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Motivation
Cohesive modeling
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Critical assumption:   lc ≪ ℴ(L)
0�(X) = X + 0u(X) � �±0
0F = 1 +⇥X

0u(X) � �±0

Adherends

Multiscale Cohesive Model
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Strong and Weak Forms

Macroscale Strong Form

Microscale Strong Form

0P · N = tp on �⇥t
0

0u = 0u
p on �⇥u

0

t+ + t� = 0 on �0

Boundary Conditions

Hill-Mandel Lemma	


• Microscale weak form	


• Yields closure on 0t	


• Restrictions on BC

Macroscale Weak Form
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Hill-Mandel Lemma

No assumption on form of 0t0t = 0N · 1
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Constitutive Response of Adhesive Layer
•Isotropic damage law

•Damage surface
g(Ȳ ,�t) = G(Ȳ )� �t ⇥ 0

G(Ȳ ) = 1� exp
⇤
�

�
Ȳ � Yin

p1Yin

⇥p2⌅
, H =

⇥G(Ȳ )
⇥Ȳ

•Irreversible dissipative evolution equations

Different constitutive laws can be used

⇧̇ = �̇H � ⇧̇ = µ
�
⇤(g)

⇥

⌅̇t = �̇H � ⌅̇t = µ
�
⇤(g)

⇥
⇧ ⌅⇤ ⌃

viscous regularization

1/µ ≈ 𝜏 [s]	


Epoxy 𝜏-ℴ(10-6-10-2)
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Nn=23,841,057   Ne= 123,168,768

Highly scalable finite strains 	


PGFem3D solver

• four nonlinear steps	


• four iterations

High Performance Computing - Weak Scaling
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Hierarchically Parallel Multiscale Solver

10 M. MOSBY AND K. MATOUŠ
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Figure 4. The hierarchically parallel implementation of the nested iterative solution procedure given in
Algorithm 2. Macroscale and microscale computations are overlaid via non-blocking communication
patterns. Note that there are Ns microscale servers that simultaneously compute microscale contributions

for the Np macroscale clients.

4. NUMERICAL EXAMPLES

In this section, we present two numerical examples using the hierarchically parallel multiscale solver

for modeling nonlinear response of a heterogeneous layer. The first example is a simple verification

problem and convergence study. The second example shows the solver’s ability to perform large

and detailed simulations that would unlikely be possible by DNM with the same computational

resources. In particular, we perform a multiscale simulation with ∼ 1.1 Billion elements and ∼ 575

million nonlinear equations on only 1,552 computing cores. Similarly sized simulations presented

in the literature [4] are typically computed on several thousand computing cores.

Table I. Material properties for all numerical examples.

Young’s modulus Shear modulus Poisson’s ratio
E [MPa] G [MPa] ν [-]

Adherends 15 · 104 6.000 · 104 0.25
Interface 5 · 103 1.866 · 103 0.34

In both examples, we use hyper-elastic material potentials for both macro- and micro-scales given

by

0W ≡ 1W =
G

2

(
trĈ − 3

)
+

E

6(1− 2ν)
[exp(J − 1)− ln(J)− 1] , (16)

where E is Young’s modulus, G is the shear modulus, and ν is Poisson’s ratio. The Jacobian of

the deformation is given by J = det(C)1/2, and Ĉ = J−2/3C is the deviatoric right Cauchy-Green

deformation tensor. Note that the appropriate macro- and micro-deformation gradients (0C and C,

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)

Prepared using nmeauth.cls DOI: 10.1002/nme
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Hierarchically Parallel Multiscale Solver

•Client-server communication structure	



•Point-to-point, non-blocking communication structure	



•Load balancing based on round-robin scheduling
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pack

cell

100μm

scan - 19123 particles	


cell   - 1082 particles

scan - 1445x1288x798	


cell   - 400x400x400

µm
µm

100μm

2048 CPUs

cp = 53.91%C

cp = 55.27%T

cp = 54.20%S

9- bins

Parallel Genetic Algorithm

N=500,000 
Image-based (Data-Driven) Modeling
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Sugar

Salt

Polydisperse Crystalline Systems
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Digital Cell - 1000x1000x200 𝜇m3

