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Abstract

The solution set of a system of polynomial equations, called an algebraic set, can be decomposed
into finitely many irreducible components. In numerical algebraic geometry, irreducible algebraic
sets are represented by witness sets, whereas general algebraic sets allow a numerical irreducible
decomposition comprising a collection of witness sets, one for each irreducible component. We
denote the solution set of any system of polynomials f : CN Ñ Cn as Vpfq � CN . Given a
witness set for some algebraic set Z � CN and a system of polynomials f : CN Ñ Cn, the
algorithms of this article compute a numerical irreducible decomposition of the set Z X Vpfq.
While extending the types of intersection problems that can be solved via numerical algebraic
geometry, this approach is also a unification of two existing algorithms: the diagonal intersection
algorithm and the homotopy membership test. The new approach includes as a special case
the “extension problem” where one wishes to intersect an irreducible component A of Vpgpxqq
with Vpfpx, yqq, where f introduces new variables, y. For example, this problem arises in
computing the singularities of A when the singularity conditions are expressed in terms of new
variables associated to the tangent space of A. Several examples are included to demonstrate
the effectiveness of our approach applied in a variety of scenarios.
Keywords. Numerical algebraic geometry, algebraic set, intersection, regeneration, witness set
AMS Subject Classification. 65H10, 68W30, 14Q99

1 Introduction

Numerical algebraic geometry concerns the solution of systems of polynomial equations using nu-
merical methods, principally homotopy methods, also known as polynomial continuation. We take
the ground field to be the complex numbers C: the continuity and algebraic completeness of C are
essential for our algorithms. Given a polynomial system F : CN Ñ Cn:

F pz1, . . . , zN q �

�
��
F1pz1, . . . , zN q

...
Fnpz1, . . . , zN q

�
�� , (1)
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one wishes to describe its solution set, called the algebraic set defined by F , denoted as

VpF q :� tz P CN | F pzq � 0u.

Early in the development of polynomial continuation, all attention was focused on finding just
the isolated solutions of a given polynomial system. In these methods, a homotopy is constructed
along with a set of starting solutions. A homotopy path emanates from each start point, and
the set of all endpoints of these paths is guaranteed to include all the isolated solutions of the
target polynomial system. See, for example, [33] for a treatise from the early era. Major advances
in methods for constructing homotopies with fewer paths, which thereby generally reduce the
computational cost of numerically tracking the paths, include multi-homogeneous formulations [34],
linear-product homotopies [56], and polyhedral homotopies [25, 57]. The polyhedral methods make
maximal use of whatever sparsity exists in the list of monomials appearing in the polynomials.
While this gives the least number of homotopy paths among all the known single-shot homotopy
methods, the homotopy construction phase depends on the computation of the mixed volume of
the system [28, 31], potentially a computationally complex problem.

Numerical algebraic geometry was founded [50] on the recognition that often one may be inter-
ested in positive-dimensional solution sets (curves, surfaces, etc.). A methodology was developed
to discover such sets by applying polynomial continuation to find witness points on the sets, these
points having been isolated by intersecting the positive dimensional set with a generic linear space of
complementary dimension. This idea lead to the concept of a witness set, to be described precisely
later, now considered the fundamental construct of the field. The computation of a numerical
irreducible decomposition, first accomplished in [44], produces a witness set for each irreducible
component of VpF q. A concise review of the main concepts and vocabulary of the field, such as
witness sets, irreducible components, and the numerical irreducible decomposition, are included
here in §2; for more complete treatments, see [9, 51].

Software available for computing just isolated solutions includes Hom4PS [28], HomPack [36],
and POLSYS GLP [53]. Packages that compute both isolated solutions and witness sets for positive-
dimensional solution sets are PHCpack [55] and Bertini [8]. The algorithms reported here have been
tested using extensions to Bertini.

Soon after the crystallization of the witness set idea, it was seen that it can be advantageous
to solve systems in stages. The diagonal intersection methods of [42, 43] compute the intersection
of a pair of algebraic sets, each given by a witness set. Using this approach, one may introduce
one-by-one the hypersurfaces defined by the individual polynomials in the system, maintaining a
numerical irreducible decomposition of the intersection at each stage [48]. This kind of idea was
given a new twist with the invention of regeneration methods [20, 21]. Both of these methods can
be streamlined if one only wants the isolated solutions of the final system. As detailed in [23], to
obtain a full irreducible decomposition, including positive-dimensional sets, the diagonal methods
have to be completed using isosingular theory [22], based on Thom-Boardman singularities [3, 12].

The new algorithm described in this article generalizes the diagonal intersection problem and
makes use of regeneration to solve it. The main problem we solve is to intersect a pure-dimensional
algebraic set, Z � CN , given by a witness set, with VpF q, for a polynomial system F as in (1).
The result is a numerical irreducible decomposition of Z X VpF q. Variants include the case when
Z � A�B and we begin with witness sets for algebraic sets A � CM and B � CN . In particular,
given a witness set for A � VpGpxqq, this allows us to extend the solution to pA�CN qXVpF px, yqq,
where F : CM � CN Ñ Cn is a polynomial system that involves new variables, y, not present
in Gpxq. Since our approach extends from A using regeneration, we call it regeneration extension.
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Our examples aim to show the utility of these new capabilities. At the same time, we note the
unifying nature of this formulation, as both the existing diagonal homotopy method and the existing
homotopy membership test can be viewed as special cases.

The enhanced ability to solve a variety of intersection problems gives great flexibility in how
one may approach a problem and often has a large impact on the computational cost of doing
so. It is quite common for systems arising in applications and in mathematical research to have
solution sets composed of several irreducible components. Having computed a numerical irreducible
decomposition for a system under study, the analyst often finds that some of the components are of
further interest while it is desired to exclude the others from further investigation. This is because
often some components are degenerate or nonphysical in some sense specific to the problem at
hand. Our method allows one to compute intersections with just the interesting components while
ignoring the rest. Our examples will illustrate how this can sometimes led to considerable savings.

Once a witness set is available for an algebraic set, one may wish to investigate it further by
finding points on it that satisfy extra conditions. One possibility is to find its singularities by
intersecting the set with the conditions for a point on the set to have a tangent space of higher
dimension than the set itself. With our new algorithm, one is free to write the singularity conditions
in terms of new variables associated to the tangent directions rather than relying exclusively on
determinants of matrices of partial derivatives in the original variables. The additional polynomials
might instead define other “critical” conditions on the set, such as computing critical points of
the distance to a fixed point, e.g., [4, 17, 40] (see also [14]), and critical points of a projection,
e.g., [11, 32]. We will also illustrate our algorithm at work on this kind of problem.

Another application of the new algorithm arises in finding exceptional sets by taking sequences
of fiber products, as in [52]. Not only does each new fiber product introduce a new set of variables,
but also symmetry groups act on the irreducible components that arise. The ability to pick out
one component for further investigation avoids the combinatorial explosion of fiber products that
would otherwise ensue. This topic is too complicated to take up here, but it will be addressed in a
forthcoming article. For now, we simply note that the kind of flexibility provided by the algorithm
given here is crucial to tackling any but the simplest problems concerning exceptional sets.

After reviewing some background on the numerical irreducible decomposition and witness sets
in §2, we state the main problems in §3 and begin the new developments with a simple algorithm
in §4 for generating a witness set for Z � A � B given witness sets for A and B. Then, in §5,
we show how to generate witness supersets for the pure-dimensional components of Z X VpF q,
followed by a description of how to complete the numerical irreducible decomposition of Z X VpF q
in §6. In §7, we show in detail how the general machinery specializes to existing algorithms for
diagonal intersection and for membership testing, as well as the specialization to the extension
problem. Finally, in §8, we discuss some examples illustrating the efficacy of the new approach
before recapping the contribution in §9 .

2 Background

The following includes definitions of dimension, degree, irreducible components, pure-dimensional
components, the irreducible decomposition, witness sets, and the term generically reduced. We also
briefly discuss mathematical rigor and reliability in relation to numerical algebraic geometry. The
reader familiar with such topics may wish to skip to the next section.
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2.1 Definitions

An algebraic set is any set that can be written as VpF q for some polynomial system F , as in (1).
For any algebraic set Z, we denote its dimension by dimZ, defined as the maximum number, say k,
such that k general hyperplanes meet Z.1

An irreducible algebraic set is an algebraic set that cannot be expressed as the union of a finite
number of its proper algebraic subsets. Every algebraic set can be expressed as a union of its
irreducible components, that is, every algebraic set has an irreducible decomposition of the form

VpF q �
D¤
i�0

Zi, Zi �
¤
jPJi

Zij , (2)

where each Zij is an irreducible component with dimZij � i, Ji is a finite index set (possibly empty
for i   D), Zij � Zk` for pi, jq � pk, `q, and D � dimVpF q ¤ N . The irreducible decomposition is
unique up to renumbering the components.

