ' ∗ for any
finite-type nilpotent X (Thm. 3.4 of [Man06]).

One indication that one should not expect a Lie algebra model for p-adic homotopy
types is that rationally, the composite

Ho(Sp≥2
Q )

Ω∞(−)−−−−→ Ho(Top≥2
Q )

LQ−−→
'

Ho(Alg≥1
LieQ

)

is given by

LQ(Ω∞Z) ' trivΣ−1Z.

where we give the spectrum Σ−1Z the trivial Lie bracket. This, strangely, means
that a simply connected rational homotopy type is an infinite loop space if and
only if its associated Lie algebra is equivalent to one with a trivial bracket. There
is thus a functor

(4.5) Φ0 : Ho(Top≥2
Q )→ Ho(SpQ)

given by forgetting the Lie algebra structure on LQ. For a 1-connected spectrum
Z, we have

Φ0Ω∞Z ' ZQ,

i.e., we can recover the rationalization of the spectrum from its 0th space. It follows
that rationally, simply connected infinite loop spaces have unique deloopings. An
analogous fact does not hold for p-adic infinite loop spaces.
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5. vn-periodic homotopy theory

In both the case of rational homotopy theory, and p-adic homotopy theory, there
are notions of “homotopy groups” and “homology groups”. In the rational case, we
have

rational homotopy = π∗(X)⊗Q,
rational homology = H∗(X;Q).

The appropriate analogs in the p-adic case are

mod p homotopy = π∗(X;M(p)) := [Σ∗M(p), X]Top∗ ,

mod p homology = H∗(X;Fp).

For 1-connected spaces, a map is a rational homotopy isomorphism if and only if
it is a rational homology isomorphism, and similarly, a map is a mod p homotopy
isomorphism if and only if it is a mod p homology isomorphism.

The idea of chromatic homotopy theory is that a p-local homotopy type is built out
of monochromatic (or vn-periodic) layers, and that elements of p-local homotopy
groups fit into periodic families of different frequencies. The vn-periodic homotopy
groups isolate the elements in a particular frequency. The associated homology
theory is the nth Morava K-theory.

Stable vn-periodic homotopy theory. We begin with the stable picture. vn-
periodic stable homotopy theory has its own notion of homotopy and homology
groups. The appropriate homology theory is the nth Morava K-theory spectrum
K(n), with

K(n)∗ = Fp[v±n ], |vn| = 2(pn − 1)

(for n = 0 we have K(0) = HQ and v0 = p). The appropriate notion of homotopy
groups are the vn-periodic homotopy groups, defined as follows. A finite p-local
spectrum V is called type n if it is K(n − 1)-acyclic, and not K(n)-acyclic. The
periodicity theorem of Hopkins-Smith [HS98] states that V has an asymptotically
unique vn self-map: a K(n)-equivalence

v : ΣkV → V

(with k > 0 if n > 0). The vn-periodic homotopy groups (with coefficients in V ) of
a spectrum Z are defined to be

v−1
n π∗(Z;V ) := v−1[Σ∗V,Z]Sp.

For n > 0 these groups are periodic, of period dividing k, the degree of the chosen
self-map v. Note these groups do not depend on the choice of vn self-map (by as-
ymptotic uniqueness) but they do depend on the choice of finite type n spectrum V .
However, for any two such spectra V , V ′, it turns out that a map is a v−1

n π∗(−;V )
isomorphism if and only if it is a v−1

n π∗(−;V ′) isomorphism. It is straightforward
to check that if we take T (n) to be the “telescope”

T (n) = v−1
n V := hocolim(V

v−→ Σ−kV
v−→ Σ−2kV

v−→ · · · )

then a v−1
n π∗-isomorphism is the same thing as a T (n)∗-isomorphism.
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For maps of spectra it can be shown that

v−1
n π∗-isomorphism⇒ K(n)∗-isomorphism.

Ravenel’s telescope conjecture [Rav84] predicts the converse is true. This is easily
verified in the case of n = 0, and deep computational work of Mahowald [Mah81]
and Miller [Mil81] implies the conjecture is valid for n = 1. It is believed to be
false for n ≥ 2, but the problem remains open despite the valiant efforts of many
researchers [MRS01].

As such, there are potentially two different stable vn-periodic categories, SpT (n)

and SpK(n), corresponding to the localizations with respect to the two potentially

different notions of equivalence. K(n)-localization gives a functor

(−)K(n) : Ho(SpT (n))→ Ho(SpK(n)).

Remark 5.1. Arguably localization with respect to T (n) is more fundamental, but
there are no known computations of π∗ZT (n) for a finite spectrum Z and n ≥ 2 (if we
had such a computation, we probably would have resolved the telescope conjecture
for that prime p and chromatic level n). By contrast, the whole motivation of the
chromatic program is that the homotopy groups π∗ZK(n) are essentially computable
(though in practice these computations get quite involved, and little has been done
for n ≥ 3).

The stable chromatic tower. p-local stable homotopy types are assembled from
the stable vn-periodic categories in the following manner. Let LfnSp denote the
category of spectra which are

⊕n
i=0 v

−1
i π∗-local, and let LnSp denote the category

of spectra which are
⊕n

i=0K(i)∗-local, with associated (and potentially different)
localization functors Lfn, Ln. A spectrum Z has two potentially different chromatic
towers

· · · → Lf2Z → Lf1Z → Lf0Z,

· · · → L2Z → L1Z → L0Z.

Under favorable circumstances (for example, when Z is finite [HR92]) we have
chromatic convergence: the map

Z(p) → holim
n

LnZ

is an equivalence. Presumably one can expect similar results for Lfn, though the
authors are not aware of any work on this.

The monochromatic layers are the fibers

Mf
nZ → LfnZ → Lfn−1Z,

MnZ → LnZ → Ln−1Z.

Let Mf
nSp (respectively MnSp) denote the subcategory of LfnSp (respectively LnSp)

consisting of the image of the functor Mf
n (respectively Mn). Then the pairs of

functors

(−)T (n) : Ho(Mf
nSp)� Ho(SpT (n)) : Mf

n ,

(−)K(n) : Ho(MnSp)� Ho(SpK(n)) : Mn



16 MARK BEHRENS AND CHARLES REZK

give equivalences between the respective homotopy categories (see, for example,
[Bou01]). We have

v−1
n V 'Mf

nV ' VT (n)

and
v−1
n π∗(Z;V ) ∼= [Σ∗Mf

nV,M
f
nZ]Sp

∼= [Σ∗VT (n), ZT (n)]Sp.

T (n)-local Tate spectra. For G a finite group, and Z a spectrum with a G-action,
there is a natural transformation

N : ZhG → ZhG

called the norm map [GM95]. The cofiber is called the Tate spectrum:

ZtG := cof(ZhG → ZhG).

The following theorem is due to Hovey-Sadofsky [HS96] in the K(n)-local case,
and was strengthened by Kuhn [Kuh04b] to the T (n)-local case (see also [MS88],
[GS96], and [CM17]).

Theorem 5.2 (Greenlees-Sadofsky, Kuhn). If Z is T (n)-local, then the spectrum
ZtG is T (n)-acyclic, and the norm map is a T (n)-equivalence.

In the case of n = 0, this reduces to the familiar statement that rationally, invari-
ants and coinvariants with respect to a finite group are isomorphic via the norm. In
general, this theorem implies that T (n)-local coalgebras, T (n)-locally, admit unique
divided power structures. In some sense, Theorem 5.2 will be the primary mech-
anism which will allow unstable vn-periodic homotopy types to admit Lie algebra
models.

Unstable vn-periodic homotopy theory. Perhaps the most illuminating ap-
proach to unstable vn-periodic homotopy theory is that of [Bou01], which we follow
here. This approach builds on previous work of Davis, Mahowald, Dror Farjoun,
and many others. Like the stable case, there will be two potentially different notions
of unstable vn-periodic equivalence: one based on unstable vn-periodic homotopy
groups, and one based on K(n)-homology.