Np = 4774

•10 % volume fraction
•20 micron particles

1/2 lRUC lRUC 2 lRUC

1/2 lRUC  - 70x70x200 𝜇m3	



lRUC      - 140x140x200 𝜇m3	



2 lRUC - 280x280x200 𝜇m3

1/2 lRUC - Np = 23	


lRUC - Np = 93	


2 lRUC - Np = 374
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Image-based (Data-Driven) Modeling



JusK =
p

Jus1K2 + Jus2K2
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Mixed mode loading ⟦un⟧=⟦us1⟧=⟦us2⟧=1/√2⟦us⟧

Representative Unit Cell Study

•Ne≃12,317,628	


•Nn≃2,103,957	


•Dofs≃6,280,495

lRUC      

2 lRUC •Ne≃48,537,975	


•Nn≃8,294,617	


•Dofs≃24,758,080Mean element size 1.5 𝜇m 
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Figure 6: Traction-separation laws for the sti↵ particle and soft matrix under mixed-mode loading
with three di↵erent strain-rates. Solid lines denote the strain rate prescribed in subsequent studies,
while dashed and dot-dashed lines represent response from 1/10⇥ and 10⇥ the applied strain rate.
Note that the materials are only weakly rate-sensitive over a wide range of strain rates. (a) Normal
component of mixed-mode response. (b) Shear component of mixed-mode response.

meshes have localized refinement and coarsening points which generate finer and coarser elements,

but the average element size is guaranteed to be h
avg

 h. The average, minimum, and maximum

element size, as well as number of nodes, elements, and degrees of freedom (DOFs) are listed in

Table 3. Note that the finest mesh solved in this work contains over 90 million elements and nearly

48 million nonlinear algebraic equations. Therefore, an e�cient solution strategy is essential.

Table 3: Mesh identifiers and characteristics for the grid convergence study.

Identifiers Characteristics
h [µm] 1/h [µm�1] h

avg

[µm] h
min

[µm] h
max

[µm] # nodes # elements # DOFs

6.00 0.167 4.34 0.23 8.17 56,809 330,172 167,832
3.00 0.333 2.55 0.16 4.15 307,232 1,792,655 913,449
1.50 0.667 1.37 0.073 2.25 2,087,736 12,223,528 6,232,029
0.75 1.333 0.697 0.022 1.09 16,020,086 93,856,013 47,938,704

Figure 7 shows the macroscopic traction separation laws computed from increasingly finer

meshes. Not surprisingly, all discretizations capture the hyperelastic response without any di�-

culty. Finer meshes transition to a more gradual softening response due to properly capturing the

microscale damage features that are linked to morphology and damage properties (e.g., damage

viscosity µ). We will analyze these microscale damage features in more detail in subsequent studies

(see Sections 4.2-4.4).

Figure 8 shows the convergence of the strength and fracture toughness with respect to decreas-

ing mesh size. We define the fracture toughness in the normal and shear directions as

15
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Mesh Convergence Study
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Figure 8: Convergence of macroscopic response with increasing mesh refinement. (a) Convergence
of strength (maximum tractions). (b) Convergence of fracture toughness as given by Equation (29).

are used, and average response is reported with error bars showing one standard deviation. The

dimensions of the cells, number of particles, and the average mesh characteristics for each sized cell

are given in Table 4.

Table 4: Microstructure and average mesh characteristics for the RUC convergence study.

Cell size Dimensions [µm3] # particles # nodes # elements # DOFs

1/2 l
stat

69.408⇥ 69.408⇥ 200 23 552,086 3,235,854 1,648,686
l
stat

139.569⇥ 139.569⇥ 200 93 2,103,957 12,317,628 6,280,495
2 l

stat

279.887⇥ 279.887⇥ 200 374 8,294,617 48,537,975 24,758,080

Figure 9 shows the macroscopic traction separation law for the di↵erent cells. The initial

sti↵ness is identical for each cell, but the limit and softening responses are not. While the two

larger unit cells have small and overlapping error bars until the very end of the load history,

the smallest cell has a distinctly di↵erent softening response with very large error. The deviation

between the two larger cells at the end of the loading history is mostly due to large mesh distortions

and the associated deterioration of accuracy.