A pure-dimensional subset of VpF q is the union of any subset of irreducible components of VpF q
having the same dimension. That is, using the notation of (2), a pure-dimensional subset of VpF q
is any set of the form

�
jPI�Ji Zij for some i and index subset I. A pure-dimensional component

of VpF q is simply any one of the Zi, the union of all the i-dimensional irreducible components.
Thus, we say that VpF q � �D

i�0 Zi is the pure-dimensional decomposition of VpF q.
For an irreducible algebraic set A, dimA general hyperplanes intersect A in a finite number of

points, which number is defined as the degree of A, denoted degA. More precisely, the number
of isolated points in A X VpLAq is maximized on a dense, Zariski-open subset of affine linear
mappings LA from CN to CdimA. Each LA achieving this maximum number, denoted degA, is
called generic. The degree of a pure-dimensional algebraic set is similarly defined and is equal to
the sum of the degrees of its irreducible components.

The aforementioned definitions of dimension and degree lead naturally to the concept of a
witness set, the basic construct of numerical algebraic geometry. For an irreducible algebraic set A,
the witness set for A consists of three entries:

1. a polynomial system, fA, called a witness system, such that A is an irreducible component
of VpfAq;

2. a generic affine linear polynomial system, LA : CN Ñ CdimA; and

3. numerical approximations to the witness point set WA � A X VpLAq, which is a finite set of
degA points.

Accordingly, we write a witness set for A as the ordered set A � tfA, LA,WAu. Clearly, the
definition of a witness set can also be applied to pure-dimensional algebraic sets, in which case the
witness point set is just the union of the witness point sets of its irreducible components. In this
case, we can use the same affine linear polynomial system for all irreducible components.

A numerical irreducible decomposition of the solution set VpF q consists of one witness set for
each of its irreducible components. The computation of such a decomposition proceeds in three
stages, the first of which is the generation of a witness point superset for each pure-dimensional
component. A witness point superset for Zi is of the form xWi � Wi Y Ji, where Wi is a witness

1More precisely, for algebraic set Z � CN , dimZ is the maximum number k such that there exists a dense
Zariski-open subset U � Ck�N � Ck so that for every tA, bu P U , Z X VpAz � bq � H.
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point set for Zi and Ji consists of a finite number of points contained in
�

`¡i Z`. The full process
of computing a numerical irreducible decomposition for VpF q consists of the following three steps:

1. find a witness point superset xWi for each pure-dimensional component Zi of VpF q;

2. for each of these, eliminate the “junk set”, Ji, from xWi to obtain Wi; and

3. partition Wi into witness point sets for the irreducible components of dimension i.

The impetus for defining and using pure-dimensional sets in this article is that it allows us to avoid in
many cases the third step of decomposing pure-dimensional sets into their irreducible components.

Several methods apply to each of the three steps. Witness supersets can be computed using
the cascade algorithm of [49], the dimension-by-dimension algorithm of [51, Chap. 13], or the
regenerative cascade algorithm of [21]. The identification of “junk sets” Ji can be accomplished
using a local dimension test [7] or, if the multiplicity depth is too large for that to be practical, by
using the homotopy membership test [45] against all the higher-dimensional solution components.
The break-up into irreducible components is done with monodromy [47] backed up by linear trace
tests [46]. A general reference to these techniques is [51].

Consider an irreducible component A of VpfAq with witness set as above. For any a P WA, we
know that a is an isolated point in VpfA, LAq. Let JApaq be the Jacobian matrix of the system
tfA, LAu evaluated at a. If JApaq has full column rank, i.e., dim null JApaq � 0, then A is said to be
generically reduced with respect to fA, or equivalently, to have multiplicity one. Otherwise, A is said
to be generically nonreduced, or equivalently, to have multiplicity greater than one. In this article,
the main focus is on the generically reduced case. As discussed in §5.1, this does not represent a
loss of generality, because through the use of deflation techniques, problems involving generically
nonreduced algebraic sets can be solved using the generically reduced case.

2.2 On rigor and robustness

We note two caveats that generally apply to algorithms of numerical algebraic geometry, including
this contribution.

First, the main algorithms all succeed with probability one in a theoretical sense, but in practice,
this property is only approximated. That is to say, the algorithms involve one or more parameters
living in an algebraic parameter space, and the good properties of the algorithm hold for any choice
of parameters in a dense Zariski-open subset of that space, i.e., for all parameter choices that avoid
some algebraic subset of the parameter space. An example of a good property is that all the homo-
topy paths are nonsingular and do not cross. In practice, we choose parameter values with a random
number generator, which almost certainly avoids the bad set but does not absolutely guarantee it.

Second, the theoretical algorithms are implemented in floating point arithmetic, which intro-
duces numerical error and can lead to algorithm failure or inaccurate results. To minimize these
effects without an undue sacrifice in computational cost, the Bertini software package uses adaptive
multiprecision, extending the number of floating point digits used according to the needs of the
problem. These tactics do not guarantee success, but with some care in avoiding numerically ill-
conditioned presentations of systems to be solved, one may expect high reliability. In some cases,
results obtained in floating point can be verified in a mathematically rigorous sense by applying
methods, such as alpha theory [5, Chap. 8] or interval arithmetic [41], that carefully bound all
numerical errors. Withoout such rigorous, and often expensive, techniques, our algorithms must
regularly make a decision of the form: given a numerical method of approximating some exact
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value x� by a floating point number x̃, is fpx�q � 0? By evaluating x̃ and fpx̃q in high precision,
such decisions can be made with a high probability of correctness but shy of rigor.

The situation is analogous to the problem in numerical linear algebra of determining the rank
of a matrix. One of the best tools for this is the singular value decomposition (SVD). When the
SVD of a rank deficient matrix is computed in floating point, the rank deficient directions typically
have associated singular values that are evaluated as very small numbers, near but not exactly zero.
Consequently, it can be hard to distinguish between an ill-conditioned matrix and a truly singular
one. If one increases the precision of the calculations, the numerical evaluations of singular values
that are truly zero become smaller in direct response, while nonzero ones stabilize. In this manner,
the determination of the rank of a matrix can be made quite robust but not rigorous, as there is
no a priori lower bound on the size of a nonzero singular value. Implementations of algorithms
in numerical algebraic geometry cannot avoid this issue, and adaptive multiprecision is the best
response known at present.

3 Main Problems

We now state more precisely the main problems treated by our algorithm.

Problem 1 (Main Problem) Given a witness set for a pure-dimensional algebraic set Z � CN

and a polynomial system f : CN Ñ Cn, compute a numerical irreducible decomposition of ZXVpfq.
The diagonal intersection methodology mentioned in §1 can be used to solve this problem, albeit

in a less direct fashion than we will soon describe. Reduction to the diagonal is based on the fact
that for algebraic sets A,B � CN , their intersection, AXB � CN , is isomorphic to the set

tpx, yq P C2N |x P A, y P B, x � yu � A�B.

(The set Vpx� yq is the diagonal of C2N , hence the name of the method.) The approach cascades
down through all the possible dimensions where solution components of AXB could exist, producing
witness supersets for the pure-dimensional components of pA�BqXVpx�yq � C2N . After mapping
these sets to CN using px, yq ÞÑ pxq, isosingular deflation methods are used in producing the witness
systems for the irreducible components of AXB.

To apply the diagonal approach to our Main Problem, one must first compute the pure-

dimensional decomposition of Vpfq � �dimVpfq
i�0 Vi. Then, by reduction to the diagonal, for each

nonempty Vi, one computes witness supersets for pZ � Viq X Vpx� yq � C2N for x P Z, y P Vi.
Our new approach simplifies the solving process by eliminating the decomposition of Vpfq and

proceeding directly with a computation in CN instead of doubling up to C2N . This is one of the
main features of our new approach.

The answer to the Main Problem is the intersection of Z with the whole of Vpfq. In the case
that one wishes to single out specific irreducible components of Vpfq, one must decompose Vpfq to
even ask the question. Then, one is forced into relying on reduction to the diagonal. Yet, this is
but a special case of the following.

Problem 2 (Cartesian-Product Intersection) Given witness sets for pure-dimensional alge-
braic sets A � CM and B � CN and a polynomial system f : CM�N Ñ Cn, compute a numerical
irreducible decomposition of pA�Bq X Vpfq.
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The reduction to the diagonal is a special case of this wherein M � N and fpx, yq � x� y.
Obviously, the Cartesian-product intersection problem can be generalized, for example, to com-

puting pA � B � Cq X Vpfq and beyond, and our methods easily handle this. The key step is to
use the given witness sets to compute a single witness set for Z � A�B (or Z � A�B�C, etc.),
thus reducing Cartesian-product intersection to the Main Problem.