The appropriate unstable analogs of vn-periodic homotopy groups are defined as
follows. The periodicity theorem implies that unstably, a finite type n complex
admits a vn-self map

v : Σk(N0+1)V → ΣkN0V

for some N0 � 0. For any X ∈ Top∗, its vn-periodic homotopy groups (with
coefficients in V ) are defined by

v−1
n π∗(X;V ) := v−1[Σ∗V,X]Top∗ .

for n > 0 (v0-periodic homotopy is taken to be rational homotopy). For n > 0
this definition only makes sense for ∗ � 0, but because the result is k-periodic, one
can define these groups for all ∗ ∈ Z. These give the notion of a v−1

n π∗-equivalence
of spaces. Bousfield argues in [Bou01] that the appropriate notion of unstable vn-
periodic homology equivalence is that of a virtual K(n)-equivalence — a map of
spaces X → Y for which the induced map

(ΩX)≥n+3 → (ΩY )≥n+3
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is a K(n)∗-isomorphism.7 Rather than try to explain why this is the appropriate
notion we will simply point out that Bousfield proves that if the telescope conjecture
is true, then virtual K(n)-equivalences are v−1

n π∗-isomorphisms.

We will focus on the version of unstable vn-periodic homotopy theory based on
v−1
n π∗-equivalences. The authors do not know if any attempt has been made to

systematically study the unstable theory based on virtual K(n)-equivalences (in
case the telescope conjecture is false).

Bousfield defines LfnTop∗ to be the nullification of Top∗ with respect to

ΣVn+1 ∨
∨
6̀=p

M(Z/`, 2),

where Vn+1 is a type n + 1 complex of minimal connectivity (say it is (dn − 3)-
connected). Let Lfn denote the associated localization functor. When restricted to

Top≥dn∗ , Lfn is localization with respect to
⊕n

i=0 v
−1
i π∗-equivalences. For a space

X there is an unstable chromatic tower

· · · → Lf2X → Lf1X → Lf0X.

The unstable chromatic tower actually always converges to X(p) for a trivial reason:
the sequence dn is non-decreasing and unbounded [Bou94].

The nth monochromatic layer is defined to be the homotopy fiber

Mf
nX → LfnX → Lfn−1X.

Bousfield defines the nth unstable monochromatic category Mf
nTop∗ to be the

full subcategory of Top∗ consisting of the spaces of the form (Mf
nX)≥dn . Bous-

field’s work in [Bou01] implies the equivalences in Mf
nTop∗ are precisely the v−1

n π∗-
equivalences. Furthermore, for any type n complex V with an unstable vn-self
map

v : ΣkV → V

the vn-periodic homotopy groups are in fact the V -based homotopy groups as com-
puted in Ho(Mf

nTop∗):

v−1
n π∗(X;V ) ∼= [Σ∗V,Mf

nX]Top∗ .

The Bousfield-Kuhn functor. Bousfield and Kuhn [Kuh08], [Bou01] observe
vn-periodic homotopy groups are the homotopy groups of a spectrum ΦV (X). The
kNth space of this spectrum is given by

ΦV (X)kN = Top∗(V,X)

with spectrum structure maps generated by the maps

ΦV (X)kN = Top∗(V,X)
v∗−→ Top∗(Σ

kV,X) ' ΩkΦV (X)k(N+1).

It follows that

π∗ΦV (X) ∼= v−1
n π∗(X;V ).

7A variant of this definition is explored by Kuhn in [Kuh06].
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The above definition only depended on ΣkNV for N large. As a result, it only
depends on the stable homotopy type Σ∞V . One can therefore take a suitable
inverse system Vi of finite type n spectra so that

holim
i

v−1
n Vi ' ST (n).

The Bousfield-Kuhn functor

Φn : Ho(Top∗)→ Ho(SpT (n))

is given by

Φn(X) = holim
i

ΦV ∨i (X).

We define the completed unstable vn-periodic homotopy groups (without coeffi-
cients in a type n complex) by8

v−1
n π∗(X)∧ := π∗Φn(X).

The Bousfield-Kuhn functor enjoys many remarkable properties:

(1) For X ∈ Top∗ and a type n spectrum V we have

[Σ∗V,Φn(X)]Sp ' v−1
n π∗(X;V ).

(2) Φn preserves fiber sequences.
(3) For Z ∈ Sp there is a natural equivalence

ΦnΩ∞Z ' ZT (n).

Property (3) above is the strangest property of all: it implies (since by (2) Φn
commutes with Ω) that a T (n)-local spectrum is determined by any one of the
spaces in its Ω-spectrum, independent of the infinite loop space structure.

Relation between stable and unstable vn-periodic homotopy. The category
Ho(SpT (n)) serves as the “stable homotopy category” of the unstable vn-periodic

homotopy category Ho(Mf
nTop∗), with adjoint functors [Bou01]

(Σ∞−)T (n) : Ho(Mf
nTop∗)� Ho(SpT (n)) : (Ω∞Mf

n−)≥dn .

Analogously to the rational situation, it is shown in [Bou01] that the composite

Ho(SpT (n))
(Ω∞Mf

n−)≥dn

−−−−−−−−−→ Ho(Mf
nTop∗)

Φn−−→ Ho(SpT (n))

is naturally isomorphic to the identity functor. Thus the stable vn-periodic ho-
motopy category admits a fully faithful embedding into the unstable vn-periodic
homotopy category. This leads one to expect that there is a “Lie algebra” model
of unstable vn-periodic homotopy, where the infinite loop spaces correspond to the
Lie algebras with trivial Lie structure.

8These should not be confused with the “uncompleted” unstable vn-periodic homotopy groups
studied by Bousfield, Davis, Mahowald, and others. These are given as the homotopy groups of

Mf
nΦn(X) (see [Kuh07]).
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The K(n)-local variant. There is a variant of the Bousfield-Kuhn functor

ΦK(n) : Ho(Top∗)→ Ho(SpK(n))

defined by

ΦK(n)(X) ' Φn(X)K(n).

We then have

ΦK(n)Ω
∞Z ' ZK(n).

There is a corresponding variant of completed unstable vn-periodic homotopy groups
which (probably to the chagrin of many) we will denote:

v−1
K(n)π∗(X)∧ := π∗ΦK(n)(X).

Of course if the telescope conjecture is true, Φn(X) ' ΦK(n)(X), and the two
versions of unstable vn-periodic homotopy agree. If the telescope conjecture is not
true, the groups v−1

K(n)π∗ will likely be far more computable than v−1
n π∗.

6. The comparison map

Motivated by rational and p-adic homotopy theory, one could ask: to what degree is
an unstable homotopy type X ∈Mf

nTop∗ modeled by the T (n)-local Comm-algebra
SXT (n) (the “ST (n)-valued cochains”)? I.e., what can be said of the functor:

S
(−)
T (n) : Ho(Mf

nTop∗)
op → Ho(AlgComm(SpT (n)))?

The first thing to check is to what degree the unstable vn-periodic homotopy groups
of X can be recovered from the algebra SXT (n): i.e. for an unstable type n complex

V with vn-self map

v : ΣkV → V

what can be said of the following composite?

(6.1) v−1
n π∗(X;V ) ∼= [Σ∗V,Mf

n (X)]Top∗ →
[
SXT (n), S

Σ∗V
T (n)

]
AlgComm

We begin with the observation, which we learned from Mike Hopkins, that the
Comm-algebra SVT (n) is actually an “infinite loop object” in the category AlgComm:

Proposition 6.2. There is an equivalence of Comm-algebras

SVT (n) ' triv(V ∨).

Proof. The existence of the vn-self map v shows that SVT (n) is an infinite loop object

of AlgComm:

SVT (n)

(vN )∗−−−−→
'

SΣNkV
T (n) ' ΩNkSVT (n).

The result follows from the fact that the infinite loop objects in AlgComm are the
trivial algebras on the underlying spectra. �

Using Corollary 3.4, we now deduce:
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Corollary 6.3. We have

Alg
Comm

(SXT (n), S
Σ∗V
T (n)) ' Ω∞Σ∗ TAQST (n)

(SXT (n)) ∧ V
∨.

We deduce that (6.1) refines to a natural transformation

cVX : ΦV (X)→ TAQST (n)
(SXT (n)) ∧ V

∨.