Figure 10 shows the convergence of the maximum traction (strength) and fracture toughness

with respect to the side length of the unit cell. We note that the fracture toughness is computed

according to Equation (29) with
nq

0un
y
f
,
q
0us

y
f

o

= {5.485, 7.757} µm. We will use this failure

(final) point for all studies to follow. Figure 10 shows the rapid convergence of both average and

standard deviation of macroscopic response with increasing cell size. In our previous study [44],

rapid convergence of the mean response was also observed. However, the standard deviation of

response remained substantial even for very large unit cells. In this study, rapid convergence of

both mean and standard deviation can be attributed to the use of statistically equivalent unit cells

17

•Used mesh	


!hmin = 0.073 microns	


hmean = 1.370 microns	


hmax = 2.25 microns

•Finest mesh	


!# Nodes =  16,020,086	


# Elements =  93,856,013	


# DOFs = 47,938,704

 Richardson extrapolation max error < 1.05%
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1/2 lRUC

2 lRUC

RUC Study

(a) Damage in binder at A.

(b) Damage in binder at B.

(c) Damage in binder at C.

Figure 14: Damage in the microstructure at points A, B, and C, in the macroscopic response curve.
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Figure 9: Comparison of the average traction-separation law for di↵erent sized cells consisting of
10% volume fraction of 20 µm diameter particles. Error bars represent one standard deviation
from five realizations. (a) Normal component of mixed-mode response. (b) Shear component of
mixed-mode response.

that attenuate the variation in macroscopic response. The cell with l
cell

⇡ 1/2 l
stat

(69.408 µm)

yields clearly unrepresentative average response with large standard deviation. The cells with

l
cell

⇡ l
stat

and l
cell

⇡ 2 l
stat

have very similar average reponse with rapidly decaying standard

deviation. The reductions in standard deviations are due to the larger cells capturing both the

geometric (l
stat

) and physical (lµ) length scales, including the e↵ect of boundary conditions.

Figure 11 compares the damage patterns at the failure points for the di↵erent sized cells. The

two larger cells have a more-distributed damage pattern, whereas the cell with l
cell

⇡ 1/2 l
stat

has

a single dominant crack at the top of the cell.

In order to quantify the complex microstructural damage, we introduce a number of damage

metrics. To motivate these metrics, let us consider a single crack of finite thickness, lµ, with the

volume, V |!, consisting of points with ! greater or equal to some threshold value as shown in

Figure 12(a). First, we define

M
1

|! =
V |!
V
cell

[�], (30)

which is the volume fraction of damage in the microstructure, where V
cell

is the volume of the cell.

Now let us consider a single discrete crack, as shown in Figure 12(b), given by the contour of points

with ! equal to some threshold value. Similarly to Equation (30), we define the damage metric

M
2

|! =
A|!
V
cell

[m�1], (31)

which is the area density of cracks in the microstructure for a given value of !. Note that A|! is the

18
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Figure 10: (a) Convergence of strength with increasing cell size. (b) Convergence of fracture
toughness with increasing cell size. Note the deminishing error bars with increasing cell size.

area of only one face of the crack, i.e., A|! = 1/2 @V |!, where @V |! is the outer surface bounding

V |!. The damage metrics M
1

and M
2

are related through the e↵ective crack thickness lµ by

lµ|! =
M

1

M
2

�

�

�

�

!

=
V

A

�

�

�

�

!

[m]. (32)

Finally, we establish the bounds on M
1

and lµ, with M
2

being an auxiliary metric only. M
1

is

a volume fraction and thus its range is given by M
1

2 [0, 1]. At failure, M
1

|!=1

= 0 since only the

surface of a crack (i.e., no volume) can reach ! = 1. For the case of constant failure throughout

the cell (e.g., failure of a cell with cp = 0%), rY ! = 0 8Y and M
1

|! = 1 for any threshold value

!  !
max

. Examining Equation (32), it is clear that the limit cases for lµ are given by the limit

cases of V |! = 0 and V |! = V
cell

. We note that V |! ! 0 faster than A|! ! 0, and thus the

minimum value of lµ is 0. In the case that V! = V
cell

we get,

lµ =
lc l

2

cell

2lc l
cell

+ l2
cell

+ lc � l
cell

= lc � 2l2c
2lc + l

cell

. (33)

The periodic boundary conditions approximate l
cell

! 1, and after taking the limit of Equation

(33) we obtain lµ 2 [0, lc]. The e↵ective crack thickness, lµ, is a macroscopic measure that is

related to the material properties (e.g., damage viscosity µ) and the material morphology. The

metric M
1

describes the extent of failure in the microstructrue, whereas lµ characterizes the overall

shape of cracks in the microstructure. These metrics allow for quantitative comparison of the

microstructural failure between material layers with di↵erent morphologies.