Finally, we have the extension problem.

Problem 3 (Extension Problem) Given a polynomial system f : CM�N Ñ Cn and a witness
set for a pure-dimensional algebraic set A � CM , compute a numerical irreducible decomposition
of pA� CN q X Vpfq.

This kind of problem arises naturally when A is part of the solution set of gpxq � 0, and one
subsequently wishes to impose the conditions fpx, yq � 0 on A, where y is a set of new variables.
Clearly, this is a special case of the Cartesian-product problem. We single it out because it arises
frequently in applications and call our approach to solving this problem the regeneration extension.

Before proceeding to an algorithm for the Main Problem, we first show how to convert Cartesian-
product intersections, and hence extension problems, into the Main Problem.

4 Cartesian products of irreducible sets

As noted above, it is useful to apply the capability to compute Z X Vpfq to situations where
Z � A�B for irreducible algebraic sets A and B. One could just as well consider the case where A
and B are pure-dimensional but not necessarily irreducible, in which case Z is the union of the
Cartesian products of all pairs of irreducible components taking one from A and one from B. With
this, all of the same results discussed below in the irreducible case hold for pure-dimensional sets by
applying the arguments to each pair. There is nothing in the procedures that follow that requires the
witness point set for a pure-dimensional set to be decomposed according to irreducible components.

Let A � CNA and B � CNB be irreducible algebraic sets with Z � A�B. Let x, y, and z be the

coordinates on CNA , CNB , and CNA�NB , respectively, with z̄ �
�
z
1

�
. We have the following facts:

1. Z is an irreducible algebraic set;

2. dimZ � dimA� dimB;

3. degZ � degA � degB; and

4. there exists a dense Zariski open subset U of CdimZ�pNA�NB�1q such that for all P P U the
set WZ :� Z X V pP � z̄q consists of degZ isolated points.

We know there exists polynomial systems fApxq and fBpyq such that A and B are generically
reduced with respect to fA and fB, respectively, with A � VpfAq and B � VpfBq. For the system
fZpx, yq � tfApxq, fBpyqu, one has Z � VpfZq, e.g., see [16, Prop. 3.10] showing that Z is an
algebraic set. Additionally, this observation immediately yields that dimZ � dimA� dimB, e.g.,
see [27, Thm. 5.15]. For general a P A and b P B, since the null space of the Jacobian matrix
of fZ evaluated at pa, bq, namely null JfZpa, bq, also has dimension dimA � dimB � dimZ, Z is
generically reduced with respect to fZ . It is clear that this observation yields degpA�CNB q � degA
and degpCNA �Bq � degB.
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The irreducibility of Z follows directly from the irreducibility of A and B as follows. Suppose
that Z1 and Z2 are algebraic sets with Z � Z1 Y Z2. For every a P A, consider the irreducible set
Ba � tau �B. Since Ba � pBa XZ1q Y pBa XZ2q, the irreducibility of Ba implies that Ba � Z1 or
Ba � Z2. Therefore, A � A1 YA2 where

Ai � ta P A | Ba � Ziu.

Since A is irreducible, it follows that A1 � A or A2 � A so that Z1 � Z or Z2 � Z.
Suppose LA � CNA and LB � CNB are general linear spaces of codimension dimA and dimB,

respectively. Then, L � LA � LB is a linear space of codimension dimA� dimB � dimZ and

Z X L � pAX LAq � pB X LBq

consists of degA � degB points. This shows degZ ¥ degA � degB. Bézout’s Theorem provides the
other inequality, namely

degpA�Bq � degppA� CNB q X pCNA �Bqq ¤ degpA� CNB q � degpCNA �Bq � degA � degB.

The final follows from the previous and the Slicing Theorems [51, Thms. 13.2.1,13.2.2].
In particular, this proof of the third fact shows that intersecting with a linear space constructed

by the Cartesian product of general linear spaces in each set of variables produces the same number
of points as with a general linear space in all variables. Hence, a witness set for Z � A�B can be
easily constructed from witness sets for A and B as shown in the following lemma.

Lemma 4.1 Let tfA, LA,WAu and tfB, LB,WBu be witness sets for irreducible and generically

reduced algebraic sets A � CNA and B � CNB , and let Z � A � B. Also, let z̄ �
�
�xy

1

�
�, where

x and y are coordinates on CNA and CNB , respectively. Then, for P chosen at random from
CpdimA�dimBq�pNA�NB�1q, the homotopy

h0px, y, tq � Z X V
�
t

�
LApxq
LBpyq

�
� p1� tqpP � z̄q



(3)

starting with the degA � degB points WA � WB at t � 1 is, with probability one, a complete
homotopy (in the sense defined in [20]) for Z X VpP � z̄q. Moreover, letting WZ be the set of
endpoints of this homotopy at t � 0, tpfApxq, fBpyqq, P � z̄,WZu is a witness set for Z.

Proof. A complete homotopy for Y means that the paths are all trackable (exist, are continuous,
and advance strictly monotonically with respect to t P p0, 1s; see [20]) and their set of endpoints (the
limits as t Ñ 0 of the paths) include all the isolated points in Y , where Y � Z X VpP � z̄q �WZ .
From the facts above, we know that WZ is a set of degZ � degA � degB points for generic
P P CpdimA�dimBq�pNA�NB�1q. By the parameter homotopy theorem [51, Thm. 7.1.1] (also [35])
and Lemma 7.1.2 of [51], homotopy h0 defines degZ trackable solution paths for t P r0, 1q starting
at WZ with endpoints that include all isolated roots of Hpx, y, 1q � 0. But at t � 1, h0px, y, 1q � 0
has the degZ isolated roots WA�WB, so these must be the endpoints of the homotopy paths going
from t � 0 to t � 1. As stated, the homotopy runs in the opposite direction, from t � 1 to t � 0,
but the genericity of LA and LB along with the assumption that A and B are generically reduced
imply that the points WA�WB are nonsingular roots of h0px, y, 1q � 0, hence the homotopy paths
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are nonsingular for t P r0, 1s. The final assertion that we have a witness set for Z is merely an
observation that tpfApxq, fBpyqq, P � z̄,WZu fits the definition of a witness set. l

In practice, one reduces to the “square” cases for numerical stability, namely polynomial systems
fA : CNA Ñ CNA�dimA and fB : CNB Ñ CNB�dimB via randomization with Bertini’s Theorem.
This is possible since A and B are only required to be irreducible components of their respective
witness systems fA and fB. With this, h0 from (3) is defined by the homotopy

h0px, y, tq �

�
���

fApxq
fBpyq

t

�
LApxq
LBpyq

�
� p1� tqpP � z̄q

�
��� , (4)

which comprises NA �NB polynomials in NA �NB � 1 variables px, y, tq.

Remark 4.2 If the generically reduced assumption on A and B is dropped, the homotopy paths
exist by the parameter homotopy theorem for isolated roots [51, Thm. 7.1.6]. After deflating the
paths as in [20, §4], they can be tracked using a standard nonsingular path tracker. While this is a
feasible approach, if either of A or B is generally nonreduced, we generally prefer to deflate before
applying Lemma 4.1 (see §5.1).

Remark 4.3 For several irreducible algebraic sets, say A1, . . . , Ak, it is obvious that Lemma 4.1
can be applied pk� 1q times in succession to obtain a witness set of Z � A1 � � � � �Ak. This is not
necessary since dimZ � dimA1 � � � � � dimAk and degZ � degA1 � � � degAk imply that a single
homotopy of the form

h10px1, . . . , xk, tq � Z X V�ttLA1px1q, . . . , LAk
pxkqu � p1� tqpP � z̄q� (5)

suffices, where the dimension of P is adjusted appropriately and the rest of the notation should be
clear from context.

Remark 4.4 If one of the factors in the Cartesian product is Euclidean, say B � Ck, then fB is
empty and WB is the unique root of an arbitrary full-rank square linear system, LB : Ck Ñ Ck.
Everything proceeds in the same way as for a more general B.

5 Regenerative cascade

The objective of this section is to solve the following problem. This will serve as the first step
towards solving Problem 1.

Problem 4 Let Z � CN be a pure-dimensional algebraic set represented by the witness set Z �
tfZ , LZ ,WZu, and let f : CN Ñ Cn be a polynomial system. For each i � 0, . . . ,dimZ, compute a

witness point superset, xWi, for the pure i-dimensional component of Z X Vpfq.