Taking a suitable homotopy inverse limit of these natural transformations gives a
natural transformation

cX : Φn(X)→ TAQST (n)
(SXT (n))

which we will call the comparison map. A variant, which involves replacing ST (n)

with SK(n), everywhere, is defined in [BR15]:

c
K(n)
X : ΦK(n)(X)→ TAQSK(n)

(SXK(n)).

The main theorem of [BR15] is

Theorem 6.4. The comparison map c
K(n)
X is an equivalence for X a sphere.

It follows formally from this theorem that the comparison map is an equivalence for
a larger class of spaces: the class of finite ΦK(n)-good spaces. This will be discussed
in Section 8. In the case of n = 1, Theorem 6.4 was originally proven by French
[Fre10].

It is shown in [Chi05] that cobar constructions for O-coalgebras get a CO-algebra
structure (where C denotes the cooperadic cobar construction). The spectrum

TAQST (n)
(SXT (n))

is therefore an algebra over s−1LieS (see Example 3.6). We might regard this as
a candidate for a “Lie algebra model” for the unstable vn-periodic homotopy type
of X, though this is probably only reasonable for X finite, as will be explained in
Section 10.

7. Outline of the proof of the main theorem

Our approach to Theorem 6.4 is essentially computational in nature, and uses
the Morava E-theory Dyer-Lashof algebra in an essential way. Unfortunately, the
proof given in [BR15] is necessarily technical, and consequently is not optimized
for leisurely reading. In this section we give an overview of the main ideas of
our proof. As we will explain in Sections 9 and 10, Arone-Ching [AC] and Heuts
[Heu] have announced more abstract approachs to prove Theorem 6.4, with stronger
consequences. Perhaps the situation is comparable to the early work on p-adic
homotopy theory of Kriz and Goerss [Kř́ı93], [Goe95]: Kriz’s approach (like that
of [Man01]) is computational, based on the Steenrod algebra, whereas Goerss’ is
abstract, based on Galois descent and model category theory. Both approaches
offer insight into the theory of using commutative algebras/coalgebras to model
p-adic homotopy types. We hope the same is true of the two approaches to model
unstable vn-periodic homotopy.
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Goodwillie towers. The proof of 6.4 involves induction up the Goodwillie towers
of both the source and target of the comparison map. The key fact that the
argument hinges on is an observation of Kuhn [Kuh04a]: the layers of both of
these towers are abstractly equivalent.

For our application of Goodwillie calculus to the situation, we point out that, in the
context of model categories, Pereira [Per13] has shown that Goodwillie’s calculus
of functors (as developed in [Goo03]) applies to homotopy functors

F : C → D
between arbitrary model categories with fairly minimal hypotheses (see also [BR14]
and [Lur16])9. For simplicity we shall assume that C and D are pointed, and restrict
attention to reduced F (i.e. F (∗) ' ∗).

Associated to F is its Goodwillie tower, a series of k-excisive approximations

PkF : C → D
which form a tower under F :

F → · · · → PkF → Pk−1F → · · · → P1F.

We say the Goodwillie tower converges at X if the map

F (X)→ holim
k

PkF (X)

is an equivalence. The layers of the Goodwillie tower are the fibers

DkF → PkF → Pk−1F.

If F is finitary (i.e. preserves filtered homotopy colimits), the layers take the form

DkF (X) ' Ω∞D crlink (F )(Σ∞C X, · · · ,Σ∞C X)hΣk

where
crlink (F ) : Sp(C)×k → Sp(D)

is a certain symmetric multilinear functor called the multilinearized cross-effect. In
the case where Sp(C),Sp(D) are Quillen equivalent to Sp = Sp(Top∗), the multi-
linearized cross effect is given by

crlink (F )(Z1, · · · , Zk) ' ∂kF ∧ Z1 ∧ · · · ∧ Zk
where ∂kF is a spectrum with Σk-action (the kth derivative of F ), and we have

DkF (X) ' Ω∞D
(
∂kF ∧hΣk

(Σ∞C X)∧k
)
.

The Goodwillie tower is an analog for functors of the Taylor series of a function,
with Dk(F ) playing the role of the kth term of the Taylor series.

We consider the Goodwillie towers of the functors

ΦK(n) : Top∗ → SpK(n)

TAQSK(n)
(S

(−)
K(n)) : Top∗ → SpK(n).

Note that the second of these functors is not finitary (ΦK(n) is actually finitary, as
long as the corresponding homotopy colimit is taken in the category SpK(n)). In

9Yet another general treatment of homotopy calculus can be found in [BJM15], but at present
this approach only applies to functors which take values in spectra.
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the case of ΦK(n), it is fairly easy to see that its Goodwillie tower is closely related
to the Goodwillie tower of the identity functor

Id : Top∗ → Top∗.

Lemma 7.1. There are equivalences

PkΦK(n) ' ΦK(n)PkId.

Proof. This follows easily from observing that the fibers of the RHS are given by

ΦK(n)DkId(X) ' (s−1Liek ∧hΣk
X∧k)K(n)

and are therefore homogeneous of degree k. �

More subtly, Kuhn constructed a filtration on TAQR [Kuh04a] which results in a
tower

(7.2) TAQR(A)→ · · · → Fk TAQR(A)→ Fk−1 TAQR(A)→ · · · .

For all A we have an equivalence

(7.3) TAQR(A)
'−→ holimFk TAQR(A)

for the simple reason that Kuhn’s filtration of TAQR is exhaustive.

Theorem 7.4 (Kuhn [Kuh04a]). The fibers of the tower (7.2) are given by

s−1Liek ∧hΣk (A∧Rk)∨ → Fk TAQR(A)→ Fk−1 TAQR(A).

Corollary 7.5. For finite X the Goodwillie tower of the functor TAQSK(n)
(S

(−)
K(n))

is given by

Pk(TAQSK(n)
(S

(−)
K(n)))(X) ' Fk TAQSK(n)

(SXK(n)).

Proof. Combining Theorem 5.2 with Theorem 7.4 shows the layers of the RHS are
equivalent to

(s−1Liek ∧hΣk
X∧k)K(n).

In particular, they are homogeneous of degree k. �

It follows that the comparison map actually induces a natural transformation of
towers

Pn(c
K(n)
X ) : ΦK(n)PkId(X)→ Fk TAQSK(n)

(SXK(n))

when restricted to finite X. In fact, the proofs of Lemma 7.1 and Corollary 7.5
actually imply that for X finite, the layers of these towers are abstractly equivalent.

Thus, to show that the maps Pn(c
K(n)
X ) are equivalences, we just need to show that

they induce equivalences on the layers (which we already know are equivalent)!
This will be accomplished computationally using
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The Morava E-theory Dyer-Lashof algebra. Let En denote the nth Morava
E-theory spectrum, with

(En)∗ ∼= W (Fpn)[[u1, . . . , un−1]][u±].

The ring (En)0 has a unique maximal ideal m. We shall let

(E∧n )∗Z := π∗(En ∧ Z)K(n)

denote the completed E-homology of a spectrum Z. If the uncompleted Morava
En-homology is flat over (En)∗, the completed E-homology is the m-completion of
the uncompleted homology. Let Kn denote the 2-periodic version of K(n), with

(Kn)∗ ∼= (En)∗/m ∼= Fpn [u±].

In [Rez09], the second author defined a monad10

T : Mod(En)∗ → Mod(En)∗

such that the completed E-homology of a Comm-algebra has the structure of a
T-algebra. A T-algebra is basically an algebra over the Morava E-theory Dyer-
Lashof algebra Γn. For an (En)∗-module M , the value of the functor TM is the
free Γn-algebra on M (for a precise description of what is meant by this, consult
[Rez09]).

The work of Strickland [Str98] basically determines the structure of the dual of Γn
in terms of rings of functions on the formal schemes of subgroups of the Lubin-Tate
formal groups. In the case of n = 1, the corresponding Morava E-theory is p-adic
K-theory, and Γ1 is generated by the Adams operation ψp with no relations. In the
case of n = 2, the explicit structure of Γ2 was determined by the second author in
[Rez08] for p = 2, and mod p for all primes in [Rez12a]. An integral presentation
of Γ2 has recently been determined by Zhu [Zhu15]. Very little is known about the
explicit structure of Γn for n ≥ 3 except that it is Koszul [Rez12b] in the sense of
Priddy [Pri70].

