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One of the most challenging and frequently arising problems in many areas of science is to find
solutions of a system of multivariate nonlinear equations. There are several numerical methods that
can find many (or all if the system is small enough) solutions but they each exhibit characteristic
problems. Moreover, traditional methods can break down if the system consists of singular solutions.
Here, we propose an efficient implementation of Newton homotopies, which can sample a large
number of the stationary points for complicated many-body potentials. We demonstrate how the
procedure works by applying it to the nearest-neighbor φ4 model and atomic clusters.

Introduction: Solving nonlinear equations is one of the
most frequently arising problems in physics, chemistry,
mathematical biology and many areas of engineering. In
particular, finding stationary points (SPs) of a potential en-
ergy function V (x) provides the foundations for global opti-
misation [1–3], thermodynamic sampling to overcome bro-
ken ergodicity [4–7], as well as rare event dynamics [8–15]
within the general framework of potential energy landscape
theory [16]. Here, the SPs of V (x), which is a real-valued
function from Rn to R, are defined as the simultaneous so-
lutions of the system of equations fi(x) = ∂V (x)/∂xi = 0,
for all i = 1, . . . , n. The SPs can be employed to analyze
many different properties of a diverse range of physical,
chemical and biological systems, including metallic clus-
ters, biomolecules, structural glass formers, coarse-grained
models of soft and condensed matter, etc. [16, 17].
Since nonlinear equations are generally difficult to solve,

it is usually not possible to find all the SPs analytically
and one must resort to numerical methods. For example,
in the Newton-Raphson (NR) approach one refines an ini-
tial guess via successive iterations in the hope of converg-
ing to a solution. Unfortunately, unless the initial guess
is sufficiently close to a solution, the NR method may
converge slowly or fail to converge at all. Furthermore
the NR method is also notorious for its erratic behavior
near “irregular” singular solutions, e.g., see [18]. An al-
ternative method to find stationary points is the gradient-
square minimization method which solves fi(x) = 0 by
minimizing the sum of squares W =

∑N
i=1 fi(x)2 using

traditional numerical minimization methods, such as con-
jugate gradient [19, 20]. However, the number of minima
with W > 0, which are not the solutions of fi(x), gen-
erally outweighs the number of minima with W = 0, and
these non-solutions also have an additional zero eigenvalue,
making the minimization problem ill-conditioned [21, 22],
and very inefficient in practice [21, 23]. A more system-
atic approach was proposed in Refs. [21, 23] based on
eigenvector-following, as implemented in the OPTIM pack-
age. This program includes many other geometry optimiza-
tion techniques, such as a modified version of the limited-
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memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) al-
gorithm [24, 25], single- and double-ended [26] transition
state searches via a variety of gradient-only and second
derivative-based eigenvector-following techniques [27, 28],
and hybrid eigenvector-following methods [29, 30, 52]. The
recently described biased gradient squared descent frame-
work [53] may provide a useful alternative, which merits in-
vestigation in future work. Recently, a completely different
approach based on algebraic geometry, namely the numer-
ical polynomial homotopy continuation (NPHC) method,
has been used to find all the solutions of various models
with polynomial-like nonlinearity [31, 33]. After estimating
an upper bound on the number of isolated complex solu-
tions of the given equations, a different system consisting
of the same variables and having exactly the same number
of solutions as the estimated upper bound is constructed.
Then, each solution of the new system is tracked towards
the original system via a single parameter. This method
can identify all isolated complex solutions (which include
real solutions) of the original system (see e.g., Refs. [32–
34] for more details). When the number of complex solu-
tions is very large but the number of real solutions is very
small, computing all of the real solutions using the NPHC
method can be a computationally expensive task. Another
approach to find all the solutions of a system of nonlinear
equations is the interval based method [35], but it has only
proved successful for a very small number of atoms and SPs
so far, because it is based on bisections of the ranges.

In this contribution, we use an efficient, robust, and
highly parallel implementation of Newton homotopies
(NH), a previously underutilized approach for finding SPs.
Unlike the NPHC and the minimization based methods, the
NH approach has the benefit of directly targeting the real
SPs. When compared to the NR method, our approach for
NH is more effective at finding singular solutions and also
capable of finding multiple solutions starting from a sin-
gle point. Numerical experiments with Nearest-Neighbor
2D φ4 models and atomic clusters suggest that NH is an effi-
cient and effective method capable of finding a large number
of SPs within a reasonable amount of time, and has great
potential for use in a wide range of other applications.
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Newton Homotopy: The fundamental goal is to find so-
lutions x = (x1, . . . , xn) ∈ Rn to a target system consist-
ing of n equations F(x1, . . . , xn) = F(x) = 0. The general
idea of homotopy continuation is to deform the target sys-
tem into a different one, the starting system, for which
solutions are easier to compute. In this article, we focus on
deforming using a Newton Homotopy developed in [36–38]
which is given by H : Rn+1 → R with