We note that if Z � CN , this problem reduces to computing witness point supersets for the
pure i-dimensional components Vpfq. The cascade algorithm of [49], the dimension-by-dimension
algorithm of [51, Chap. 13], and the regenerative cascade algorithm of [21] were designed to solve
this case. The difference here is to solve f � 0 on Z where Z is represented by the witness set Z.
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There are several ways to solve Problem 4 with existing algorithms. One option for the general
case is to use one of the three algorithms mentioned in the previous paragraph to compute a
numerical irreducible decomposition of VpfZ , fq. By using the membership test [45], one can then
determine which ones are contained in Z. This may be inefficient particularly if VpfZ , fq has many
irreducible components not contained in Z.

Another option is to first compute numerical irreducible decompositions for both Z and Vpfq.
Then, for each irreducible component of Z and Vpfq, use a diagonal intersection algorithm [42, 43] to
compute a witness superset for each pure i-dimensional irreducible component of their intersection.
The union of such witness supersets yields a solution to Problem 4. The approach of [42] performs
this intersection using twice the number of variables while [43] employs intrinsic slicing to reduce the
number of new variables used in the computation. In addition to the increased cost in performing
the linear algebra routines for path tracking, this approach can have many redundant computations
since each irreducible component of Z and Vpfq are handled independently.

Our approach for solving Problem 4 is to modify the regenerative cascade algorithm of [21] to
restrict all computations to set Z via the data in the witness set Z. Like the existing algorithms,
our generalization uses the following two concepts. For x P CN , we say that x is a nonsolution of f if
fpxq � 0. Additionally, the rank of f , denoted rank f , is defined as the rank of the Jacobian matrix
of partial derivatives of f evaluated at a generic point of CN . We denote LZ � tL1, . . . , LdimZu
where each Li is a single linear polynomial defined on CN .

In brief, Algorithm 1 below proceeds by descending through the possible dimensions where pure
dimensional components of Z X Vpfq can exist, finding a witness point superset for each of these.
The algorithm is written in terms of the co-dimension m of these components inside Z. The two
main steps are the homotopy (6) that regenerates a start system of appropriate degree for stage m,
and the homotopy (7) that solves stage m. At the end of each stage, the endpoints are sorted into
solutions, which become the witness superset for that dimension, and nonsolutions, which are the
start points for the next stage. Since the rank of f is a limit on the co-dimension of the intersection,
the algorithm stops when it reaches either the zero dimension or exhausts the rank of f , whichever
comes first.

Begin Algorithm 1

• Compute r � minprank f,dimZq.
• Choose a generic r � n matrix Λ and define F � tF1, . . . , Fru as the polynomials formed as
F � Λ � f , where F and f are treated as column matrices. See Note 1 below for options.

• Set m � 0 and U0 �WZ .

• While true:

1. Sort Um into Um � xWdimZ�m YXm, where xWdimZ�m are solutions and Xm are nonso-
lutions of f . See Note 2 below.

2. If m � r, exit loop.

3. Set m � m� 1. See Note 3 below.

4. Form generic linear functions Lm,1, . . . , Lm,dm , each a map from CN to C, where dm �
degFm. See Note 4 below.

5. For i � 1, . . . , dm:
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– Track the solution paths of

hm,ipz, tq �tfZpzq, F1pzq, . . . , Fm�1pzq,
tLmpzq � p1� tqLm,ipzq,

Lm�1pzq, . . . , LdimZpzqu
(6)

from t � 1 towards t � 0, starting at the points Xm�1. Use a singular endgame, if
necessary, to compute the endpoints (the limit as t Ñ 0) of each path. See Note 5
below.

– Let Tm,i be the endpoints of the homotopy paths for hm,i.

End for.

6. Let Tm � �dm
i�1 Tm,i.

7. Track the solution paths of

hmpz, tq �tfZpzq, F1pzq, . . . , Fm�1pzq,

t
dm¹
i�1

Lm,ipzq � p1� tqFmpzq,

Lm�1pzq, . . . , LdimZpzqu

(7)

from t � 1 towards t � 0, starting at the points Tm. Use a singular endgame, if necessary,
to compute the endpoints. See Note 5 below.

8. Let Um be the finite endpoints of the homotopy paths for hm.

End while.

• If r   dimZ, then xWi � H for all i   dimZ � r.

• Return txW0, . . . ,xWdimZu.
End Algorithm 1

Notes:

1. The matrix Λ can be chosen with all entries below the main diagonal as zero. In addition,
the entries in f can be reordered arbitrarily, and it is generally advantageous to place them
in descending order by degree, in which case the degrees of the entries in F descend as well.

2. In practice, when using finite precision computation, care needs to be taken to distinguish be-
tween the solutions and nonsolutions. During each sorting call, one has the ability to refine the
point to arbitrary accuracy, e.g., either through Newton’s method or an endgame (discussed
below in Note 4), to make this decision robust. Also see §2.2 for a general discussion.

3. As presented, Algorithm 1 proceeds equation-by-equation to compute witness supersets at
each dimension. However, one may proceed subsystem-by-subsystem in order to skip dimen-
sions not of interest, e.g., see §8.2.

4. Since tL1, . . . , LdimZu are generic, it is acceptable to choose in every case Li,1 � Li. Then,
homotopy hm,1 is trivial, and no computation is required to find Tm,1: it is exactly Xm�1.

11



5. Endgames, such as the Cauchy [38] and power series [37] endgame (see also [51, Chap. 10]
and [26]) are used to compute the endpoint zp0q � limtÑ0 zptq of the homotopy path, zptq,
particularly if the endpoint is singular with respect to the corresponding homotopy at t � 0.
Endgames work by building a local model of the path near t � 0 using data collected in the
punctured neighborhood, i.e., away from t � 0. Being algebraic, the homotopy path always
has a Puiseux (fractional power) series expansion convergent in the neighborhood of t � 0.
The power series method estimates the coefficients of the Puiseux series to fit samples of zptq
for t close to zero, with the constant term of the series being the estimate of zp0q. The Cauchy
endgame instead computes a Cauchy integral of zptq for a closed path encircling the origin.
(The winding number of the solution determines how many times the closed path in t must
be tracked for the fiber above it, zptq, to close up.) If one collects samples spaced uniformly
around a circle centered on t � 0, the trapezoid integration rule gives zp0q simply as the
average of the points, an approach with excellent numerical properties, as discussed in [54].

We will say that Algorithm 1 solves Problem 4 if every homotopy path in the algorithm is
trackable and the output is a valid set of witness point supersets for Z X Vpfq.
Theorem 5.1 For random choices of all its generic coefficients, Algorithm 1 solves Problem 4 with
probability one.

Proof. The regenerative cascade method of [21] solves Problem 4 for the case that Z � CN

for some N . However, examination of the proof of that procedure with reference to the Simple
Bertini Theorem for Systems [51, Thm. A.8.7] shows that it also holds if Z is any irreducible
quasiprojective algebraic set. Furthermore, if Z is the union of irreducible quasiprojective sets
of the same dimension, then there is no difference in carrying out the algorithm on one of these
components at a time versus carrying it out on the whole set Z, that is, we do not need the witness
point set WZ to be decomposed into witness point sets for the irreducible components of Z. l

5.1 Generically nonreduced sets

The statement of Problem 4 did not require Z to consist of the union of generically reduced
irreducible sets VpfZq, that is, Z might be a union of several irreducible solution components
of VpfZq where some of these might have multiplicity larger than one. If each component of Z
is generically reduced, then we have the desirable property that every nonsolution point in Xm

and every point in Tm produced by the algorithm is nonsingular with respect to the corresponding
polynomial systems. Then, the solution paths of every hm,ipz, tq � 0 and hmpz, tq � 0 are also
nonsingular for t P p0, 1s, so a nonsingular path tracker suffices.

In the case that Z has one or more irreducible components that is generically nonreduced, we
can only say that the points Xm and Tm are isolated, and that the homotopy paths exist and
are trackable in the sense defined in [20]. Some of the paths will be singular, that is, the Jacobian
matrix of partial derivatives of the homotopy function with respect to z is not full-rank. As detailed
in [20], trackable paths can be desingularized using a deflation operation, after which a nonsingular
path tracker can be applied.

When faced with a generically nonreduced component of Z, an alternative is to deflate it first
before applying the regenerative cascade algorithm. Methods for deflating a generically nonreduced
irreducible set can be found in [22]. Since different irreducible components of Z may have different
deflation sequences (equivalent to Thom-Boardman singularity sequences [3, 12] and summarized
in §6), it is required to partially decompose Z based on identical deflation sequences. Irreducible
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components with the same deflation sequence can be simultaneously deflated. The determinantal
deflation procedure of [22], which does not introduce any auxiliary variables, is directly compatible
with the regenerative cascade.

