EXERCISES ON HOMOTOPY COLIMITS

SAMUEL BARUCH ISAACSON

1. CATEGORICAL HOMOTOPY THEORY

Let Cat denote the category of small categories and S the category Fun(A°P, Set) of simplicial
sets. Let’s recall some useful notation. We write [n] for the poset
n]={0<1<...<n}

We may regard [n] as a category with objects 0,1,...,n and a unique morphism a — b iff a < b.
The category A of ordered nonempty finite sets can then be realized as the full subcategory of Cat
with objects [n], n > 0. The nerve of a category % is the simplicial set N4 with n-simplices the
functors [n] — €. Write A[n] for the representable functor A(—,[n]). Since A[0] is the terminal
simplicial set, we’ll sometimes write it as *.

Exercise 1.1. Show that the nerve functor N : Cat — S is fully faithful.

Exercise 1.2. Show that the natural map N(% x ) — N% x N Z is an isomorphism. (Here, x
denotes the categorical product in Cat and S, respectively.)
Exercise 1.3. Suppose ¥ and Z are small categories.

(1) Show that a natural transformation H between functors F,G : € — & is the same as a
functor H filling in the diagram

(2) Suppose that F' and G are functors ¢ — 2 and that H : F — G is a natural transformation.
Show that N F' and N G induce homotopic maps N — N 2.
Exercise 1.4. (1) Suppose
F:¢<—2:G
is an adjoint pair. Show that N% and N & are weakly equivalent simplicial sets via the

maps N F and NG.
(2) Show that if ¢ has an initial or terminal object, then N % is weakly equivalent to a point.

Suppose % is a small category. The twisted arrow category a6 of € is a category with objects
the arrows of €. The maps f — g are factorizations of g through f, i.e., diagrams

X~—Z7
ok
Y —W

Note that source induces a functor s : a4 — €°P and target induces a functor t : a4 — €.
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Exercise 1.5. Show that the functors s : a4 — €°P and t : a4 — % both have adjoints. Conclude
that there is a zig-zag of weak equivalences joining N % and N €°P.

2. GEOMETRIC PROPERTIES OF NERVES

For details on the material in this section, see [GJ99]. Recall that A[n| is the representable
presheaf [m| — A([m], [n]), i.e., the standard n-simplex. For an arbitrary simplicial set X, the
Yoneda lemma gives a natural bijective correspondence between the set X,, and maps A[n] — X.
Let’s define the n-skeleton of X to be the sub-simplicial set sk,, X with k-simplices given by

(skp X)p = {g: A[k] — X | g factors as A[k] — A[{] — X for some £ < n}.

Note that sk, is a functor equipped with a natural monomorphism sk, — id. We define the
n-coskeleton of X to be the simplicial set ck,, X with k-simplices

(ckp, X)) = S(sk,, Alk], X).
Note that there is a natural map X — ck,, X induced by the maps sk,, A[k] — A[k].

Exercise 2.1. Suppose that % is a small category. Check that N % is 2-coskeletal, i.e., that the
natural map N% — cko N% is an isomorphism of simplicial sets.

Let’s fix some more notation. For n > 1, let 9A[n| = sk,—1 A[n]. This is the boundary of the
standard n-simplex. For 0 < i < n, we define A’[n] to be the horn
(A'[n))k = {g: A[k] = An] | g factors as Ak] — Aln —1] LN Aln] for some j # i}.

Here d’ : [n — 1] — [n] is the unique monomorphism omitting j in the image. The simplicial set
A'[n] is the union of the n — 1-faces of A[n], omitting the ith face. Recall that a map p: X — Y
of simplicial sets is a Kan fibration if in every diagram

A[n] — X
|k
Aln] —=Y,

a lift ¢ exists (not necessarily unique). A simplicial set X is a Kan complex if X — x is a Kan
fibration.
Exercise 2.2. Suppose ¥ is a small category.

(1) Prove that in all diagrams of the shape
Ain] —=N%
(2.1) l b 7
Aln)

with 0 < i < n, a lift £ exists. (Thus N is a quasicategory—see [Lur(6, [Joy06]).
(2) If, furthermore, € is a groupoid, show that N% is a Kan complex (i.e., a lift ¢ exists in

(2.1) for 0 <i < n).