H(x, t) := F(x)− tF(a) (1)

for some chosen a ∈ Rn. Clearly, it is a homotopy between
the target system H(x, 0) ≡ F(x) and the starting system
H(x, 1) ≡ F(x) − F(a) when we restrict the t to [0, 1].
The system of equations H(x, t) = 0 represents a family
of equations parameterized by t containing the target sys-
tem F(x) = 0, which we aim to solve. We can consider
H(x, t) = 0 as a system of n equations defining a solution
set V(H) := {(x, t) ∈ Rn+1 : H(x, t) = 0} containing the
target solution set of F(x) = 0 as a cross-section at t = 0.
While the structure of V(H) can be complicated, depend-
ing on the choice of a, certifiable methods for numerically
tracking along curves in V(H) are provided in [39, 40].
If the Jacobian matrix JH(a, 1) of H at (a, 1) has rank n,

then (a, 1) is a smooth point of an irreducible curve con-
tained in V(H). Locally, this curve is smooth so that one
may track along it in a neighborhood. To simplify the sit-
uation, assume that the Newton homotopy (1) satisfies the
smoothness assumption, namely JH(x, t) has rank n for
all (x, t) ∈ V(H). Thus, V(H) is the union of disjoint
smooth curves in Rn+1 with one passing through (a, 1).
By tracking along this curve, one may locate points in
V(H) ∩ {(x, t) ∈ Rn+1 : t = 0} corresponding to the real
solutions of F(x) = 0. Figure 1 depicts this situation.

t = 0 t = 1

x = a

Figure 1: A smooth curve defined by H(x, t) = 0

This setup suggests a practical numerical method for lo-
cating solutions of the system F(x) = 0: starting at the
point (a, 1), trace the curve defined by H(x, t) = 0 in Rn×R
via an efficient and reliable numerical methods. A solution
to the target system is produced each time the curve passes
through the hyperplane defined by t = 0. Since we will not
test if the smoothness assumption holds, we will simply
track along the curve locating real solutions of F = 0 un-
til singularities arise. Remark 1 discusses some options for
tracking through singularities.
Tracing smooth curves: By the smoothness assumption,
the zero set V(H) of H consists of smooth curves. Let γ be
the unique curve containing (a, 1). The numerical Newton
homotopy continuation method revolves around the proce-
dure of “tracing” the curve γ from (a, 1). Here we brief
outline one basic method and refer to standard references
such as [32, 41–43] for other variations.

The smooth curve γ is naturally parametrized by arc
length. For convenience, let y = (x, t) and write H(x, t) =
H(y). Given any (a, t) ∈ γ, an arc-length parametriza-
tion of γ at (a, t) is a smooth function y : R+ → γ
such that y(0) = (a, t), H(y(s)) = 0, and ‖ẏ(s)‖2 = 1
for all s ∈ R+. Clearly, parametrizations satisfying these
conditions are not unique: there at least two different
arc-length parametrizations going in opposite directions.
Therefore, to trace along a curve without backtracking,
one must be able to determine and maintain a consis-
tent orientation: Since, H(y(s)) = 0, we necessarily have
JH(y(s)) ẏ(s) = 0, where JH(y(s)) is the Jacobian matrix
of H at y(s). That is, ẏ(s) generates the one dimensional
null space of JH(y(s)). Therefore, the (n + 1) × (n + 1)
square matrix

[
JH(y(s))

ẏ(s)

]
is never singular, i.e. its determi-

nant never vanishes and hence maintains a consistent sign.
Consequently this sign determines the orientation of the
parametrization. Once an orientation σ0 = ±1 is chosen,
one must keep the orientation consistent while tracing the
curve to prevent backtracking. With the additional orien-
tation constraint, the arc-length parametrization for γ at
(a, 1) is characterized by

JH(y(s)) ẏ(s) = 0

sgn det
[
JH(y(s))

ẏ(s)

]
= σ0

‖ẏ(s)‖ = 1
y(0) = (a, 1)

. (2)

Locally, at any fixed s and its corresponding y(s),
the tangent vector ẏ(s) can be computed efficiently via
numerical methods. In particular, the null space of
JH(y(s)), which contains ẏ(s), can be computed via QR-
decomposition of the transpose matrix JH(y(s))T . Under
the smoothness condition, the null space is one-dimensional
and contains exactly two vectors of unit length. Utilizing
the information produced during the QR-decomposition
the correct choice of ẏ(s) can be made, as a by-product,
with at most O(n) extra floating point operations. Glob-
ally, in principle, any ordinary differential equation solver
capable of integrating the above system can be used to
trace the curve and potentially obtain a solution to the
target system point at t = 1. Numerical methods based
on this idea are generally referred to as “global Newton
methods” [37]. Our implementation employs a “prediction-
correction scheme” due to numerical stability concerns [38].