Figure 13 shows the volume fraction of damage (M
1

) and e↵ective crack thickness (lµ) for

di↵erent values of ! at failure. As can be observed, the damage metrics in the two larger cells are

nearly identical, while the smallest cell has a smaller volume fraction of thinner cracks. Additionally,

19
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Multiscale Cohesive Model - Mixed Mode Loading

Isocontours of ω ≥ 0.999 512 CPUs
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•10 % volume fraction

•20 micron particles
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Figure 9: Comparison of the average traction-separation law for di↵erent sized cells consisting of
10% volume fraction of 20 µm diameter particles. Error bars represent one standard deviation
from five realizations. (a) Normal component of mixed-mode response. (b) Shear component of
mixed-mode response.

that attenuate the variation in macroscopic response. The cell with l
cell

⇡ 1/2 l
stat

(69.408 µm)

yields clearly unrepresentative average response with large standard deviation. The cells with

l
cell

⇡ l
stat

and l
cell

⇡ 2 l
stat

have very similar average reponse with rapidly decaying standard

deviation. The reductions in standard deviations are due to the larger cells capturing both the

geometric (l
stat

) and physical (lµ) length scales, including the e↵ect of boundary conditions.

Figure 11 compares the damage patterns at the failure points for the di↵erent sized cells. The

two larger cells have a more-distributed damage pattern, whereas the cell with l
cell

⇡ 1/2 l
stat

has

a single dominant crack at the top of the cell.

In order to quantify the complex microstructural damage, we introduce a number of damage

metrics. To motivate these metrics, let us consider a single crack of finite thickness, lµ, with the

volume, V |!, consisting of points with ! greater or equal to some threshold value as shown in

Figure 12(a). First, we define

M
1

|! =
V |!
V
cell

[�], (30)

which is the volume fraction of damage in the microstructure, where V
cell

is the volume of the cell.

Now let us consider a single discrete crack, as shown in Figure 12(b), given by the contour of points

with ! equal to some threshold value. Similarly to Equation (30), we define the damage metric

M
2

|! =
A|!
V
cell

[m�1], (31)

which is the area density of cracks in the microstructure for a given value of !. Note that A|! is the

18

Extent of Damage - Mixed Mode Loading
A

B

C

A

B
C

(a) Damage in binder at A.

(b) Damage in binder at B.

(c) Damage in binder at C.

Figure 14: Damage in the microstructure at points A, B, and C, in the macroscopic response curve.
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Table 8: Microstructure and average mesh characteristics for the particle diameter study.

d [µm] Dimensions [µm3] # particles # nodes # elements # DOFs

5 64.982⇥ 64.982⇥ 200 1,292 1,696,876 9,836,031 5,072,218
10 99.883⇥ 99.883⇥ 200 381 1,420,119 8,272,851 4,242,575
20 139.569⇥ 139.569⇥ 200 93 2,103,957 12,317,628 6,280,495
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Figure 19: Comparison of traction-separation laws for RUCs with 10% volume fraction of di↵erent
sized particles. Error bars show one standard deviation of the response for five realizations of each
RUC. (a) Normal component of the mixed-mode response. (b) Shear component of the mixed-mode
response.

21(a)). Figure 20 compares the strength and fracture toughness of the di↵erent mixtures. There

is a monotonic decrease in the strength with increasing particle diameter, which is often observed

in experiments [32, 33]. However, the fracture toughness with relation to particle diameter is non-

monotonic and attains a maximum for 10 µm diameter particles. This non-monotonic trend is

also observed in experiments for fixed volume fractions [10, 34], and our work shows the ability

to capture this particle size e↵ect. We note that the particle size e↵ect is captured because we

have su�ciently resolved discretizations (h
min

= 0.073 µm and h
avg

 1.50 µm), and the value of

damage viscosity, µ, is within the range of realistic material properties. Previous numerical studies

using a similar damage model were not able to capture the particle size e↵ect due to the highly

viscous damage behavior (with thick cracks often on the order of particle diameters) and under

resolved computations [26].

Figure 21 shows the damage pattern at failure in the RUCs with di↵erent diameter particles.