For a pointed Kan complex (X, xg), the nth homotopy group 7, (X, zg) is the collection of A[1]-
homotopy classes of maps (A[n], 0A[n]) — (X, zg). Geometric realization induces an isomorphism
(X, w0) = T (X1, [zo).

Exercise 2.3. Suppose ¥ is a small groupoid. Show that m;4 =0 if k > 1.
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Exercise 2.3|fails spectacularly if ¢ is not a groupoid: in Section [3] we’ll show (modulo a technical
lemma) that every homotopy type in S contains the nerve of a category.

Exercise 2.4. Give an example of a category € so that Wk‘ N%‘ = 0 for some k > 1.

3. THE BAR RESOLUTION AND HOMOTOPY COLIMITS

Let’s write S(?) for the category of bisimplicial sets, i.e., the category Fun(A°P x AP Set). We
define a diagonal functor diag : S©) — S given by restriction along the diagonal A — A x A. By
adjunction, we may view bisimplicial sets as simplicial objects in the category S, i.e., as functors
A — S, We'll usually take this point of view.

Exercise 3.1. Show that there is a natural isomorphism
neA
diag X.. = / X x Aln]

for X.. € S@. Here, fneA denotes the coend: it is the disjoint union Il, , X, x A[n] modulo the
relation (f*z,y) ~ (z, fay) for x € X, y € Aln], and f : [n] — [m] an arrow in A (see [MLIS]).

We’ll recall the following result without proof:

Theorem 3.2. Suppose X and Y are bisimplicial sets and f: X — Y a map which induces weak
equivalences X,, — Y, for all [n] € A. (As above, let’s view X and Y as simplicial objects in S ).
Then diag f induces a weak equivalence diag X — diagY .

Suppose .# is a small category and F : #°° — S and X : .# — S are diagrams. The bar
resolution B.(F,.#,X) is the bisimplicial set whose simplicial set of n-simplices is

[T F(im) x X(i(0)).
i:[n]—S
This coproduct is taken over all functors i : [n] — . The simplicial operators are given by their
action on the domain of ¢ together with the functoriality of F' and X. For example, recall that
d' : [0] — [1] is the map sending 0 to 0 (omitting 1 in the image). Given a functor i : [1] — .Z,
we send the i summand F(i(1)) x X (i(0)) to the inclusion of the summand i o d' : [0] — &
with value F'((0)) x X (i(0))—since F is covariant, the map i(0) — i(1) induces the required map
F(i(1)) — F(i(0)). The homotopy colimit of X is the simplicial set

hoc;limX = diag B.(x, .Z, X).
Here * is the constant diagram on the simplicial set *.
Exercise 3.3. Show that hocolim s * is weakly equivalent to the nerve N 7.
Exercise 3.4. Show that there is a natural augmentation hocolim » X — colim s X.

Exercise 3.5. Suppose that f: X — X’ is a natural transformation of diagrams .# — S so that
fi: X(i) — X'(4) is a weak equivalence for all i € ob.#. Show that the induced map on homotopy
colimits hocolim f : hocolim X — hocolim X’ is a weak equivalence.

We can view homotopy colimit as the derived functors of colimit. In fact, the realization of the bar
resolution for X is the colimit of a canonical “cofibrant” resolution of X. There is an analogous story
for homotopy limits using cosimplicial spaces. See, for example, [BK72] or [Hir03, DHKS04! [Shu06]
for more modern treatments. An important conceptual result is the following alternative description
of the diagonal of a bisimplicial set, which I will cite without proof:

Theorem 3.6. Suppose X : A°? — S is a bisimplicial set. Then diag X and hocolimpaop X are
weakly equivalent.
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As promised, we also have the following result, which says that categories model all homotopy
types in S. This is part of a beautiful story linking the homotopy theory of spaces with all abstract
homotopy theories (“model categories”). Cisinski’s dissertation [Cis06] along with [Mal05] are
wonderful references.