Remark 1. We should note that the numerical method de-
scribed in this section is actually capable of handling cases
where the Newton homotopy defines curves with isolated
“simple branch points”, such as points at which two curves
intersect transversally. More advanced techniques for han-
dling singularities can be found in [42, 44–47, 54].

An Example System: Consider the system{
29
16x

3 − 2xy = 0,
y − x2 = 0,

(3)

from [18]. This system has only one solution in R2, namely
(0, 0), which has multiplicity 3. It is shown in [18] that
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starting from almost every point in R2 \ {(0, 0)}, the NR
method will diverge. In other words, the NR method will
almost surely never find the solution of this system. Fig-
ure 2 shows that the Newton homotopy (1) was successful
at locating the solution for many starting points (x0, y0).
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Figure 2: Scatter plot of some starting points (x0, y0) for
which the NH (1) was successful in obtaining the singular
solution (0, 0) of the system (3) within machine precision.

The Nearest-Neighbor Two-dimensional φ4 Model:
We consider a model from theoretical physics called the
two-dimensional nearest-neighbor φ4 model. It has been
widely studied because it is one of the simplest models with
a continuous configuration space that exhibits a phase tran-
sition in the same universality class as the two-dimensional
Ising model. For an N ∈ Z+ and J, λ, µ ∈ R the model, in
N2 variables x = (x11, x12, . . . , xNN ), is V (x) given by

V (x) =
∑

(i,j)∈Λ

 λ

4!
x4

ij −
µ2

2
x2

ij +
J

4

∑
(k,l)∈N(i,j)

(xij − xkl)2

 (4)

where Λ ⊂ Z2 is the standard square lattice withN2 lattice-
sites and N(i,j) ⊂ Λ is the four nearest-neighbor sites of
(i, j). The N2 stationary equations are given by

∂V (x)
∂xij

= λ

3!x
3
ij + (4J − µ2)xij −

∑
(k,l)∈N(i,j)

Jxkl = 0. (5)

for each pair of i, j = 1, . . . , N . Given the physical context,
only real solutions are needed. We use periodic boundary
conditions, λ = 3/5 and µ2 = 2.
A variety of computational tools have been used to study

this model. In particular, the NPHC method has found all
the SPs for N = 3, 4 in a previous study [48, 49]. However,
this family of problems poses a particularly tough chal-
lenge to methods that find all complex solutions, since the
total number of solutions in CN2 , counting multiplicity, is
always equal to its total degree (the Bezout bound) 3N2 ,
which grows quickly as N increases. Direct computation
of all complex solutions is clearly unfeasible with current
technology for large values of N . However, by varying the
parameter J from 0 to 1, one can go from the case when all
the solutions are real to only an extremely small fraction
are real. For the latter, the method of Newton homotopy,
which directly targets the real solutions, has a clear advan-
tage over methods that compute all complex solutions.

−8 −6 −4 −2 0 2 4 6

0

0.5

1

1.5

·104

0
t

ar
c-
le
ng

th

t value along a curve

Figure 3: The t value along a curve defined the Newton
homotopy for (5) for N = 6 and J = 0.9.

In our numerical experiments, Newton homotopies (1)
were applied to (5) with varying values for N and J . From
a single randomly chosen starting point multiple real so-
lutions were obtained. Table I summarizes the ability and
efficiency of Newton homotopy in finding the real solutions
for a range of N and J values. Indeed, all real solutions
were found in many cases. For example, with N = 3, in the
case of J = 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4, our Newton homo-
topy implementation was able to obtain all of them with
a single randomly chosen starting point. The CPU time
information in the table corresponds to a workstation with
a 3.4GHz Intel Core i5-3570K processor. The results high-
light the strength of the Newton homotopy: it is capable of
finding a large number of real solutions very quickly. The
efficiency is particularly noteworthy in the case of N = 7
and N = 8. With a total of more than 1023 and 1030 com-
plex solutions, respectively, any approach involving finding
all complex solutions is clearly impractical. In contrast,
with J = 0.9 Newton homotopy was able to obtain 358 and
1522 real solutions, for the cases of N = 7, 8 respectively,
using a single starting point within 1 minute.

