Multiple Choice

1.(7 pts.) Compute the tangent plane to the surface parametrized by $\mathbf{r} = u\mathbf{i} + uv\mathbf{j} + (u+v)\mathbf{k}$ at the point (1,2,3).

(a) 3x + 2y + z = 10

 $\langle x, y, z \rangle = \langle 1 + u, 2 + uv, 3 + u + v \rangle$

(c) x - y + z = 2

(d) $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$

(e) x + 2y + 3z = 14

2.(7 pts.) Find the directional derivative of the function $f(x,y) = \sqrt{x+2y}$ at the point (2,1) in the direction of the vector $\mathbf{v} = \langle 1, -1 \rangle$.

(a) $-\frac{1}{2}$ (b) $-\frac{\sqrt{2}}{8}$ (c) $\frac{1}{2}$ (d) $\frac{\sqrt{2}}{8}$ (e) $\langle 2, -2 \rangle$

3.(7 pts.) A particle starts at the origin (0,0), moves along the x-axis to (2,0), then along the curve $y = \sqrt{4-x^2}$ to the point (0,2), and then along the y-axis back to the origin. Use Green's Theorem to find the work done on this particle by the force field $\mathbf{F}(x,y) = y^2 \mathbf{i} + 2x(y+1)\mathbf{j}$

0 (a)

(b) $\frac{\pi}{2}$ (c) π (d) 2π

(e) 3π

4.(7 pts.) Use the Divergence theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$; that is calculate the flux of \mathbf{F} across S.

$$\mathbf{F} = \langle e^y, zy, xy^2 \rangle,$$

S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = 2and z = 4 with outward orientation.

(a) $\frac{3\pi}{2}$

(b) 6π (c) 4π (d) 2π (e) π

5.(7 pts.) Evaluate

$$\iint_{R} (y+x)e^{y-x} \, dA,$$

Where R is the rectangle in the xy-plane with vertices (0,1), (1,0), (2,1), (1,2). (Hint: use the change of variables u = y - x, v = y + x.)

- (a)
- (b) $8e \frac{8}{e}$ (c) 0 (d) $2e \frac{2}{e}$ (e) $\frac{8}{e}$

6.(7 pts.) Which integral computes the volume of the solid bounded by $z = 4 - x^2 - y^2$ and the xy-plane in cylindrical coordinates?

(a) $\int_0^{2\pi} \int_0^2 \int_0^{4-r^2} dz dr d\theta$

(b) $\int_0^{\pi} \int_0^2 \int_0^{4-r^2} r \, dz \, dr \, d\theta$

(c) $\int_0^\pi \int_0^4 \int_0^{4-r^2} dz dr d\theta$

(d) $\int_0^{\pi} \int_0^4 \int_0^{4-r^2} r \, dz dr d\theta$

(e) $\int_0^{2\pi} \int_0^2 \int_0^{4-r^2} r \, dz dr d\theta$

7.(7 pts.) Find the absolute maximum value of $f(x,y) = x^4 - x^2 - 4y^2$ on the solid ellipse $x^2 + 4y^2 < 4$

- (a) 8
- (b) 16
- (c) 18
- (d) 12
- (e) 10

8. (7 pts.) Let C be the rectangle in the z=1 plane with verticies (0,0,1), (1,0,1), (1,3,1),and (0, 3, 1) oriented counterclockwise when viewed from above. Use Stokes' Theorem to evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = z^2 \mathbf{i} + \frac{x}{3} \mathbf{j} + xy \mathbf{k}$.

- (a) 1
- (b) 9/2
- (c) 0
- (d) 6
- (e) -3/2

9.(7 pts.) What is the equation for the osculating plane to the curve given by $\mathbf{r}(t) =$ $\langle t, t^2, t^3 \rangle$ at the point $\langle 1, 1, 1 \rangle$.

(a) 6x - 6y + 2z = 0

(b) 6x - 6y + 2z = 2

(c) x + 2y + 3z = 5

(d) x + 2y + 3z = 0

(e) 2u + 6z = 8

10.(7 pts.) Which of the following integrals computes the distance traveled by a particle moving with position vector $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ from point $\langle 1, 1, 1 \rangle$ to $\langle 3, 9, 27 \rangle$

(a) $\int_0^3 \sqrt{1+4t^2+9t^4} dt$

(b) $\int_0^3 1 + 2t + 3t^2 dt$

(c) $\int_{1}^{3} 1 + 4t^2 + 9t^4 dt$

(d) $\int_{1}^{3} \sqrt{1+2t+3t^2} \, dt$

(e) $\int_{1}^{3} \sqrt{1+4t^2+9t^4} dt$

11.(7 pts.) The solid region E is inside the sphere $x^2 + y^2 + z^2 = 2$ and above the cone $z = \sqrt{x^2 + y^2}$. Which of the following integrals evaluates $\iiint_E x \, dV$.