The 5 µm particle RUC (Figure 21(a)) has very small arrested cracks around the particles. The

damage localizes at the matrix-rich top and bottom surfaces, leading to adhesive failure. The

mixture with 10 µm particles (Figure 21(b)) has a well distributed network of thin interconnecting

cracks, leading to cohesive failure with multiple dominant cracks. This multiplicity of dominant
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Figure 20: Comparison of strength and fracture toughness for RUCs with 10% volume fraction of
di↵erent sized particles. Error bars show one standard deviation of response for five RUCs at each
marked point. (a) Comparison of strength. (b) Comparison of fracture toughness.

cracks is very important for increasing fracture toughness. The 20 µm particle mixtures exhibit

predominately cohesive failure with fewer dominant cracks.

Figure 22(a) shows that the volume fraction of damage is small for the mixture containing

5 µm particles. Moreover, there is slightly higher volume fraction of damage in mixtures containing

10 µm particles when compared to the 20 µm mixture. Consistent with the findings in the particle

volume fraction study (Section 4.3), there is a correlation between increased M
1

at failure and

increased fracture toughness (see Figure 20(b)).

Figure 22(b) shows that decreasing the diameter of a fixed volume fraction of particles results

in a decrease in the e↵ective crack thickness. As described in Section 4.3, the reduction in crack

thickness is due to the short inter-particle distance and the increase in thin damage zones around

particles, mimicking debonding. Examining Figure 22, the small volume fraction of very thin cracks

in the 5 µm particle mixture is indicative of strong damage localization, such as in the adhesive

failure shown in Figure 21(a). The 10 µm particle mixture has the highest volume fraction of thin

cracks (see Figure 22), suggesting that it has the most-distributed damage pattern (see Figure

21(b)). Moreover, a large portion of those cracks are dominant and dissipate a large amount of

energy.

The inset in Figure 23(a) shows that RUCs containing larger particles accumulate higher

volume fractions of damage, M
1

, in the early stages after nucleation. This higher amount of

damage accounts for the reduction in strength for larger particle diameters (Figure 20(a)). Note

that while the larger particle RUCs accumulate more damage earlier, the growth rate ofM
1

is higher

for smaller particle RUCs after the initial damage period (see Figure 23(a),
�

�

q
0

u

y�
� > 7.4 µm). As

seen in Figure 23(a), RUCs with 5 µm particles have the fastest growth rate and quickly reach a

steady-state value of M
1

. This rapid growth and approach to a steady-state is indicative of strong
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(a) Dimensions and boundary conditions. (b) Interface RUC.

Figure 8. Dimensions, loading conditions, and microscale morphology for the 1.1 billion element FE2

simulation. (a) shows the dimensions and loading conditions of the macroscale adherends. The dimensions
and loading direction bu are given in Table IV. (b) shows the RUC for the heterogeneous layer containing 40

randomly located 40 µm diameter voids.

macroscopic discretization is sufficiently fine. The resulting interface discretization contains 120
cohesive elements, corresponding to 120 microstructures. The RUC is discretized with a similar
resolution as the finest mesh in the verification study of Section 4.1. The h

min

, h
mean

and h
max

element size at the microscale is ..., respectively. Thus, in this simulation, we resolve L/h
min

=

O(105) in length-scales. The mesh characteristics for the macro- and micro-scales are given in Table
V. The macroscale problem is computed on 16 processing cores, while the microscale solutions

Table V. Number of nodes, elements, and degrees of freedom for the DCB FE2 example. Each RUC in the
simulation has 1.6 million nodes, 9.2 million elements, and 4.8 million DOFs.

Nodes Elements DOFs

Macroscale 731 2,684 1,878
Microscale 193,873,920 1,098,283,920 574,612,560

TOTAL 193,874,651 1,098,286,604 574,614,438

are computed on 12 servers each responsible for 10 RUCs. Number of processing cores for one
micro-server is 128. Therefore, we use 12 · 128 + 16 = 1, 552 total processing cores to simulate the
fully coupled multiscale problem. This gives very impressive ratio of DOFs per computing core as
⇠ 370, 241 using our hierarchically parallel multiscale solver. We note that similar computations
usually require tens of thousands processing cores [?].

Figure 9 shows the deformed adherends at the end of the load history and the nonlinear force-
displacement response of the free end of the top adherend. Figure 9(b) shows that the shear
responses, f1 and f2, are not equal. This is due to the complex mixed-mode loading conditions
resulting in the compressive loading of the bottom adherend and tensile loading of the top adherend
in the X1-direction (see Figure 9(a)).