The other deflation procedures summarized in [22], e.g., building on the approach in [30], intro-
duce new variables associated to tangent directions on the set. For these, the regenerative cascade
requires minor modifications. If we suppose that Z is irreducible and generically nonreduced, then
such a deflation produces a polynomial system g, an irreducible and generically reduced algebraic
set Y � Vpgq, and a projection map π which is generically one-to-one on Y with Z � πpY q. Thus,
one may attempt to perform computations on Y in place of Z. Following the approach of [18], one
needs to change from considering paths which converge in Y to considering the paths for which the
image under π converges. For example, for each z P ZzπpY q, there is a path α : p0, 1s Ñ Y such
that z � limtÑ0 πpαptqq. However, αptq must diverge as t approaches 0 since z R πpY q. Here, only
the endpoint of the image under π of the path defined by α was outside of πpY q. By genericity,
this is true for all paths arising in the regenerative cascade method as well.

5.2 Extrinsic and intrinsic homotopy

In both the homotopies hm,i of (6) and hm of (7), the linear functions Lm�1, . . . , LdimZ stand
unperturbed as t varies. The same is true for any linear functions in the system FZ or among the
functions F1, . . . , Fm�1 at stage m of the cascade. Gathering all the unchanging linear functions
into one linear subsystem of the homotopy, one may use linear algebra to compute the kernel of
this subsystem before path tracking commences and then restrict computation in the path tracker
to that subspace. Such an approach is said to be working intrinsically on the linear subspace.
In contrast, an extrinsic method treats the linear functions just like any other polynomial in the
system and, in essence, re-solves the linear part at each step of the path tracker. If there are enough
linear functions present, then the intrinsic approach is more efficient, but if there are only a few
unchanging linear functions, the extrinsic approach wins. When extrinsic wins, it is because the
number of elements in the representation of a basis for the kernel is large, which raises the expense
of working intrinsically. Intrinsic implementations of homotopies are discussed in [43, 20, 21] and
specifics on assessing the trade-off between extrinsic and intrinsic formulations can be found in [23].

6 Completing the decomposition

The output of Algorithm 1 is a witness point superset, xWi, for each pure i-dimensional component
of ZXVpfq. As described in the introduction, two steps remain to produce a numerical irreducible
decomposition, namely:

• eliminate the “junk sets,” Ji, from xWi to obtain Wi; and

• partition Wi into witness point sets for the irreducible components of dimension i.

If Z is an irreducible component of VpfZq such that each irreducible component of Z X Vpfq
is an irreducible component of VpfZ , fq, then all of the standard numerical algebraic geometric
methods apply. That is, the local dimension test [7] and the homotopy membership test [45] can be
used to identify Ji, the irreducible components can be deflated at each witness point using positive-
dimensional deflation techniques first described in [51, §13.3.2, §15.2.2], and monodromy [47] backed
up by linear trace tests [46] can be used to decompose Wi. The following, motivated by [23,
Ex. 2.0.2], highlights some shortcomings of these standard techniques in the context of intersection.
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Example 6.1 Consider fZpx, y, zq � px�y�zqy with Z � Vpx�y�zq and fpx, y, zq � y. Clearly,
Z X Vpfq � Vpx � z, yq is a line but VpfZ , fq � Vpyq is a plane. In particular, for each a P C,
the local dimension of pa, 0,�aq with respect to Z X Vpfq is 1, but is 2 with respect to VpfZ , fq.
Thus, the local dimension test of [7] cannot be used for computing the “junk sets” Ji. Also, each
pa, 0,�aq is a smooth point on the plane VpfZ , fq � Vpyq showing that standard deflation techniques
applied to tfZ , fu at pa, 0,�aq will fail to provide a polynomial system with the requisite irreducible
component. Without such a system, the homotopy membership test, monodromy, and linear trace
tests cannot be employed. Thus, we need to recast Problem 1, i.e., an intersection problem, in a
way so that standard methods can be used. Example 6.3 demonstrates it for the setup above.

The key to overcoming these shortcomings and enabling the computation of a numerical irre-
ducible decomposition for Z XVpfq is the theory of isosingular sets [22]. Let fZ be the polynomial
system given at the outset in the witness set for Z, i.e., Z is an irreducible component of VpfZq.
After completing the regeneration cascade, we have witness point supersets xWi � Wi Y Ji. For
each witness point w P Wi with corresponding irreducible component X � Z X Vpfq, we describe
below how to use isosingular theory to construct a polynomial system fw from w, fZ , and f such
that X is an irreducible component of Vpfwq. At the largest k such that xWk � H, we know thatxWk � Wk; that is, Jk � H. So we know that every point in Wk is a witness point, not junk,
and therefore once fw is in hand, monodromy, and linear trace tests discover which of the witness
points form a witness set for X and likewise for all of the components at dimension k. Via the
homotopy membership test, we can use these witness sets to eliminate from the lower-dimensional
witness point supersets any junk points lying on sets of dimension k, and in particular, eliminate
all junk from xWk�1. This leaves us in position to decompose Wk�1 and to proceed in like fashion
down through all the dimensions.

The key step of constructing system fw depends on isosingular deflation, for which we provide
only the key concepts here. We refer the interested reader to [22] for a general overview with [23]
providing details related to diagonal intersection.

For a polynomial system G and a point z P VpGq � CN , IsoGpzq is an irreducible algebraic
subset of VpGq containing z. Since the definition of IsoGpzq depends on the deflation sequence of G
at z, we define this first and then construct IsoGpzq. Let

dnullpG, zq :� dim null JGpzq � N � rank JGpzq
where JGpzq is the Jacobian matrix of G evaluated at z and null JGpzq is the right null space
of JGpzq. Let DpG, zq be the polynomial system consisting of G and the prank JGpzq � 1q �
prank JGpzq � 1q minors of JG. Define D0pG, zq :� G and, for k ¥ 1, let DkpG, zq be the
polynomial system obtained in this fashion after iterating k times. In particular, DkpG, zq is the
polynomial system for the kth isosingular deflation of G at z. The deflation sequence of G at z is

dkpG, zq :� dnullpDkpG, zq, zq, k � 0, 1, . . .

The closure (which is the same in both the Zariski topology and the standard Euclidean topology)
of the set of points in VpGq that have the same deflation sequence as z with respect to G is an
algebraic set that may decompose into several irreducible components. The irreducible set IsoGpzq
is the unique such irreducible component that contains z. In particular, the deflation sequence of
points in IsoGpzq is constant on a nonempty Zariski open subset. Such statement is true for any
irreducible algebraic subset of VpGq.

The following theorem, which is a slight generalization of [23, Thm. 5.1.1], describes deflating
the irreducible components of Z X Vpfq.
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Theorem 6.2 Let Z � CN consist of a union of irreducible components of VpfZq. Suppose that
f : CN Ñ Cn is a polynomial system, F px, yq � tfZpxq, fpyqu, ∆ � tpx, xq | x P CNu, and
πpx, yq � x. If A � Z X Vpfq is an irreducible component, there exists a nonempty Zariski open
set U � A such that for all a P U , A is an irreducible component of π pIsoF ppa, aqq X∆q. Thus, for
a linear space L � CN of dimension N � dimA chosen randomly, then, with probability one, the
witness point set AX L is contained in U .

Proof. Since A � pA � Aq X ∆ is an irreducible algebraic set contained in VpF q, there is a
nonempty Zariski open set U � A such that the deflation sequence with respect to F is constant
on U . Thus, U � πpUq is a nonempty Zariski open subset of A with U � pU � Uq X ∆. Fix
a P U � A. Since A � IsoF ppa, aqq X ∆, there is an irreducible component W � IsoF ppa, aqq X ∆
with W � πpWq such that A � W and A � πpAq � πpWq � W . Thus, W is an irreducible
component of π pIsoF ppa, aqq X∆q containing A. The first part of the theorem will follow by simply
showing that A �W .

Since A � Z and Z is a union of irreducible components of VpfZq, there is an irreducible
algebraic set Z 1 which an irreducible component of VpfZq such that A � Z 1 � Z. Similarly, since
A � Vpfq, there is an irreducible component V 1 � Vpfq such that A � V 1. Hence, Z 1 � V 1 is an
irreducible component of VpF q with pa, aq P Z 1�V 1, i.e., IsoF ppa, aqq � Z 1�V 1 � Z�Vpfq. Hence,

A �W � π pIsoF ppa, aqq X∆q � π ppZ � Vpfqq X∆q � Z X Vpfq.

Since A is an irreducible component of Z X Vpfq, it follows that A �W .
If dimA � i, the last statement follows from the the fact that, for a general linear subspace Li

of codimension i, AX Li � U X Li. l

Since each isosingular set is deflatable, Theorem 6.2 provides a prescription for constructing
polynomial systems that can be used to complete the last two steps of computing a numerical irre-
ducible decomposition of ZXVpfq. Although we have no example, we cannot rule out the possibility
that the corresponding irreducible component might be generically nonreduced with respect to the
polynomial system constructed in this fashion. In such a case, one may simply use finitely many,
bounded by the depth [13] and strictly bounded by the multiplicity [30], more steps of isosingular
deflation or another deflation procedure for irreducible components, e.g., [51, §13.3.2, §15.2.2], to
simplify to the generically reduced case.