N J No. of SPs % of total SPs found Time

3

0.90 3 (All) 100% 0.008s
0.70 3 (All) 100% 0.012s
0.50 171 (All) 100% 0.999s
0.30 1121 99.1% 2.001s

4
0.90 83 (All) 100% 0.903s
0.60 199 68.4% 1.371s
0.30 40225 40.6% 59.27s

5
0.90 102 - 2.009s
0.60 679 - 49.50s

6 0.90 208 - 23.95s
0.60 959 - 52.37s

7 0.90 358 - 29.66s
0.60 3266 - 37.25s

8 0.90 674 - 43.12s
0.60 1538 - 55.99s

Table I: The number of real solutions of (5) found using
Newton homotopy with one starting point. The

percentages are computed with respect to all SPs [48, 49].

These cases also showcase the ability of NH in obtaining
multiple solutions using a single starting point. Figure 3
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illustrates the t-value along the single curve defined by the
Newton homotopy for (5) with N = 6 and J = 0.9. Here, t
(horizontal axis) is plotted against the arc-length (vertical
axis). Note the numerous crossings of the hyperplane at
t = 0, represented by the light vertical line in the middle.
Each crossing produces a distinct real solution for (5).
Using multiple starting points and tracing multiple

curves, the likelihood for Newton homotopy to obtain many
or all real solutions can be improved substantially. Note
that the curve tracings are completely independent and
hence can be performed in parallel. Table II summarizes
the efficiency of Newton homotopy in finding a large num-
ber of real solutions for (5) using multiple randomly chosen
starting points. The timing information is based on the
performance on a cluster of 32 nodes, each having a quad-
core Intel Xeon processor running at 2.4GHz.

N J No. of Start Points No. of SPs % SPs Time

4
0.90 1000 83 (All) 100% 7.15s
0.60 1000 291 (All) 100% 110.50s
0.30 1000 99187 (All) 100% 121.01s

5
0.90 500 243 - 99.50s
0.60 500 1083 - 139.21s
0.30 500 30971 - 353.97s

6 0.90 100 579 - 47.33s
0.60 100 4172 - 329.15s

7 0.90 64 917 - 61.19s
0.60 64 3965 - 86.31s

8 0.90 32 1522 - 58.70s
0.60 32 5694 - 61.11s

Table II: The number and percentage of solutions for (5)
found using Newton homotopy with many starting points.

Lennard-Jones Clusters: We now apply the NH method
to finding SPs of atomic clusters of N atoms bound by the
Lennard-Jones potential [50], which is defined as

VN = 4ε
N∑

i=1

N∑
j=i+1

[(
σ

rij

)12
−
(
σ

rij

)6
]
, (6)

where ε is the pair well depth, 21/6σ is the equilibrium pair
separation, and rij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

is the distance between atoms i and j. We take ε = σ = 1.
Defined in terms of the distances, VN is clearly invari-
ant under rotation and translation. Therefore we can fix

x1 = y1 = z1 = y2 = z2 = z3 = 0. Hence, there are in total
3N−6 variables in VN yielding 3N−6 stationary equations
∇VN = 0. For this model, an extensive search for minima
and saddle points was carried out in [21] for N up to 13,
and a search for minima and saddles of index one (tran-
sition states) for N = 14 was presented in [51]. Table III
shows the ability of Newton homotopy to find a large num-
ber of SPs for (6) for each N value. It is worth noting the
data suggests that the NH approach is particularly useful
in finding SPs of higher Morse indices (the number of pos-
itive eigenvalues of the Hessian matrix of VN ): among the
SPs found, the majority have Morse index near the middle
of the possible range (from 0 to the number of variables,
3N − 6), which may be attributed to the fact that there
are exponentially more SPs in the mid-range of the indices
than at the extremes (index 0 and index 3N − 6).

N SPs / Distinct energy levels local minima transition states

3 9 / 4 3 1
4 31 / 11 3 3
5 101 / 39 1 5
6 204 / 148 2 6
7 725 / 265 4 13
8 597 / 224 8 1
9 991 / 501 16 1

10 2510 / 546 22 71
11 9940 / 552 34 83
12 20994 / 623 62 90
13 10920 / 289 73 92
14 32517 / 264 37 81

Table III: Number of SPs and distinct critical energy
levels of (6) found using Newton homotopies.

Conclusion: We have developed a novel implementation
of the Newton homotopy method which, in our experi-
ments, is much more efficient at finding SPs of PELs aris-
ing in chemical physics than the usual Newton-Raphson
method. Newton homotopies appear to be better behaved
at possible singular SPs and our implementation does not
require the inversion of large matrices. Our results suggest
that the NH method has the potential to replace the NR
method in many contemporary computational approaches,
especially in computational chemistry.
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