- $\int_0^{\pi/4} \int_0^{2\pi} \int_0^{\sqrt{2}} \rho^3 \sin^2 \phi \cos \theta d\rho d\theta d\phi \qquad \text{(b)} \quad \int_0^{\pi/2} \int_0^{2\pi} \int_0^{\sqrt{2}} \rho^2 \sin \phi \cos \theta d\rho d\theta d\phi$
- (c) $\int_0^{\pi/4} \int_0^{2\pi} \int_0^{\sqrt{2}} \rho \sin^2 \phi \cos \theta d\rho d\theta d\phi$ (d) $\int_0^{\pi/4} \int_0^{2\pi} \int_0^{\sqrt{2}} \rho \sin \phi \cos \theta d\rho d\theta d\phi$
- (e) $\int_0^{\pi/2} \int_0^{2\pi} \int_0^{\sqrt{2}} \rho^3 \sin \phi \cos \theta d\rho d\theta d\phi$

12.(7 pts.) Evaluate the intgral $\int_0^1 \int_{\sqrt{y}}^1 \cos x^3 dx dy$ (hint: change the order of integration).

- (a) $\sqrt{3}$ (b) $\frac{1}{3}$ (c) $\frac{\sin 1}{3}$ (d) $\sin 1$ (e)

13.(7 pts.) Suppose that the vector field $\mathbf{F} = 2xe^{yz}\mathbf{i} + zx^2e^{yz}\mathbf{j} + yx^2e^{yz}\mathbf{k}$ is conservative and C is a smooth simple curve with the starting point (0,0,0) and end point (1,2,3). Evaluate the line integral $\int_{C} \mathbf{F} \cdot d\mathbf{r}$.

- (a) e
- (b) e^6

- (c) 0 (d) -e (e) $-e^6$

14.(7 pts.) A partical has the position function $\mathbf{r}(t)$. Suppose that at time t=0, the initial position is $\langle 1, 1, 1 \rangle$ and the initial velocity is $\langle 0, 0, 0 \rangle$. If the partical's acceleration is $\mathbf{a}(t) = \langle 2t, e^t, 12t^2 \rangle$, then find $\mathbf{r}(1)$.

- (a) $\langle \frac{1}{3}, e 1, 1 \rangle$ (b) $\langle \frac{4}{3}, e + 1, 2 \rangle$
- (c) $\langle 1, e, 1 \rangle$
- (d) $\langle \frac{4}{3}, e 1, 2 \rangle$ (e) $\langle \frac{1}{3}, e, 2 \rangle$

15.(7 pts.) The surface S is the graph of the function $z = \frac{2}{3}(x^{3/2} + y^{3/2})$ for $0 \le x \le 1$, $0 \le y \le 1$. Evaluate the integral $\iint_S \frac{1}{\sqrt{1+x+y}} dS$.

- (a) 2
- (b) -1
- (c) 0 (d) -2
- (e) 1

16.(7 pts.) Which integral gives the surface area of the surface S parameterized by $\mathbf{r}(u,v) = \langle u^2 \cos v, u^2 \sin v, v \rangle$, where $0 \le u \le 1, 0 \le v \le \pi$.

- $\int_{0}^{\pi} \int_{0}^{1} 2u\sqrt{1+u^{4}} \, du \, dv$
- (b) $\int_0^{\pi} \int_0^1 (4u^2 + 4u^6) \, du \, dv$
- (c) $\int_0^{\pi} \int_0^1 4u^2 (\sin v + \cos v) + 4u^4 du dv$ (d) $\int_0^{\pi} \int_0^1 2u \sqrt{1 + u^2} du dv$
- (e) $\int_0^{\pi} \int_0^1 \sqrt{4u^2 \sin^2 v \cos^2 v + 4u^6} \, du \, dv$

17.(7 pts.) Let $f(x,y) = 3x - x^3 - 2y^2 - y^4$. According to the second derivative test, which one of the following is true?

- (a) The function has 1 local maxima and 1 local minima.
- (b) The function has 1 saddle point and 1 local minima.
- (c) The function has 2 local maxima.
- (d) The function has 1 local maxima and 1 saddle point.
- (e) The function has 2 saddle points.

18.(7 pts.) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = x\mathbf{i} - z\mathbf{j} + y\mathbf{k}$ and C is given by $\mathbf{r}(t) = 2t\mathbf{i} + 3t\mathbf{j} - t^2\mathbf{k}$ with $-1 \le t \le 1$.

- (a) -2
- (b) 0

- (c) 6 (d) 2 (e) -6

19.(7 pts.) Which of the following is the tangent plane to the graph $z = e^{-xy} \sin x$ at the point $(\pi,0,0)$.

(a) $z = -x + \pi y + \pi$

(b) $z = -x - y + \pi$

(c) z = 0

 $(d) z = -x - \pi y + \pi$

(e) $z = -x + \pi$

20.(7 pts.) Find the flux of the vector field

$$\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j} + z\mathbf{k}$$

over a surface with **downward** orientation, whose parametric equation is given by

$$\mathbf{r}(u, v) = 2u\mathbf{i} + 2v\mathbf{j} + (5 - u^2 - v^2)\mathbf{k}$$

with $u^2 + v^2 \le 1$.

- (a) $-\frac{56\pi}{3}$ (b) $\frac{112\pi}{3}$ (c) -18π (d) -36π (e)