For the purpose of our discussion of Theorem 6.4, the only thing we really need to
know about T is the following theorem of the second author (see [Rez09]):

Theorem 7.6. If (E∧n )∗Z is flat over (En)∗, then the natural transformation

T(E∧n )∗Z → (E∧n )∗FCommZ

induces an isomorphism

(T(E∧n )∗Z)∧m
∼=−→ (E∧n )∗FCommZ.

There is a “completed” variant of the functor FComm:

F̂Comm(Z) :=
∏
i

ZihΣi
.

The following lemma of [BR15] is highly non-trivial, as completed Morava E-theory
in general behaves badly with respect to products.

10The monad denoted T here is actually a non-unital variant of the monad T of [Rez09].
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Lemma 7.7. There is a completed variant of the free T-algebra functor:

T̂ : ModE∗ → AlgT

and for spectra Z a natural transformation

T̂(E∧n )∗Z → (E∧n )∗F̂CommZ

which is an isomorphism if (E∧n )∗Z is flat and finitely generated.

In [BR15] we construct a version of the Basterra spectral sequence for E-theory: for
a K(n)-local Comm-algebra A whose En-homology satisfies a flatness hypothesis,
the spectral sequence takes the form

(7.8) AQ∗,∗T ((E∧n )∗A; (Kn)∗)⇒ (Kn)∗TAQSK(n)
(A).

Here AQ∗,∗T (−;M) denotes Andre-Quillen cohomology of T-algebras with coeffi-
cients in an E∗-module M (see [BR15] for a precise definition — these cohomology
groups are closely related to those defined in [GH00]).

The comparison map on QX. The next step in the proof of Theorem 6.4 is to
prove the following key proposition.

Proposition 7.9. There is a non-negative integer N so that for all N -fold suspen-
sion spaces X with (E∧n )∗X free and finitely generated over (En)∗, the comparison
map

(Σ∞X)K(n) ' ΦK(n)(QX)
c
K(n)
QX−−−→ TAQSK(n)

(SQXK(n))

is an equivalence.

We will prove this proposition by showing that the comparison map induces an
isomorphism in Morava K(n)-homology. The first step is to compute the K(n)∗-
homology of the the RHS. This is accomplished in [BR15] with the following tech-
nical lemma:

Lemma 7.10. For X satisfying the hypotheses of Proposition 7.9, there is a map
of (En)∗-modules

(E∧n )∗S
QX
K(n) → T̂Ẽ∗nX

which is an isomorphism of T-algebras mod m, in the sense that it is an isomor-
phism mod m, and commutes with the T-action mod m.

Heuristically, this lemma might seem to follow from Theorem 5.2 and the Snaith
splitting:

SQXK(n) ' S
∨

iX
i
hΣi

K(n)

'
∏
i

(
SX

i

K(n)

)hΣi

'

(∏
i

(
SX

i

K(n)

)
hΣi

)
K(n)

'
(
F̂CommS

X
K(n)

)
K(n)

.
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However, as was pointed out to us by Nick Kuhn, this is not an equivalence of
Comm-algebras (or even non-unital H∞-ring spectra)! Nevertheless, Lemma 7.10
establishes that on Morava E-theory, this sequence of equivalences induces an iso-
morphism of T-algebras mod m.

Proof of Proposition 7.9. The natural transformation

Σ∞QX = Σ∞Ω∞Σ∞X → Σ∞X

induces a natural transformation

SXK(n) → SQXK(n)

of spectra, hence a natural transformation

FCommSK(n)
SXK(n) → SQXK(n)

of Comm-algebras. We thus get a natural transformation

TAQSK(n)
(SQXK(n))

ηX−−→TAQSK(n)
(FCommSK(n)

SXK(n))

'(Σ∞X)K(n)

'ΦK(n)(QX).

It can be shown that ηX ◦ cK(n)
QX ' Id. Since (K̃n)∗X is finite, it suffices to show

that (Kn)∗TAQSK(n)
(SXK(n)) is abstractly isomorphic to (K̃n)∗X. This is proven

using the Basterra spectral sequence (7.8). The spectral sequence collapses to the
desired result as we have (using Lemma 7.10)

AQs,∗T ((E∧n )∗S
QX
K(n); (Kn)∗) ∼= AQs,∗T (T̂Ẽ∗nX; (Kn)∗)

∼= AQs,∗T (TẼ∗nX; (Kn)∗)

∼=

{
(K̃n)∗X, s = 0,

0, s > 0.

�

The comparison map on spheres. We now outline the proof of Theorem 6.4.
Let X = Sq. The following strong convergence theorem of Arone-Mahowald [AM99]
is crucial.

Theorem 7.11 (Arone-Mahowald). The natural transformation

ΦK(n)(X)→ ΦK(n)PkId(X)

is an equivalence for q odd and k = pn, or q even and k = 2pn.

The basic strategy is to attempt to apply Proposition 7.9 to the Bousfield-Kan
cosimplicial resolution

X → Q•+1X = (QX ⇒ QQX V · · · ) .

We first assume that the dimension q of the sphere X = Sq is large and odd.
Unfortunately, for s ≥ 1, QsX does not satisfy the finiteness hypotheses of Propo-
sition 7.9 required to deduce that the comparison map is an equivalence. We instead
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consider the diagram

(7.12) ΦK(n)(X)

c
K(n)
X

��

// Tot ΦK(n)Ppn(Q•+1)(X)

'
��

TAQSK(n)
(SXK(n))

// Tot TAQSK(n)

(
S
Ppn (Q•+1)(X)

K(n)

)
In the above diagram, the right vertical map is an equivalence using Proposition 7.9:
the Snaith splitting may be iterated to give an equivalence [AK98]

Ppn(Qs+1)(X) ' QY s

where the space Y s does satisfy the hypotheses of Proposition 7.9. Using finiteness
properties of the cosimplicial space Y •, we show in [BR15] that the top horizontal
map

ΦK(n)(X) ' ΦK(n)PpnId(X)→ Tot ΦK(n)Ppn(Q•+1)(X)

of (7.12) is an equivalence. It follows that the comparison map has a weak retraction
when restricted to large dimensional odd spheres X:

ΦK(n)X
' //

c
K(n)
X ''

ΦK(n)X

TAQSK(n)
(SXK(n))

77

Using standard methods of Goodwillie calculus (or more specifically, Weiss calculus
in this case) it follows that for X a large dimensional odd sphere, the induced map
on Goodwillie towers

(7.13) {PkΦK(n)(X)}k
cK(n)

−−−→ {Fk TAQSK(n)
(SXK(n))}k

has a weak retraction. The theorem (for X a large dimensional odd sphere) follows
from the fact that (1) the layers of the towers are abstractly equivalent, and (2) the
layers of the towers have finite K(n)-homology. Since Goodwillie derivatives are
determined by the values of the functors on large dimensional spheres, it follows
that the induced map of symmetric sequences

(7.14) ∂∗ΦK(n)
cK(n)

−−−→ ∂∗(TAQSK(n)
(S

(−)
K(n)))

is an equivalence. It follows that the map (7.13) is actually an equivalence of towers
for all spheres X. The theorem now follows from Theorem 7.11 and (7.3).

8. Consequences

We begin this section by explaining how our result for spheres actually implies that
the comparison map is an equivalance on the larger class of finite ΦK(n)-good spaces.
We also survey some computational applications of our theory, and end the section
with some questions.
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ΦK(n)-good spaces. We observe that our method of proving Theorem 6.4 actually
yields a stronger result.

Theorem 8.1. For X any finite complex, the comparison map gives an equivalence
of towers

{PkΦK(n)(X)}k
cK(n)

−−−→
'
{Fk TAQSK(n)

(SXK(n))}k
and therefore an equivalence

c
K(n)
X : P∞ΦK(n)(X)

'−→ TAQSK(n)
(SXK(n)).

Proof. This follows from the equivalence (7.14). Note the restriction to finite com-
plexes is necessary as the target functor is not finitary. �

We will say that a space X is ΦK(n)-good if the map

(8.2) ΦK(n)(X)→ holim
k

Pk(ΦK(n))(X)

is an equivalence.

