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Abstract

Elimination is a basic algebraic operation which geometrically corre-
sponds to projections. This article describes using the numerical alge-
braic geometric concept of witness sets to compute the projection of an
algebraic set. The ideas described in this article apply to computing
the image of an algebraic set under any linear map.
Keywords. Numerical algebraic geometry, polynomial system, alge-
braic sets, witness sets, projections
AMS Subject Classification. 65H10, 68W30

Introduction

Given a polynomial system f : C
N → C

n; an ℓ-dimensional irreducible
algebraic set V ⊂ f−1(0); and a linear map π : C

N → C
K , this article

defines and describes how to compute a “witness set” for π(V ) given a
witness set for V , which allows us to efficiently reduce computations on
π(V ) to computations on V .

If we are working with an ℓ-dimensional component V of Var(f), we
may without loss of generality assume that n = N − ℓ. If n 6= N − ℓ, we
may achieve n = N − ℓ by the randomization procedure of replacing f by[

I A
]
· f where A is a random (N − ℓ) × n matrix (see [17, §13.5] and
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in particular [17, Theorem 13.5.1]). This procedure, which plays a key role
in the computation of the irreducible components of f−1(0) stabilizes the
numerics of computing the solution component V of the polynomial system.

Without loss of generality, the irreducible dimension ℓ algebraic set V

may be assumed to be generically reduced, since if it is not, we may reduce
to this situation using deflation: this is discussed in §1.3. We denote the
reduced algebraic set of solutions of f = 0 by Var(f), i.e., Var(f) is the
reduction of f−1(0).

In this case a witness set is a triple {f,L, W}, where L is a system of
ℓ generic linear equations on C

N and where W := V ∩ Var(L). This is
discussed in §1.2.

We know that π(V ) is constructible and thus contains a nonempty Zariski
open set V which satisfies V = π(V ). Assume that ℓ′ := dimπ(V ): for how
to compute this dimension see Lemma 3. If we had a polynomial system
g : C

K → C
K−ℓ′ with π(V ) an irreducible component of Var(g), then setting

Wπ = π(V ) ∩ Var(K) for a system of ℓ′ generic linear equations on C
K ,

{g,K, W ′} will be a witness set for π(V ). There are three difficulties with
this:

1. computation of polynomial equations g on C
K with π(V ) an irreducible

component of Var(g) is computationally a very expensive interpolation
problem;

2. without using special case-by-case information, the interpolation meth-
ods to compute the equations degree lead to deg π(V ) polynomials,
which usually having higher degree than those of f and are less accu-
rately known; and

3. even if we did compute such a system g, decomposing Var(g) to find
π(V ) can be computationally expensive.

Classically finding equations g vanishing on π(V ) is a prime (and computa-
tional expensive) goal of elimination theory.

Our approach is to find a system L′ of ℓ appropriate general linear equa-
tions on C

N such that W = V ∩ Var(L′) is a finite set and such that
π(W) = π(V ) ∩ Var(K) for a system of ℓ′ := dimπ(V ) linear equations
on C

K . The triple {f,L′,W} may be used to carry out computations that a
witness set for π(V ) would be used for. We make precise the class of L′ we
use and call the quadruple {f, π,L′,W} a witness set for π(V ). Note that
moving computations from an algebraic set Y , which it is hard to work with
directly, to a well-behaved algebraic set mapping X onto Y has occurred in
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several situations, e.g., deflation (discussed in §1.3) and rank deficiency sets
(see in particular [1, §2.1.3]).

For the system L′ we take ℓ − ℓ′, i.e., dimV − dimπ(V ), general linear
equations on C

N plus a system of ℓ′ linear equations on C
N of the form

K′ ◦ π, where K′ is a system of ℓ′ general linear equations on C
K . Using a

standard homotopy presented in Equation 1 with start points W , the finite
endpoints form W.

In §1 we present background on Bertini’s Theorem (see §1.1), witness
sets (see §1.2), deflation (see 1.3), and moving linear spaces (see 1.4).