The following example demonstrates using Theorem 6.2 on Example 6.1.

Example 6.3 For fZ , f , and Z as described in Example 6.1, A � Z X Vpfq � Vpx � z, yq is
irreducible. Theorem 6.2 allows us to derive this result algorithmically as follows. Suppose we have
the witness point w � pa, 0,�aq P A and the polynomials fZ and f . We wish to find a polynomial
system fw such that A is an irreducible component of Vpfwq. Following the setup in Theorem 6.2,
we first form

F px, y, z, x1, y1, z1q �
�
fZpx, y, zq
fpx1, y1, z1q

�
�
� px� y � zqy

y1

�
.

For general a P C, one can verify that the deflation sequence of pa, 0,�a, a, 0,�aq with respect to F
is 5, 3, 3, . . . with the corresponding 3-dimensional set

IsoF ppa, 0,�a, a, 0,�aqq � tpb, 0,�b, α, 0, βq | b, α, β P Cu.

15



The polynomial system defining this isosingular set is formed by adding the 2 � 2 minors of JF
to F . That is, IsoF ppa, 0,�a, a, 0,�aqq is an irreducible component of VpGq where

Gpx, y, z, x1, y1, z1q �

�
�����
px� y � zqy

y1

y
x� 2y � z

y

�
����� .

Theorem 6.2 implies that A is an irreducible component of VpGpx, y, z, x, y, zqq; that is, fwpx, y, zq �
Gpx, y, z, x, y, zq suffices to form a witness set for A. It is easily seen that this can be simplified to
just fwpx, y, zq � tx� z, yu.

7 Special cases

We now return to elucidate some details of two special cases highlighted in the Introduction.

7.1 Diagonal intersection

To compute AXB � CN for irreducible algebraic sets A and B described via witness sets, one may
first apply Lemma 4.1 to obtain a witness set for A � B and then find pA � Bq X Vpx � yq using
Algorithm 1. There are special items to note about this case.

First, the system f � x�y is linear and so is F � Λ�f in Algorithm 1. This has two implications:

• the homotopies hm,i of (6) are always trivial if we choose the option of Note 4 of Algorithm 1;
and

• the intrinsic approach discussed in §5.2 is very effective for solving hm in (7). In fact, only
one linear function is perturbed in each hm.

Second, since pA�BqXVpx�yq and AXB are isomorphic, their pure-dimensional components
exist at the same dimensions. The largest possible dimension of an irreducible component of AXB
is D � minpdimA,dimBq. Since Algorithm 1 starts at dimZ � dimA � dimB and descends,
this means that the witness point supersets for dimension D � 1, D � 2, . . . ,dimZ generated by
the algorithm are empty. Instead of starting with Lemma 4.1 and proceeding through several
unproductive stages of Algorithm 1, one can target directly the dimension D to avoid wasted
computation. Let d � dimA�dimB�D � maxpdimA,dimBq. A suitable homotopy for targeting
dimension D is

h20px, y, tq �

�
�������������

fApxq
fBpyq

γt

�
LApxq
LBpyq

�
� p1� tq

�
���������

F1px, yq
...

Fdpx, yq
Ld�1px, yq

...
LdimA�dimBpx, yq

�
���������

�
�������������
, (8)

where γ is chosen at random from the unit circle in C. This homotopy starts from the points
WA �WB. In effect, this combines Lemma 4.1 with d levels of Algorithm 1—each of which would
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have degA � degB homotopy paths—into just one homotopy with that number of paths. Since the
target functions F1, . . . , LdimA�dimB are all linear and since the linear system tLA, LBu cuts out
degZ isolated points on Z at t � 0, the homotopy is seen to succeed with probability one using
the Gamma Trick [51, Lemma 7.1.3]. (The gamma trick is a generalization of a technique first
introduced in [34].)

Using these specializations, our algorithm for the Main Problem becomes an efficient approach
to diagonal intersections. The intrinsic approach given here is simpler to implement and just as
efficient than the original intrinsic formulation of [43].

7.2 Membership testing

Another special case is testing whether a given point, say x�, is a member of an irreducible set
A. Membership is true if A X tx�u � tx�u, else A X tx�u � H. So this is a special case of the
diagonal intersection: we wish to compute pA � tx�uq X Vpx � x�q. Since dimtx�u � 0, one sees
that (8) directly targets a system tF1, . . . , FdimAu. But this system is just Λ � px� x�q for generic
Λ P CdimA�N , so the homotopy (8) becomes

h20px, tq �
�

fApxq
tLApxq � p1� tqΛ � px� x�q

�
, (9)

where the gamma trick is no longer needed since LApxq is generic in the only variables appearing,
namely x. Note that this one homotopy completes the entire procedure, as there are no more
dimensions left for the cascade.

One can see that this test is exactly the homotopy membership test introduced in [47] and
discussed in [51, §15.4]. While the approach of this paper does not improve on the existing mem-
bership test, it is unifying to see the test arise naturally as a special case of our treatment of
diagonal intersection.

8 Examples

The following examples demonstrate the techniques on a variety of problems. For the timings
reported, the examples used Bertini v1.5 [8] running either in serial on one of the sixteen cores
of an AMD Opteron 6376 2.3 GHZ processor with 128 GB of memory or in parallel using four
such processors for a total of 64 cores. All files needed to recreate the solving of these systems are
available at www.nd.edu/~jhauenst/extension.

8.1 Comparison of the methods

In order to compare various methods for performing the first step of computing a numerical ir-
reducible decomposition, i.e., computing witness point supersets for the pure-dimensional compo-
nents, consider the first-order deflated variety [29] for the cyclic-4 system, which was considered
in [29, Ex 5.5]. For x, λ P C4, this variety is defined by

F px, λq �
�

fpxq
Jfpxq � λ

�
where fpxq �

�
���

x1 � x2 � x3 � x4

x1x2 � x2x3 � x3x4 � x4x1

x1x2x3 � x2x3x4 � x3x4x1 � x4x1x2

x1x2x3x4 � 1

�
��� .
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Vpfq � C4

dim deg # comp

1 2 2

VpJfpxq � λq � C8

dim deg # comp

4
1 9�

6 1
8 1

VpF q � C8

dim deg # comp

2
1 8
4 2

Figure 1: Summary of the irreducible components related to the cyclic-4 system. All are generically
reduced except p�q one linear space with respect to Jfpxq � λ.

The irreducible components for Vpfq, VpJfpxq � λq, and VpF q are summarized in Figure 1.
Under the projection px, λq ÞÑ x, eight of the ten irreducible components of VpF q project onto

the eight embedded points defined by f . The other two, say V1 and V2, project onto the two
irreducible curves of Vpfq.

In this illustrative example, we use serial processing. First, we compute witness point supersets
directly for VpF q using

• the dimension-by-dimension algorithm of [51, Chap. 13]: 212 seconds,

• the cascade algorithm of [49]: 146 seconds, and

• the regenerative cascade algorithm of [21]: 74 seconds.

Next, to use a diagonal intersection approach [42, 43], we first compute a numerical irreducible
decomposition of Vpfq and VpJfpxq � λq using the regenerative cascade algorithm since VpF q �
pVpfq � C4q X VpJfpxq � λq. Each of these computations took under a second. As summarized in
Figure 1, Vpfq consists of two irreducible curves while VpJfpxq � λq consists of eleven irreducible
components of dimension 4. Since one of the linear spaces is generically nonreduced with respect
to Jfpxq � λ, we added a 4 � 4 minor of the Jacobian matrix of the system. In our test, the total
time to perform the initial decompositions together with the 2 � 11 � 22 intersections using

• the diagonal intersection approach [42, 43]: 19 seconds.

The diagonal approach was faster than the direct methods by first decomposing the smaller
systems Vpfq and VpJfpxq � λq. However, in this case, one of the components of VpJfpxq � λq
needed to be deflated and some additional analysis was required, e.g., both V1 and V2 arise from
two different intersections.

By using a regeneration extension approach via Algorithm 1, we first compute, in under a
second, a decomposition of Vpfq using the regenerative cascade algorithm and then extend to
compute a decomposition of the first-order deflated variety VpF q � pVpfq �C4q X VpJfpxq � λq. In
our test, the total time using

• the regeneration extension approach: 4 seconds.

8.2 Four-bar linkages

The path synthesis problem for four-bar linkages is to design four-bar linkages whose coupler curve
passes through the given points. In 1923, Alt [1] observed that the path synthesis problem de-
scribed by nine points would, generically, yield finitely many four-bar linkages. Using homotopy
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Figure 2: Vector diagram of a four-bar linkage.

continuation, the finite number of four-bar linkages that interpolate nine generic points was found
to be 4326 (1442 Roberts cognate triplets) in [58].