Corollary 8.3. A finite space X is ΦK(n)-good if and only if the comparison map

c
K(n)
X : ΦK(n)(X)→ TAQSK(n)

(SXK(n))

is an equivalence.

Theorem 7.11 clearly implies spheres are ΦK(n)-good. The functor ΦK(n) preserves
all fiber sequences, but it seems the target of the comparison map is not as robust.

Lemma 8.4. The functor TAQSK(n)
(S

(−)
K(n)) preserves products of finite spaces.

Proof. This follows from the fact that TAQ is excisive, together with the fact that
there is an equivalence of augmented commutative S-algebras

SX×Y+ ' SX+ ∧ SY+ .

�

Corollary 8.5. The product of finite ΦK(n)-good spaces is ΦK(n)-good.

We shall say that a fiber sequence of finite spaces

F → E → B

is K(n)-cohomologically Eilenberg-Moore if the map of augmented commutative
S-algebras

SE+ ∧SB+ S → SF+

is aK(n)-equivalence. The motivation behind this terminology is that with this con-
dition the associated cohomological Eilenberg-Moore spectral sequence converges
[EKMM97, Sec. IV.6]

Tor∗,∗K(n)∗(B)(K(n)∗(F ),K(n)∗)⇒ K(n)∗(E).

The following lemma follows immediately from the excisivity of TAQ.
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Lemma 8.6. Suppose that

F → E → B

is a fiber sequence of finite spaces which is K(n)-cohomologically Eilenberg-Moore.
Then the induced sequence

TAQSK(n)
(SFK(n))→ TAQSK(n)

(SEK(n))→ TAQSK(n)
(SBK(n))

is a fiber sequence.

Since ΦK(n) preserves fiber sequences, we deduce the following.

Corollary 8.7. Suppose that

F → E → B

is a fiber sequence of finite spaces which is K(n)-cohomologically Eilenberg-Moore.
Then if any two of the spaces in the sequence are ΦK(n)-good, so is the third.

Using this we can give examples of ΦK(n)-good spaces which are not spheres (or
finite products of spheres).

Proposition 8.8. The special unitary groups SU(k) and symplectic groups Sp(k)
are ΦK(n)-good.

Proof. For simplicity we treat the special unitary groups; the symplectic case is
essentially identical. Petrie [Pet68] showed that additively there is an isomorphism

MU∗SU(k) ∼= ΛMU∗ [y3, y5, . . . , y2k−1].

It follows from the collapsing universal coefficient spectral sequence that there is
an additive isomorphism

(8.9) K(n)∗SU(k) ∼= ΛK(n)∗ [x3, x5, . . . , x2k−1].

The Atiyah-Hirzebruch spectral sequence for K(n)∗SU(k) must therefore collapse
(any differentials would otherwise make the rank of K(n)∗SU(k) too small). There
are no possible extensions, as the exterior algebra is free as a graded-commutative
algebra. Therefore (8.9) is an isomorphism of K(n)∗-algebras. This can than be
used to show that the fiber sequences

SU(k − 1)→ SU(k)→ S2k−1

are K(n)-cohomologically Eilenberg-Moore. The result follows by induction (using
Corollary 8.7). �

Not all spaces are ΦK(n)-good. Brantner and Heuts have recently shown that wedges
of spheres of dimension greater than 1, and mod p Moore spaces, are examples of
non-ΦK(n)-good spaces [BH16b].
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Some computations. The target of the comparison map should be regarded as
computable, and the source should be regarded as mysterious. Because of this, our
theorem has important computational consequences. We take a moment to mention
some things that have already been done.

In [BR15], we show that the Morava E-theory of the layers of the Goodwillie tower
for ΦK(n) evaluated on S1 are given by the cohomology of the second author’s mod-
ular isogeny complex [Rez12a]. Theorem 8.1 was applied by the authors in [BR15]
to compute the Morava E-theory of the attaching maps between the consecutive
non-trivial layers of this Goodwillie tower. Iterating the double suspension, these
computations then restrict to give an approach to computing the Morava E-theory
of the Goodwillie tower of ΦK(n) evaluated on all odd dimensional spheres.

We envision this as a step in the program of Arone-Mahowald [AM99], [Kuh07]
to compute the unstable vK(n)-periodic homotopy groups of spheres (and other
ΦK(n)-good spaces) using stable vK(n)-periodic homotopy groups and Goodwillie
calculus. This would generalize a number of known calculations in the case of n = 1.
These computations include those of Mahowald [Mah82] and Thompson [Tho90]
for spheres, and would generalize Bousfield’s technology [Bou99], [Bou05], [Bou07],
for computations for spherically resolved spaces. Bousfield’s theory was applied
successfully by Don Davis and his collaborators to compute v1-periodic homotopy
groups of various compact Lie groups (see [Dav02], where the previous work on this
subject, by Bendersky, Davis, Mahowald, and Mimura is summarized11).

To this end, Zhu has used his explicit computation of the Morava E-theory Dyer-
Lashof algebra at n = 2 [Zhu15] to compute the Morava E-theory of ΦK(2)(S

q) for
q odd [Zhu].

Using our technology, but employing BP -theory instead of Morava E-theory, Wang
has computed the groups v−1

K(2)π∗(S
3)∧ for p ≥ 5 [Wan15]. Wang has also computed

the monochromatic Hopf invariants of the β-family at these primes. These are the

analogs of the classical Hopf invariants, but computed in the category Mf
2 Top∗.

Theorem 8.10 (Wang [Wan14]). The monochromatic Hopf invariant of βi/j,k is
βi−j/k.

Finally, Brantner has recently computed the algebra of power operations which
naturally act on the completed E-theory of any spectral Lie algebra (such as those
arising as spectral Lie algebra models of unstable vn-periodic homotopy types)
[Bra].

Some questions. We end this section with some questions.

Question 8.11. Does the bracket from the s−1Lie-structure on TAQ-coincide with
the Whitehead product in unstable vn-periodic homotopy?

Question 8.12. In [Bou07], Bousfield introduces the notion of a K̂Φ-good space.
What is the relationship between this notion and the notion of being ΦK(1)-good?

11Technically, the previous computations used the unstable Adams-Novikov spectral sequence,
but were simplified using Bousfield’s results.
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Question 8.13. Is there a relationship to X being ΦK(n)-good and the convergence

of X’s unstable vn-periodic E∧n -based Adams spectral sequence to v−1
K(n)π∗(X)∧?

9. The Arone-Ching approach

The central component of Goodwillie’s theory of homotopy calculus, from which
the theory derives much of its computational power, is the idea that the layers of
the Goodwillie tower of a functor F are classified by its symmetric sequence of
derivatives ∂∗F . Arone and Ching have pursued a research program which seeks to
endow ∂∗F with enough extra structure to recover the entire Goodwillie tower of F
[AC11], [AC15], [AC16]. In this section we will focus on the setup of [AC11], and
will describe their approach to give a conceptual alternative proof of Theorem 8.1.
In this section we will only consider homotopy functors

F : C → D
where C and D are either the categories of pointed spaces or spectra.12

Modules over operads. Let O be a reduced operad in ModR, and let A = {Ai}
be a symmetric sequence of R-module spectra. A left (respectively right) module
structure on A is the structure of an associative action

O ◦ A → A (resp.A ◦ O → A).

One similarly has the notion of a left/right comodule structure. Explicitly, a left
O-module structure on A is encoded in structure maps

Ok ∧R An1
∧R · · · ∧R Ank

→ An1+···+nk
,

and a right O-module structure is encoded in structure maps

Ak ∧R On1
∧R · · · ∧R Onk

→ An1+···+nk
.

The structure maps for left/right comodules are obtained simply by reversing the
direction of the above arrows.

Suppose that A is an O-algebra. Regarding A as the symmetric sequence

(A, ∗, ∗, · · · )
with A in the 0th spot, the O-algebra structure on A can also be regarded as a
left O-module structure on A. Less obviously, the O-algebra structure can also be
encoded in a right comodule structure on the symmetric sequence13

A∧R∗ := (∗, A,A2, A3, · · · ).
For simplicity, assume that each of the R-module spectra Oi are strongly dualizible.
Then O∨ is a cooperad, and the O-algebra structure on A is encoded in a right
O∨-comodule structure on A∧R∗

An1+···+nk → Ak ∧R O∨n1
∧R · · · ∧R O∨nk

.