Exercise 3.7. Suppose X is a simplicial set. The natural map

hocolim A™ — colim A"

A — X A — X

is a weak equivalence (this is proved in, e.g., [Hir03] in the section on Reedy categories). Conclude
that X is weakly equivalent to N(A | X) by a zig-zag of weak equivalences.

4. HoMOTOPY LEFT KAN EXTENSIONS AND HOMOTOPY COLIMITS

Suppose F': & — £ is a functor between small categories and X : . — S is a .#-diagram of
simplicial sets. The functor F' induces an adjunction

F:87 —=8/ . p*

between categories of diagrams, where the right adjoint F™* is given by restriction along F' and the
left adjoint Fj is left Kan extension [ML98]. When .# and ¢ are groups, this is simply induction.
We can compute Fi as follows. Given j € ¢, we let F' | j be the comma category with objects
pairs i € #, ¢ : Fi — j and morphisms (i, ) — (i’,¢’) given by arrows h : i — ¢’ making

Fi E

L
(4.1) X\ %

J

commute. There is a projection functor 7 : F' | j — & forgetting the map to j. Then
(F1X)(j) & colim* X.
Flj
Let’s define a homotopy-invariant version of Fi. Note that for all j € _#, there is an .#°P-diagram

of sets sending i to _# (F'i,j). We may regard this as a diagram of constant simplicial sets. The
homotopy left Kan extension of X along F' is the _#-diagram

(LFEX)(5) :diagB-(/(F_aj)’jaX)'

Note that if ¢ is the terminal category, then LF} is simply hocolim . At the other extreme, if F
is the identity functor .# — ., there is a natural augmentation

diag B.(Y(—,1i), ., F) — F(i)
given by iterated composition; it induces a weak equivalence Lid; X — X.

Exercise 4.1. Show that LF is homotopy-invariant, i.e., that if f : X — X’ induces a weak
equivalence f; : X (i) — X'(¢) for all i € &, then (LF f)(j) is a weak equivalence for all j € 7.

Exercise 4.2. Note that 7 : F | j — .# induces a homotopy functor 8 — 81 Check that the
derived version of holds, i.e., that there is a weak equivalence

(LEYX)(j) ~ hocolim 7m* X
Flj

(compare [Cis03]).



5. THOMASON’S THEOREM

In this section, we will prove a generalization of Thomason’s theorem for homotopy colimits in
Cat [Tho79]. We'll take the following two results as black boxes. See [HirO3|] for a reference or ask
me. In Section [6] below, we’ll prove a special case of Theorem

Theorem 5.1 ([Hir03, Theorem 19.6.7 (a)]). Suppose F : . — _Z is a homotopy right cofinal
functor, i.e., that N(j | F) is (weakly) contractible for all j € 7. If X is a diagram # — S, then
F induces a weak equivalence

hocolim F* X — hocolim X
I I

of homotopy colimits.
Theorem 5.2. Suppose
G
e

are functors between small categories. There is a weak equivalence LG\LFAX — L(GF )X natural
in diagrams X € 87

The weak equivalence in Theorem has a brief description: there is a natural augmentation
diag B.(# (=, k), #,diag B.( 7 (-, —), .7, X)) — diag B.(.¢ (—,k), 7, X).

This map realizes LGLF{X — G\LF X—the latter functor is isomorphic to L(GF), X, and the
map is a weak equivalence.

Exercise 5.3. Suppose that G : . — _# is a right adjoint. Show that G is homotopy right cofinal.

Suppose F' : .# — Cat is a functor. The Grothendieck construction of F is a category . [ F
whose objects are pairs (i,x) with ¢ € .# and « € F(i). Maps (i,x) — (i/,2') are pairs of maps
f:i—4d and ¢ : F(f)(x) — a’. (The latter is an arrow in F(i').) Composition is forced upon
us; see [ThoT79] for the details. Note that there is a projection functor Il : . [ F — . given by
forgetting . Think of II as a sort of fibration displaying F'i as the fiber over .# (our terminology
here is somewhat backwards). In the following exercise, we’ll make use of the comma category
IT | j. We’ll abuse notation a bit and regard the objects of II | j as pairs ¢ — j, x € F(i).

Exercise 5.4. Suppose that j € 7.