Figure 10 shows the normal and shear components of the macroscopic traction vector computed
on selected microstructures. The normal traction is given by t

n

= 0t3, and the shear traction is
evaluated as t

s

=
p

0t21 +
0t22. Figure 10(b) shows that microstructures away from the applied

opening (cells 1 and 3) experience compressive loading (t
n

< 0), while cells near the applied
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•12 Servers @ 128 cores

1552 cores	


370,241 DOFs / core

• L=22 mm, W=10 mm, H=5 mm	


• lc=0.125 mm, lRUC=0.25 mm

•40 voids
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(a) The deformed adherends (magnified 10⇥).
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Figure 9. Multiscale solution of the DCB problem with heterogeneous interface. (a) shows contours of
displacement magnitude on the deformed adherends at the end of the load history. The deformation is

magnified 10⇥. (b) shows the nonlinear force-displacement response of the free end of the top adherend.

(a) Macroscale interface mesh.
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(b) Traction-displacement response for selected cells.

Figure 10. Macroscopic response of the interface. (a) shows the interface discretization with locations of
microstructures used in analysis. The dashed line and A0 are a reference for location of the pre-crack. (b)
shows the normal and shear components of the traction computed from RUCs associated with the interface

elements 1, 3, and 4 in (a) as a function of the prescribed displacement �.

opening experience tensile loading. Figure 10(b) also shows that the peak compressive traction
is in cell 3 for the cells studied. This is expected as the compressive traction tends to zero at the far
end from the opening.

Figure 11 shows the effective Eulerian/Almansi strain, kek, in the microstructures corresponding
to the marked interface elements in Figure 10(a). The high levels of strain (80%) are detected
showing the importance of finite strains. We also note that strains in cells 4 and 6 are not symmetric
due to mixed-mode loading. As expected, the strains increase for cells closer to the leading edge.

5. CONCLUSIONS

say about virtual testing capabilities.
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Macro-scale	


• No-slip on top/bottom	


• h= 10 mm, d = 20 mm 	



E = 15 GPa, ν = 0.25	


15K elements in Macro

Micro-scale	


• 250 x 250 x 125 µm3	



• 40 voids, 40 µm diameter	


E = 5 GPa, ν = 0.34	


5M elements in RUC

512 RUCs

Hierarchically Parallel Multiscale Solver
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‣ LLNL Vulcan

Macro-scale (16 core)	


• 15,164 Elements	


•   3,338 Nodes	


•   8,328 DOF

RUC (256 core each)	


• 31,392 Elements	


•   7,074 Nodes	


• 16,758 DOF

Total	


• 16.1M Elements	


•   3.6M Nodes	


•   8.6M DOF

Hierarchically Parallel Multiscale Solver
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Modeling with Co-Designed Experiments
STABILIZED ELEMENT WITH NONLOCAL PRESSURE 1199

Figure 11. Hyperelastic billet compression: comparison between the presented scheme and the
model by Puso and Solberg [8]. Consistent units used.

the geometry is discretized due to symmetry. Contact is enforced by Lagrange multipliers. Some
elements near the original edge suffer large distortions, but no instabilities were detected during the
loading process (neither hourglass patterns nor stress oscillations). Figure 11 shows the deformed
mesh at three stages of compression, the force–displacement diagram, and the compressive stress
contour plot. Good agreement can be observed between force–displacement curves obtained from
our model and results present in [8]. We see that the load is only moderately sensitive to parameter
c0 for the selected range and that for larger c0 softer response is obtained. Stresses are calculated
at each node by an arithmetic average of the neighborhood elements.

4. CONCLUSIONS

We have developed a novel three-dimensional finite element scheme for nearly incompressible
solids. The finite element framework is based on a mixed Galerkin method with a nonlocal pressure
field and a stabilization bubble. The pressure-spreading effect is governed by the Helmholtz equation
and it is motivated by the physical nonlocal response of the reinforced elastomers. A consistent

Copyright 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1185–1201
DOI: 10.1002/nme
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Microtomography In Situ Testing
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debonding
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“Virtual” FE2 Micro-computer Tomography

3µm resolution

1x1x1 cm3 = ℴ(1012) voxels	


detectability ~ 1 micron

1x1x1 mm3 = ℴ(109) elem.	


mean element size ~ 1 micron

1000 RUCs 	


Trillion number of elements	


Billion number of equations
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