12Later in this section we will also allow D to be SpT (n).
13It is more natural to define the 0th space of the symmetric sequence A∧R∗ to be R, but it

makes no difference as we are assuming O is reduced. For the purposes of the rest of the section
this convention will be more useful.
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These comodule structure maps are adjoint to the maps

On1
∧R · · · ∧R Onk

∧R An1+···+nk → Ak

obtained by smashing together k algebra structure maps.

Koszul duality, again. In this subsection, all symmetric sequences A are assumed
to satisfy A0 = ∗. With this hypothesis, Ching’s construction of the cooperad
structure on the operadic bar construction

BO = B(1R,O, 1R)

extends to give BO-comodule structures [Chi05]. Specifically, suppose thatM is a
right O-module. Then

BM := B(M,O, 1R)

gets the structure of a right BO-comodule. Similarly, for a left O-module N ,

BN := B(1R,O,N )

gets the structure of a left BO-comodule. There are dual statements which endow
cobar constructions of comodules with module structures.

In this manner the operadic bar and cobar constructions give functors

B : lt.ModO � lt.ComodBO : C,

B : rt.ModO � rt.ComodBO : C.

Some of the key ideas in the following Koszul duality theorem can be found in
[AC11], but a proof of the full statement should appear in [Chi].

Theorem 9.1 (Ching). The bar/cobar constructions give an equivalence of homo-
topy categories of right (co)modules

B : Ho(rt.ModO)� Ho(rt.ComodBO) : C.

In the case of left modules, the bar construction gives a fully faithful embedding

B : Ho(lt.ModO) ↪→ Ho(lt.ComodBO).

Remark 9.2. Ching expects that one should also get an equivalence of homotopy
categories for left modules, but presently do not know how to prove this.

Remark 9.3. In both the case of left and right modules, the bar construction
induces equivalences of derived mapping spaces

lt./rt.Mod
O

(M,N )
'−→ lt./rt.Comod

BO
(BM, BN ).

The reader may be startled that the Koszul duality in Theorem 9.1 applies to the full
categories of modules, and not some suitable subcategory, and makes no mention
of “divided power structures” (as was the case of the instances of Koszul duality of
Section 3). It seems that one should rather think of Theorem 9.1 as an extension
of Koszul duality for (co)operads, rather than Koszul duality for (co)algebras over
(co)operads. Indeed, regarding an O-algebra structure on A as a left O-module
structure on A, Theorem 9.1 does not apply, as the symmetric sequence (A, ∗, ∗, · · · )
does not have trivial 0th spectrum. Theorem 9.1 (with dualizability hypotheses
on O) does encode an O-algebra structure on A in a (BO)∨-comodule structure
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on CA∧R∗, but the latter does not translate into anything like a BO-coalgebra
structure.

Remark 9.4. Ching does have a different Koszul duality Quillen adjunction

(9.5) Q : lt./rt.ComodBO � lt./rt.ModO : Prim

which does not in general give an equivalence of homotopy categories, but which
does restrict (in the case of right modules) to give the usual Koszul duality between
(BO)∨-algebras and O∨-coalgebras. The monad and comonad of this adjunction
encode divided power module and comodule structures, which extend the previously
established notions of divided power structures for algebras and coalgebras.

The fake Taylor tower. In [AC11], Arone and Ching establish that the deriva-
tives of a functor

F : C → D
have the structure of a ∂∗IdD-∂∗IdC-bimodule. Note that in the case where either
C or D is the category Sp of spectra, ∂∗IdSp = 1, and a left or right ∂∗IdSp-module
structure amounts to no additional structure.

A key tool, introduced in [AC11] is the notion of the fake Taylor tower of the
functor F . The fake Taylor tower is the closest approximation to the Goodwillie
tower which can be formed using only the bimodule structure of ∂∗F , and is defined
as follows.

For X ∈ C, let RX denote the corepresentable functor

RX : C → D
given by

RX(Z) = [Σ∞]C(X,Z)

(where the Σ∞ in the above formula is only used if D = Sp). Then the fake Taylor
tower {P fake

n F} is the tower of functors under F given by (in the case where X is
finite14)

P fake
n F (X) := ∂∗IdDBimod∂∗IdC (∂∗RX , τn∂∗F ).

Here, for a symmetric sequence A, we are letting τnA denote its nth truncation

(9.6) τnAk :=

{
Ak, k ≤ n,
∗, k > n.

With the hypothesis that all symmetric sequences have trivial 0th term, it is easy
to see that operad and module structures on A induce corresponding structures on
τnA.

The layers of the fake Taylor tower given by the fibers

Dfake
n F → P fake

n F → P fake
n−1F

take the form
Dfake
n F (X) ' Ω∞D (∂nF ∧ Σ∞C X

n)
hΣn .

The following theorem is essentially proven in [AC11].

14For X infinite, one must regard RX as a pro-functor.
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Theorem 9.7 (Arone-Ching). There is a natural transformation of towers

{PnF} → {P fake
n F}

such that the induced map on fibers is given by the norm map

N : Ω∞D (∂nF ∧ Σ∞C X
n)hΣn

→ Ω∞D (∂nF ∧ Σ∞C X
n)
hΣn .

Thus, in general, the map from the Goodwillie tower to the fake Taylor tower is
not an equivalence, and the difference is measured by the Tate spectra

Ω∞D (∂nF ∧ Σ∞C X
n)
tΣn .

Although we do not need it for what follows, we pause to mention that Arone and
Ching have a refinement of this theory which recovers the Goodwillie tower from
descent data on the derivatives. Observe that the fake Taylor tower only depends
on the bimodule ∂∗F . The following is proven in [AC15].

Theorem 9.8 (Arone-Ching). The limit of the fake Taylor tower is right adjoint
to the derivatives functor:

∂∗ : Funct(C,D)� ∂∗IdDBimod∂∗IdC : P fake
∞ .

In particular, one can now employ the comonadic descent theory of Section 2 to
regard the derivatives as taking values in ∂∗ ◦ P fake

∞ -comodules.

Theorem 9.9 (Arone-Ching [AC15]). The Goodwillie tower of a functor F can be
recovered using the comonadic cobar construction

PnF ' C(P fake
∞ , ∂∗ ◦ P fake

∞ , τn∂∗F ).

In the case of functors from spectra to spectra, this theorem reduces to McCarthy’s
classification of polynomial functors [McC01].

Application to the Bousfield-Kuhn functor. We now summarize Arone and
Ching’s approach to Theorem 8.1. Actually, their method proves something stronger,
as it applies to the functor Φn instead of ΦK(n). Call a space Φn-good if the map

ΦnX → holim
k

ΦnPkIdTop∗(X)

is an equivalence.

Theorem 9.10 (Arone-Ching). For all finite X, the comparison map

cX : P∞Φn(X)→ TAQST (n)
(SXT (n))

is an equivalence. Thus for all finite Φn-good spaces, the comparison map gives an
equivalence

cX : Φn(X)
'−→ TAQST (n)

(SXT (n)).

Proof. The basic strategy is to analyze the fake taylor tower of the functor

Φn : Top∗ → SpT (n).
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The argument used in Lemma 7.1 applies equally well to Φn, and it follows that we
have

∂∗Φn ' s−1LieT (n)

with right ∂∗Id = s−1Lie structure given by localization of the right action of this
operad on itself. By Theorem 5.2, the map

DkΦn(X) =
[(

(s−1Liek)T (n) ∧Xk
)
hΣk

]
T (n)

N−→
(
(s−1Liek)T (n) ∧Xk

)hΣk

= Dfake
k Φn(X)

of Theorem 9.7 is an equivalence. Thus in the T (n)-local context, the fake Taylor
tower agrees with the Goodwillie tower. Using [AC15, Lemma 6.14] and Theo-
rem 9.1, we have

P∞Φn(X) ' rt.Mods−1Lie(∂∗RX , s
−1LieT (n))

' rt.Mods−1Lie(B(Σ∞X∧∗,Comm, 1)∨, s−1LieT (n))

' rt.Mods−1Lie

(
C(SX

∧∗

T (n),Comm∨T (n), 1), C(1,Comm∨T (n), 1)
)

' rt.ComodComm∨(SX
∧∗

T (n), 1ST (n)
)

' AlgComm(SXT (n), trivST (n))

' TAQST (n)
(SXT (n)).