The system used in [58] consisted of 12 polynomials in 12 variables that resulted from two
manipulations. The first was the addition of auxillary variables to reduce the multihomogeneous
Bézout count of the system. The second was the elimination of several variables using Cramer’s
rule. To demonstrate our new solving approach, we consider the “original” system consisting of 24
polynomials in 24 variables before these two manipulations. We will start by solving the case of
two given points and then work our way up to nine general points using a point-by-point approach.
This approach solves a general instance of every k point path synthesis problem for k � 2, . . . , 9.2

Following [58], the 24 variables are

x, px, a,pa, y, py, b,pb, γ1, pγ1, . . . , γ8, pγ8 (10)

with parameters δj , pδj for j � 1, . . . , 8. The definitions of the symbols can be understood with
reference to Figure 2. Vectors in the plane are represented by isotropic coordinates, in which a
Cartesian vector ~a � rα, βs is represented as pa,paq :� pα � iβ, α � iβq. Similar representations
are used for vectors ~b, ~x, and ~y. Vectors ~a and ~b locate the fixed pivots in the world frame,
while vectors ~x and ~y locate the moving pivots in the frame of the coupler triangle (shaded). As
the four-bar linkage moves, the coupler triangle rotates and translates to preserve the distances `1
and `2 between pairs of fixed and moving pivots. The problem is to find all four-bar linkages whose
coupler curve, i.e., the path traced out by the third vertex of the coupler triangle, interpolates nine
given points, ~p0, . . . , ~p8. The equations are written in terms of relative translations ~δj :� ~pj � ~p0

and rotation angles Φj , j � 1, . . . , 8, with Φ0 � 0. In the diagram, φj :� eiΦj , and in the equations,
pγj , pγjq :� peiΦj � 1, e�iΦj � 1q.

In our experiment, we set each parameter to a random complex number and consider the
following 24 polynomials:

F � tF1, . . . , F8u where Fj �
�
� xppa� pδjqγj � pxpa� δjqpγj � δjppa� pxq � pδjpa� xq � δjpδj

yppb� pδjqγj � pypb� δjqpγj � δjppb� pyq � pδjpb� yq � δjpδj
γjpγj � γj � pγj

�
�.

2At least two points are required to impose restrictions on four-bar linkages.
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k dim deg

2 7 7

3 6 43

4 5 234

5 4 1108

6 3 3832

7 2 8716

8 1 10858

9 0 8652

Table 1: Summary of the nondegerate components for designing four-bar linkages whose coupler
curve passes through k specified points.

With this setup, VpF q � C24 consists of 8652 � 2 � 3 � 1442 isolated points due to the two-fold
symmetry of swapping tx, px, a,pau and ty, py, b,pbu, and Roberts cognates. The other irreducible
components of VpF q are all contained in one of the following 12 hyperplanes:

Vpa� xq, Vpa� bq, Vpx� yq, Vpb� yq, Vpxq, Vpyq,
Vppa� pxq, Vppa�pbq, Vppx� pyq, Vppb� pyq, Vppxq, Vppyq. (11)

Components lying in any of these hyperplanes have no physical meaning.
With parallel processing, we compute the 8652 points in VpF q using a diagonal approach [42, 43],

as well as a regeneration extension approach that naturally proceeds subsystem-by-subsystem. That
is, in both cases, we first compute VpF1q � C10 using the regenerative cascade algorithm, thereby
solving the 2 point path synthesis problem. Then, we perform 7 subsequent intersections which
solve the k point path synthesis problems for k � 3, . . . , 9. After each intersection, the points
contained in one of the degenerate hyperplanes listed in (11) are identified and removed.

Since the first eight variables listed in (10) describe the four-bar linkages, we only want to com-
pute the degrees with respect to the projection onto the first eight variables. This is accomplished
by using general slices in only the first eight variables [19], i.e., for each k � 2, . . . , 9, we want to
compute the number of isolated solutions of

F1 � � � � � Fk�1 � Lk � � � � � L8 � 0 (12)

not contained in a degenerate hyperplane (11) where each Ljpx, px, a,pa, y, py, b,pbq is a general linear
polynomial. The results are summarized in Table 1.

With this setup, the 2-homogeneous Bézout count for k � 2 using the variable groupings
tx, px, a,pa, y, py, b,pbu and tγ1, pγ1u is 2 � p2 � 2q � 8. Moreover, to use the regeneration extension
approach to move from k to k � 1, following Note 4, each solution produces 3 paths to track.

The upper bound of 8 is not sharp since it is classically known that the k � 2 case has degree 7.
Thus, by using a diagonal intersection approach, each nondegenerate solution at k produces 7 paths
to be tracked at k�1 compared with the regenerative cascade approach producing 3�8 � 11 paths.
This reduction in the number of paths is offset by an increased cost of performing the linear algebra
computations since the diagonal approach adds additional variables. In our experiment, the total
computational time was

• diagonal intersection: 206 minutes; and

• regeneration extension: 68 minutes.
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8.3 Sphere packings

A sphere packing is an assemblage of rigid spheres in tangential contact such that no internal
motion of the assembly is possible without breaking at least one contact. (Rigid motion of the
whole assembly is allowed.) These are of interest, for example, in designing colloids formed by
suspensions of microspheres. By coating the spheres with DNA, one can promote adhesion between
them in patterns that bias the formation of certain packings, thereby controlling the properties of
the resulting colloid [24]. One approach to predicting which clusters will form starts by determining
all possible sphere packings of up to N spheres, with N � 10 being the largest case completed so
far [2]. It is assumed that all spheres have the same diameter, which we take to be unit length.

A packing can be specified by numbering the spheres 1 to N and listing which ones are in
contact. One representation of the contact list is an adjacency matrix, an N �N matrix with a 1
in the pi, jq-th element if spheres i and j touch, and 0 elsewhere. Renumbering the spheres while
maintaining the same contacts produces an isomorphism between adjacency matrices. Finding all
packings of N spheres requires sifting through all possible isomorphic groups to find those which are
realizable (the solution is real and no two spheres intersect in more than a single point) and rigid.

Rigidity requires at least 3N � 6 contacts, since each sphere center has three coordinates, each
contact imposes one algebraic constraint, and the rigid assembly retains six degrees of freedom of
rigid motion. Some packings have more than 3N � 6 contacts; the smallest N where this occurs
is N � 10 [2]. Also, it is possible for a packing to be singular in the sense that the assembly
is a solution of multiplicity greater than one to the system of contact constraint equations. The
smallest such packing occurs at N � 9 [2]. Arkus et al. call this packing “non-rigid,” which is
reasonable considering that the singularity will allow a physical system, which can violate the
contact conditions slightly, to vibrate in the direction associated to the null-space of the system
Jacobian matrix. Thus, by their usage of the term, rigidity requires multiplicity one, while packings
are assemblages that are isolated solutions of the system of contact equations.

As we shall see momentarily, it is common in these problems to find solution sets with com-
ponents on which certain pairs of spheres coincide. These components are not realizable. In what
follows, we call them degenerate.

Let us consider a single N � 12 case defined by the following contact pairs:

t1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-6, 3-5, 3-6, 3-7, 4-5, 4-6, 4-8, 5-7, 5-8, 5-10, 6-7,

6-8, 6-12, 7-10, 7-11, 7-12, 8-9, 8-10, 8-12, 9-10, 9-11, 9-12, 10-11, 11-12u,
which is a graph with 12 vertices and 30 edges. With 3N � 6 � 30 contacts, this case has the
possibility of producing minimally constrained rigid packings.

Let vi be the 3-vector of coordinates for vertex i. Since vertices 1, 2, and 3 contact pairwise,
we set these to be the vertices of a unit equilateral triangle, i.e., v1 � p0, 0, 0q, v2 � p1, 0, 0q,
and v3 � p1{2,?3{2, 0q. We aim to compute v4, . . . , v12, a total of 27 variables, satisfying the
remaining 27 contact relationships having the form

Di,j :� pvi � vjqT pvi � vjq � 1 � 0

for contact pair i-j. Since v1, v2, and v3 are known, it is advantageous to rewrite as

D2,4 �D1,4 � D3,5 �D1,5 � D3,6 �D2,6 �
D1,4 � D1,5 � D2,6 � D3,7 � D4,5 � D4,6 � D4,8 � D5,7 � D5,8 � D5,10 � D6,7 � D6,8 � D6,12 �
D7,10 � D7,11 � D7,12 � D8,9 � D8,10 � D8,12 � D9,10 � D9,11 � D9,12 � D10,11 � D11,12 � 0,
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yielding a system of 3 linear and 24 quadratic equations. Even though each of these 27 polynomials
has at most 10 monomials, both the total degree and mixed volume for this system are equal to
224 � 16,777,216. Thus, the commonly used single-shot homotopies will require tracking 224 paths.