(1) There is a functor h : II | j — F(j) sending the data (f : i — j,z € F(i)) to F(f)(z).
Show how to define h on maps to actually make it a functor.

(2) We can define a functor £ : F(j) — II | j sending « € F(j) to (id;,z). Check that ¢ is left
adjoint to h. Conclude that h is homotopy right cofinal.

Exercise 5.5 (Thomason’s theorem). Suppose X : . [ F — S is a diagram of simplicial sets.

(1) Show that hocolim ; ; p X = hocolim » LIL X

(2) Show that there is a natural weak equivalence (LIL.X)(i) =~ hocolimp;y X. Note that we
may restrict X to a diagram on F(i) by the functor F(i) — . [ F sending = € F(i) to
(i, ).

(3) Combine these two results to show that hocolim , ;7 X =~ hocolim;e s hocolimp;) X.

(4) Show that N(.# [ F) ~ hocolim;c » N F (7).

In Exercise part 4 is what’s usually known as Thomason’s theorem for homotopy colimits
in Cat. The generalization in part 3 is found in, e.g., [CS02].
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6. QUILLEN’S THEOREM A

In this section we’ll prove the following theorem.

Theorem 6.1 (|Qui73, Theorem A]). Suppose F : € — 2 is a homotopy right cofinal functor.
That is, for all d € 9, the simplicial set d | F is weakly contractible. Then NF : N — N Z is a
weak equivalence.

I am unable to improve on Quillen’s excellent exposition in [Qui73]. Our proof will follow his
paper ezactly. Of course, we could apply Theorem [5.1] to the constant Z-diagram on * to obtain
Theorem|[6.1} Actually, to obtain part 4 of Exercise[5.5, Quillen’s Theorem A is sufficient. Recall our
definition of the Grothendieck construction in Sectlon The construction of the comma category
d | F is functorial in d € &2, i.e., there is a functor F' : Z°P — Cat sending d € obZ to d | F.
Given a map j : d — d, we define

F(j)(c,p:d— Fe) = (¢, p0j).
Let S(F)=2° [ F.
Exercise 6.2. Verify the following description of S(F): objects are triplets (¢, d, ¢) with ¢ € €,
de P, and ¢ : d — Fe. Arrows (¢,d,p) — (¢, d',¢') are pairs of arrows j :d' — d, i:¢c— ¢ so
that F(i)opoj=¢.

Note that S(F) is equipped with functors 7y : S(F) — 2° (because it is a Grothendieck
construction) and 7¢ : S(F) — € (sending (c,d, ) to ¢). Define a bisimplicial set T'(F') with

T(F)pg={(a. B, f) | a:[p] = 2,3 :[a] = €, f:a(0) — F(5(0))}.

In the following exercise, we’ll compute the homotopy type of NT'(F') in three ways: by computing
its diagonal directly and then by viewing it as a simplicial object in S in two ways. Recall that
realization and the diagonal functor coincide (Exercise and Theorem (3.2]).

Exercise 6.3. (1) Check that diagT'(F') = N S(F).
(2) Check that for fixed p, T'(F'), is the simplicial set

[T N | F).
a:[p]—2°P
Thus T'(F') is the bar resolution p +— By(x, 2°°, N(— | F)). Use the fact that F is right
homotopy cofinal to show that realization in the p-direction (i.e., the diagonal) induces a
weak equivalence N7y : N S(F) — N Z°P.
(3) Check that for fixed ¢, T'(F'), is the simplicial set

I N@ | Fpo)).
B:lql—¢
Show that realization in the g-direction (again, the diagonal) induces a weak equivalence
Nmy : NS(F) — N¥.

Note that we may define a functor 1d@ 2°P — Cat sending d to d | 2. The functor F' induces
a natural transformation F — idy and hence a functor F’ : S(F) — S(idg).

Exercise 6.4. (1) Show that relative to the description of S(F') and S(id) in Exercise the
functor F”’ sends (¢, d, ¢) to the triplet (Fe,d, ).
(2) Show that S(idg) is the twisted arrow category a 2.
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(3) Show that the diagram

€

_@OP&S(F)H(K

L

gop 7 S(id@) T 9

commutes. Conclude that F' induces a weak equivalence on nerves.
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