�

10. The Heuts approach

The approach of Arone and Ching described in the last section arose from a clas-
sification theory of Goodwillie towers. In this section we describe Heuts’ general
theoretical framework, which arises from classifying unstable homotopy theories
with a fixed stablization [Heu16]. Our goal is simply to give enough of the idea of
the theory to sketch Heuts’ proof of Theorem 8.1. We refer the reader to the source
material for a proper and more rigorous treatment.

Like the approach of Arone-Ching, Heuts’ proof is more conceptual than ours, and
his results have the potential to be slightly more general that Theorem 9.10, in that
they seem to indicate that by modifying the comparison map to have target derived
primitives of a coalgebra, the comparison map cX may be an equivalence for all
Φn-good spaces (not just finite spaces — see Question 10.19 and Remark 10.20).

Unlike the previous sections, where we worked in a setting of actual categories
with weak equivalences, in this section we work in the setting of ∞-categories. For
the purposes of this section, C will always denote an arbitrary pointed compactly
generated ∞-category.
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∞-operads and cross-effects. The adjunction

Σ∞C : C � Sp(C) : Ω∞C

gives rise to a comonad Σ∞C Ω∞C on Sp(C). Lurie [Lur16] observes that the multilin-
earized cross effects

⊗nC := crlinn (Σ∞C Ω∞C ) : Sp(C)n → Sp(C)

get an additional piece of algebraic structure: they corepresent a symmetric multi-
category structure on Sp(C) in the sense that the mapping spaces

Sp(C) (⊗nC(Y1, . . . , Yn), Y )

endow Sp(C) with the structure of a symmetric multicategory enriched in spaces.

If Sp(C) ' Sp, then (as discussed in the beginning of Section 7) we have

⊗nC(Y1, . . . , Yn) ' ∂n(Σ∞C Ω∞C ) ∧ Y1 ∧ · · · ∧ Yn.

Saying that the cross-effects ⊗nC corepresent a symmetric multicategory is equivalent
to saying that the derivatives ∂∗(Σ

∞
C Ω∞C ) form a cooperad. In this context, this

fact was first observed by Arone and Ching [AC11], who proved that the derivatives
of any comonad on Sp form a cooperad.

Remark 10.1. In the language of Lurie, (Sp(C),⊗∗C) forms a stable∞-operad. This
terminology comes from the fact that a symmetric multicategory is the same thing
as a (colored) operad. We will deliberately avoid this terminology in our treatment,
as it may seem somewhat confusing that a stable ∞-operad on Sp is encoded by a
cooperad in Sp.

The linearizations of the diagonals in C

∆n : X → X×n

gives rise to Σn-equivariant maps

∆n : Σ∞C X → ⊗nC(Σ∞C X, · · · ,Σ∞C X) =: (Σ∞C X)⊗Cn

which yield maps

∆n : Σ∞C X →
(
(Σ∞C X)⊗Cn

)hΣn
.

Composing out to the Tate spectrum gives maps

(10.2) δnC : Σ∞C X →
(
(Σ∞C X)⊗Cn

)tΣn
.

Heuts [Heu16] refers to these maps as Tate diagonals. In the context of C = Top∗,
these natural transformations are well studied: their target is closely related to
Jones-Wegmann homology (see [BMMS86, II.3]) and the topological Singer con-
struction of Lunøe-Nielsen-Rognes [LNR12].

Polynomial approximations of∞-categories. Heuts constructs polynomial ap-
proximations PnC: these are ∞-categories equipped with adjunctions

Σ∞C,n : C � PnC : Ω∞C,n

so that

PnIdC(X) ' Ω∞C,nΣ∞C,nX.
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The ∞-categories PnC are determined by universal properties which we will not
specify here. We do point out that the identity functor IdPnC is n-excisive. We
have P1C ' Sp(C). For n ≤ m we have

PnPmC ' PnC
and therefore we get a tower

C

Σ∞C,1

��

Σ∞C,2

""
P1C P2C

Σ∞P2C,1

oo · · ·
Σ∞P3C,2

oo

We shall say that an object X of C is convergent if the Goodwillie tower of IdC
converges at X. Heuts proves that the induced functor

C → P∞C := holim
n

PnC

restricts to a full and faithful embedding on the full ∞-subcategory Cconv of con-
vergent objects.

Let Cn-conv denote the full ∞-subcategory of C consisting of objects for which the
map

X → PnIdC(X)

is an equivalence. Then we have

Lemma 10.3. The functor

Σ∞C,n : Cn-conv → PnC
is fully faithful.

Proof. We have for X and Y in Cn-conv:

C(X,Y ) ' C(X,Ω∞C,nΣ∞C,nY )

' PnC(Σ∞C,nX,Σ∞C,nY ).

�

The natural transformations

Σ∞C Ω∞C ' Σ∞PnCΣ
∞
C,nΩ∞C,nΩ∞PnC → Σ∞PnCΩ

∞
PnC

induce natural transformations of cross-effects

⊗kC → ⊗kPnC .

For k ≤ n these natural transformations are equivalences.

As the source and target of the Tate diagonals (10.2) are (n− 1)-excisive functors
of X (see [Kuh04b]), the Tate diagonals extend to give natural transformations of
functors Pn−1C → Sp(C):

δnC : Σ∞Pn−1CX →
(

(Σ∞Pn−1CX)⊗Cn
)tΣn

.

We emphasize that, as the notation suggests, the Tate diagonals {δnC}n depend not
only on the functors ⊗∗C on Sp(C), but also on the unstable category C itself.
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A spectral algebra model for PnC. Heuts gives a model for PnC as a certain
category of coalgebras in Sp(C). As the theory of homotopy descent of Section 2
would have us believe, a good candidate spectral algebra model would be to consider
Σ∞PnCΩ

∞
PnC-coalgebras. We must analyze what it means for Y ∈ Sp(C) to have a

coalgebra structure map

Y → Σ∞PnCΩ
∞
PnCY.

This is closely related to having a structure map

Y → Pn(Σ∞C Ω∞C )Y.

A general theorem of McCarthy [McC01], as formulated by [Kuh04b]15, applies to
the functor Σ∞C Ω∞C to give a homotopy pullback

Pn(Σ∞C Ω∞C )(Y ) //

��

(Y ⊗Cn)hΣn

��
Pn−1(Σ∞C Ω∞C )(Y ) // (Y ⊗Cn)tΣn

Thus inductively a Σ∞PnCΩ
∞
PnC-coalgebra is determined by the data of a map

Y → Pn−1(Σ∞C Ω∞C )(Y )

and a lifting16

(Y ⊗Cn)hΣn

��
Y //

00

Pn−1(Σ∞C Ω∞C )(Y ) // (Y ⊗Cn)tΣn

The bottom composite agrees with the Tate diagonal δnC for Y = Σ∞C,n−1X.

We will refer to these coalgebras as Tate-compatible ⊗≤nC -coalgebras, and denote
the ∞-category of such

TateCoalg⊗≤n
C
.

Roughly speaking, a Tate-compatible⊗≤nC -coalgebra is an object Y ∈ Sp(C) equipped
with inductively defined structure consisting of coaction maps

∆k : Y → (Y ⊗Ck)hΣk

for k ≤ n, and homotopies Hk making the following diagrams homotopy commute

(Y ⊗Cn)hΣk

��
Y

∆k

99

δkC

// (Y ⊗Ck)tΣk

15To be precise, this is established by McCarthy and Kuhn in the case where C = Top∗.
16This is something the first author learned from Arone.
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The coaction maps ∆k and the homotopies Hk are required to satisfy compatibility
conditions which we will not (and likely cannot!) explicitly specify.17 The maps
∆k and homotopies Hk for k ≤ n then induce the (n+ 1)st Tate diagonal

δn+1
C : Y → (Y ⊗Cn+1)tΣn+1

and the process continues. Note that the Tate diagonal δn+1
C depends not only on

the structure maps ∆k and Hk for k ≤ n, but also the unstable category C itself
(more precisely, it depends only on the polynomial approximation PnC).
Theorem 10.4 (Heuts). There is an equivalence of ∞-categories

PnC ' TateCoalg⊗≤n
C
.