Rather than relying upon a single-shot homotopy, our approach easily facilitates a flexible
solving approach. The following shows one way to solve this N � 12 packing by looking at various
subsystems. This procedure not only permits the solving of this particular N � 12 packing, it
provides information, in the form of witness sets, for solving other related packing problems.

We start by breaking this N � 12 packing into two pieces by cutting along the closed path
5-8-6-7-5. This yields subgraph 1 with vertices 1, . . . , 8 and edges

t1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-6, 3-5, 3-6, 3-7, 4-5, 4-6, 4-8, 5-7, 5-8, 6-7, 6-8u,

and subgraph 2 with vertices 5, . . . , 12 and edges

t5-7, 5-8, 5-10, 6-7, 6-8, 6-12, 7-10, 7-11, 7-12, 8-9, 8-10, 8-12, 9-10, 9-11, 9-12, 10-11, 11-12u.

Since each has N � 8 spheres with 3N � 7 � 17 edges, the corresponding solution sets must be at
least one-dimensional. In fact, by relabeling subgraph 2 via

5 Ñ 71, 6 Ñ 81, 7 Ñ 51, 8 Ñ 61, 9 Ñ 21, 10 Ñ 31, 11 Ñ 11, 12 Ñ 41,

one sees that these graphs are isomorphic. Let C8 denote the set of all nondegenerate packings in
8 spheres satisfying the contact pairs described by subgraph 1. One can observe that each solution
to our N � 12 packing problem is contained in

pC8 � C 1
8q X VpD5,6 �D71,81 , D7,8 �D51,61q (13)

where C 1
8 is isomorphic to C8 but has vertices 11, . . . , 81. The two additional equations ensure that

the diagonals of the corresponding loops 5-8-6-7-5 and 71-61-81-51-71 are equal.
To compute C8, we could directly compute a numerical irreducible decomposition of the re-

sulting polynomial system. Following a similar approach to the N � 12 packing, this results in
a system of 3 linear and 11 quadratic polynomials in 15 variables. For example, based on using
the regenerative cascade algorithm [21], it took 34 seconds using parallel processing to produce the
following irreducible components:

• four two-dimensional components of degree 4 with v5 � v6;

• two-dimensional components of degree 32 and 48 with v3 � v4;

• four one-dimensional components of degree 2 with v1 � v6;

• four one-dimensional components of degree 4 with v1 � v6;

• four one-dimensional components of degree 4 with v2 � v5;

• nondegenerate one-dimensional component, call it A1, of degree 12;

• nondegenerate one-dimensional component, call it A2, of degree 14.
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With this setup, C8 � A1 YA2, which has degree 26.
Before considering another approach for computing C8, let’s use this decomposition to solve the

N � 12 packing problem. Due to the symmetry in (13), we need to compute

pAi �Ajq X VpD5,6 �D71,81 , D7,8 �D51,61q for pi, jq � p1, 1q, p1, 2q, p2, 2q.

Using Algorithm 1, we compute the following:

•
��pA1 �A1q X VpD5,6 �D71,81 , D7,8 �D51,61q

�� � 208 in 34 seconds;

•
��pA1 �A2q X VpD5,6 �D71,81 , D7,8 �D51,61q

�� � 80 in 30 seconds;

•
��pA2 �A2q X VpD5,6 �D71,81 , D7,8 �D51,61q

�� � 80 in 45 seconds.

Of these 368 points, 144 are real with three additional checks needed to ensure a proper packing.
First, testing that the spheres must only intersect in a point eliminates 140 of the 144 real solutions.
These 4 remaining solutions all arise from A1 �A1. Second, a congruence check is necessary since
having all six distance pairs equal to one for vertices p5, 6, 7, 8q and for p51, 61, 71, 81q does not
necessarily mean that these are congruent: one tetrahedron could be the mirror image of the other.
This test eliminates 2 of the remaining 4 solutions. Finally, testing for “non-rigidity” shows that the
remaining 2 solutions are indeed rigid. When the parts are assembled to form one packing, holding
spheres 1,2,3 in place, these two solutions are mirror images through the plane of spheres 1,2,3.
However, as can be seen in Figure 3, the packing is achiral (mirror self-symmetric), so these two
solutions are both instances of the same arrangement. In summary, this particular set of contact
pairs for N � 12 has exactly 1 realizable and rigid sphere packing, which is presented in Figure 3.
For better visibility, the same packing is also shown using smaller spheres with the addition of rods
that indicate the pairwise contacts. Spheres 5, 6, 7, and 8 have been darkened in the figure to show
how the full assembly was cut into two pieces for solving incrementally.

We now return to computing the set C8, with the following using only serial computations.
Rather than computing it from scratch all in one blow as above, we could have computed this
by adding new vertices one at a time. For example, suppose we start with the curve C4 of de-
gree 2 corresponding to four vertices v1, . . . , v4 with v1, . . . , v3 fixed as above and contact pairs
t1-2, 1-3, 1-4, 2-3, 2-4u.

Building on C4, we add vertex v5 with new contact pairs t1-5, 3-5, 4-5u yielding

pC4 � C3q X VpD1,5, D3,5 �D1,5, D4,5q.

In under a second, Algorithm 1 computes the irreducible decomposition as follows:

• one-dimensional component of degree 2 with v2 � v5;

• one-dimensional component of degree 2 with v3 � v4;

• one-dimensional component, call it C5, of degree 4.

Next, we add vertex v6 with new contact pairs t2-6, 3-6, 4-6u by computing

pC5 � C3q X VpD2,6, D3,6 �D2,6, D4,6q.

In 2 seconds, Algorithm 1 computes the irreducible decomposition as follows:
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• one-dimensional component of degree 4 with v6 � v1;

• one-dimensional component, call it C6, of degree 4.

Adding vertex v7 with new contact pairs t3-7, 5-7, 6-7u is described via

pC6 � C3q X VpD3,7, D5,7, D6,7q.

In 5 seconds, Algorithm 1 computes the irreducible decomposition as follows:

• two one-dimensional components of degree 2 with v5 � v6;

• one-dimensional component, call it C7, of degree 12.

Finally, we add vertex v8 with new contact pairs t4-8, 5-8, 6-8u by computing

pC7 � C3q X VpD4,8, D5,8, D6,8q.

In 18 seconds, Algorithm 1 computes the irreducible components are A1 and A2 which are described
above. Thus, this sequence of solves computes C8 � A1 Y A2 in approximately 25 seconds using
only serial processing.

Not only is the total computation time to find and decompose C8 in a sequence of intersections
less than that used by the regenerative cascade applied to the whole system for C8, the sequence
of intersections has also generated witness sets for C4, C5, C6, and C7 along the way. These can be
re-used in other intersections if one seeks to more thoroughly explore the full set of sphere packings.

(a) (b)

Figure 3: An N � 12 sphere packing showing (a) spheres in contact, and (b) smaller spheres with
rods indicating contact pairs. Dark spheres indicate the loop 5-8-6-7-5.
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9 Conclusions

Even though Lemma 4.1, Theorem 5.1, and Theorem 6.2 are proven using modest modifications
of existing results in diagonal intersection and isosingular theory, together they bring about a
substantial new flexibility in how one may numerically solve polynomial systems and numerically
explore questions in algebraic geometry. Instead of just aiming at the solution set of a final system,
one is free to design a sequence of intersection operations that arrive at the final result. In our
final example, a few inexpensive operations to find the numerical irreducible decomposition of an
8-sphere arrangement allows the final intersections to solve a related 12-sphere arrangement to be
done by tracking just p122� 12 � 14� 142q � 2 � 2 � 2032 paths instead of the 16,777,216 paths that a
total-degree or polyhedral homotopy would require. Moreover, along the way, one obtains solutions
for several smaller arrangements of spheres that could be combined in alternative ways to arrive at
other large packings. Similarly, the four-bar path-synthesis example generated witness sets for all
the two- to eight-point problems on the way to the final nine-point problem. As the reported run
times attest, the new approach is faster than existing methods.

After one finds a witness set for an algebraic set of interest, the new method allows one to
impose new conditions that pick out subsets for further study. These new conditions may involve
new variables, such as when one formulates singularity conditions in terms of tangent vectors. This
extension capability provides a kind of flexibility that is compatible with the way mathematicians,
engineers, and scientists tend to approach problem areas.

Finally, the diagonal intersection technique of [42] and the homotopy membership test of [47]
are special cases of the new method. This unification is useful for designing streamlined software.
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