Question 10.5. In the case where F = Id, how is Arone-Ching’s reconstruction
theorem (Theorem 9.9) related to the framework of Heuts?

Remark 10.6. In [Heu16], Heuts also considers the question: what data on the
stable ∞-category Sp(C) determines the tower of unstable categories {PnC}? As
should be heuristically clear from Theorem 10.4, Heuts proves the tower is deter-
mined by the cross-effects {⊗nC} and the Tate diagonals {δnC}. In particular, given a
stable ∞-category D, a tower of polynomial approximations of an unstable theory
is determined by specifying a sequence of symmetric multilinear functors

⊗n : Dn → D
which corepresent a symmetric multicategory structure on D, as well as a sequence
of inductively defined (and suitably compatible) Tate diagonals

δn : Σ∞Pn−1CX → (Σ∞Pn−1CX
⊗n)tΣn .

Koszul duality, yet again. Let R be a commutative ring spectrum, and let O
be a reduced operad in ModR. Following [Heu16], we run the general theory in
the case C = AlgO. The cooperads representing the symmetric multilinear functors
⊗∗AlgO

on Sp(AlgO) ' ModR are determined by the following

Theorem 10.7 (Francis-Gaitsgory [FG12, Lem. 3.3.4]). There is an equivalence
of cooperads18

∂∗(Σ
∞
AlgO

Ω∞AlgO
) ' BO.

Therefore a ⊗∗AlgO
-coalgebra A is simply a BO-coalgebra. The Tate diagonals on

ModR turn out to be null in this case, so a Tate compatible structure on a BO-
coalgebra A is a compatible choice of liftings of the coaction maps

(BOi ∧R Ai)hΣi

��
A //

99

(BOi ∧R Ai)hΣi

17Heuts is able to circumvent the need to explicitly spell out these compatibility conditions by
defining the ∞-categories TateCoalg⊗≤n

C
via an inductive sequence of fibrations of ∞-categories.

18This relies on the treatment of Koszul duality of monoids in [Lur16]. In Lurie’s∞-categorical
treatment, the coalgebra structure on BO making this theorem true is only coherently homotopy

associative. Presumably it can be strictified to an actual point-set level operad structure on a

model of BO, but the authors are not knowledgeable enough to know the feasibility of this, nor
do they know if this cooperad structure is equivalent to that of Ching [Chi05].
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Thus a Tate compatible structure is the same thing as a divided power structure
(or perhaps one can take this as a definition of a divided power structure). We
shall denote the ∞-category of such (with structure maps as above for i ≤ n) by
d.p.CoalgBO≤n .

Theorem 10.8 (Heuts). There are equivalences of ∞-categories

PnAlgO ' d.p.CoalgBO≤n .

Heuts recovers the following weak Koszul duality result.

Corollary 10.9 (Heuts). There is a fully faithful embedding

TAQO : Algconv
O ↪→ holim

n
d.p.CoalgBO≤n .

To determine the convergent objects of IdAlgO , it is helpful to know the structure
of this Goodwillie tower. The following result was suggested by Harper and Hess
[HH13], was proven in the case of the commutative operad by Kuhn [Kuh06], and
was proven by Pereira [Per15].

Theorem 10.10 (Pereira). The Goodwillie tower of IdAlgO is given by

PnIdAlgO (A) = B(FτnO,FO, A).

Here τnO denotes the truncation (9.6).

In particular, connectivity estimates of Harper and Hess [HH13] imply that if R and
O are connective, and A is connected, then A is convergent. Thus Corollary 10.9
recovers half of Theorem 3.8. Another important case are operads for which O =
τnO. Then every O-algebra is convergent, and Corollary 10.9 recovers a theorem
of Cohn.

Application to unstable vn-periodic homotopy. To recover and generalize
Theorem 8.1, Heuts applies his general framework to the unstable vn-periodic ho-
motopy category. Unfortunately, the ∞-category modeling Mf

nTop∗ of Section 5
seems to fail to be compactly generated. To rectify this, Heuts works with a slightly
different∞-category, which we will denote v−1

n Top∗. This is the full∞-subcategory
of LfnTop∗ consisting of colimits of finite (dn−1)-connected type n complexes. The
categories v−1

n Top∗ and Mf
nTop∗ are very closely related. The Bousfield-Kuhn

functor factors as

(10.11) Top∗
Φn //

$$

SpT (n)

v−1
n Top∗

Φ′n

99

and detects the equivalences in v−1
n Top∗.

We have Sp(v−1
n Top∗) ' SpT (n). The multilinear cross-effects are given by the

commutative cooperad:

∂∗(Σ
∞Ω∞) ' Comm∨.
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In this context Theorem 5.2 implies that the Tate diagonals are trivial, and Tate
compatible commutative coalgebras are the same thing as commutative coalgebras.
Heuts deduces (using Theorems 10.4 and 10.8):

Theorem 10.12 (Heuts). There are equivalences of ∞-categories

Pk(v−1
n Top∗) ' CoalgComm≤k(SpT (n)) ' Pk(Algs−1Lie(SpT (n))).

In a sense made precise in the corollary below, this gives two spectral algebra models
of C.

Corollary 10.13. There are fully faithful embeddings of ∞-categories

(v−1
n Top∗)

conv ↪→ holim
k

Coalg(Comm∨)≤k(SpT (n)),

(v−1
n Top∗)

conv ↪→ P∞Algs−1Lie(SpT (n)).

We can be explicit about the functors giving these spectral algebra models. In
general there is an adjunction

triv : ModR � CoalgComm∨R
: Prim

where triv Y is the coalgebra with trivial coproduct, and Prim(A) is the derived
primitives of a coalgebra A, given by the comonadic cobar construction:

Prim(A) := C(Id,FComm∨R
, A).

For A a CommR-algebra finite as an R-module, we have

(10.14) TAQR(A) ' Prim(A∨).

Ching’s work endows Prim(A) with the structure of an s−1Lie-algebra.

The functors of Theorem 10.12 are induced from the functors

v−1
n Top∗

(Σ∞−)T (n)−−−−−−−→ CoalgComm∨(SpT (n))
Prim−−−→ Algs−1Lie(SpT (n)).

An argument following the same lines as Section 6 gives a refined comparison map

c̃X : Φn(X)→ Prim(Σ∞X)T (n).

Under the equivalence (10.14), this agrees with the comparison map cX for X finite,

and for such X gives c
K(n)
X after K(n)-localization. From Theorem 10.12, Heuts

deduces that for a space X, the comparison map refines to an equivalence of towers

(10.15) c̃X : ΦnPkIdTop∗X
'−→ Prim Ω∞Coalg,kΣ∞Coalg,k(Σ∞X)T (n).

Using Theorem 7.11, Heuts obtains the following refinement of Theorem 6.4.

Corollary 10.16 (Heuts). The comparison map c̃X is an equivalence for X a
sphere.

Question 10.17. What is the relationship between the∞-subcategory (v−1
n Top∗)

conv ⊆
v−1
n Top∗ and the ∞-subcategory consisting of the images of Φn-good spaces?

Remark 10.18. If we knew that the functor Φ′n of (10.11) preserved homotopy
limits, then it is fairly easy to check (using the fact that Φ′n detects equivalences)
that the two ∞-subcategories of Question 10.17 would in fact coincide. As already
remarked in Section 5, Φn also factors through a related functor

Φ′′n : Mf
nTop∗ → SpT (n).
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Bousfield produces a left adjoint for Φ′′n in [Bou01], and it therefore follows that Φ′′n
commutes with homotopy limits.

It would seem that for X an infinite CW complex, the coalgebra (Σ∞X)T (n) is a
more appropriate model for the unstable vn-periodic homotopy type X than the
algebra SXT (n). To this end we ask the following

Question 10.19. Is c̃X an equivalence for all Φn-good spaces X?

Remark 10.20. We expect the answer to Question 10.19 should be “yes”, as the
tower which is the target of (10.15) should be an analog for primitives of the Kuhn
filtration, and hence should converge without hypotheses.
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