In §2 we discuss linear maps and projections and give the algorithm
for finding a witness set for π(V ). We also show that the algorithm works
equally well with projective space replacing Euclidean space.

Examples are presented in §3.

1 Some Background Material

In this section we collect some background material.

1.1 Bertini’s Theorem

Bertini’s Theorem underlies many of the probability-one algorithms of nu-
merical algebraic geometry, e.g., see [17, §A.9]. We use the following version
of Bertini’s Theorem, which is weaker than the version in [17, §A.9].

Theorem 1 (Bertini’s Theorem). Let V be a reduced pure N -dimensional
algebraic set. Let

R :=




R1
...

Rn




be a collection of n algebraic functions R1, . . . , Rn such that at each point
x ∈ V there is at least one Ri that is not zero. Then for each k ≤ N +1 there
is a nonempty Zariski open set A ⊂ C

k×n of the k×n matrices such that for
A ∈ A, it follows that Var(A ·R) is either empty or of pure dimension N−k.
Here a set of dimension −1 is empty. Moreover, Var(A ·R)∩ (V \ Sing(V ))
is either empty or a smooth submanifold of U of dimension N −k. The rank
of the Jacobian matrix of A · R at any point of Var(A · R) ∩ (V \ Sing(V ))
is equal to N − k.

Since the intersection of any finite number of Zariski open sets is a
nonempty Zariski open set, we may assume that A · R has the same gener-
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icity properties for any finite number of previously given algebraic subsets
of V .

We have the following useful corollary of Theorem 1.

Corollary 2. Let V be a reduced pure N -dimensional algebraic set. Let

R :=




R1
...

Rn




be a collection of n algebraic functions R1, . . . , Rn such that at each point
x ∈ V there is at least one Ri that is not zero. Given a Zariski open and
dense subset U ⊂ V , there is a nonempty Zariski open set A ⊂ C

N×n of the
N × n matrices such that for A ∈ A, it follows that Var(A · R) ⊂ U .

The above results are true also for homogeneous polynomials on projec-
tive algebraic sets, when interpreted in terms of line bundles.

1.2 Witness sets

A witness set for an irreducible algebraic set V ⊂ f−1(0) ⊂ C
N of dimension

ℓ and degree d is the triple {f,L, W} where L consists of ℓ general linear
polynomials on C

N and W = V ∩ Var(L). The set W , which consists of d

points, is called a witness point set for V .
The multiplicity of V with respect to f is equal to the multiplicity of

any w ∈ W as a solution of

[
f

L

]
= 0. If the multiplicity of V is 1, then

V is said to be generically reduced. Otherwise, V is said to be generically
nonreduced and, in this case, additional items can be added to the witness
set to facilitate numerical computations on V . See [17] for more details
regarding witness sets.

1.3 Deflation

Deflation is a regularization procedure to facilitate numerical computations
for generically nonreduced irreducible components. Started by Ojika [10, 11],
the first variant guaranteed to terminate was done for isolated points in [8]
and for components in [17, §13.3.2, §15.2.2]. Improvements were made in
[4], [8], and [6, §4.1].

Let f : C
N → C

N−ℓ be a polynomial system with x = (x1, . . . , xN ) ∈
C

N . Let V denote an irreducible component of dimension ℓ of Var(f).
Deflation produces a polynomial system f̂ : C

N × C
N ′

→ C
N+N ′−ℓ in the
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variables (x, ξ) = (x1, . . . , xN , ξ1, . . . , ξN ′) for some N ′ ≥ 0 such that there is
a dimension ℓ generically reduced irreducible component V̂ ⊂ Var(f̂) which
maps generically one-to-one onto a Zariski dense set of V under the map
(x, ξ) → x.

We assume from this point on that V is irreducible and generically re-
duced.

1.4 Moving linear spaces

The key operation used to compute a witness set for π(V ) given a witness
set for V is the moving of linear spaces. Let {f,L, W} be a witness set for
an irreducible and generically reduced V ⊂ f−1(0) of dimension ℓ where
f : C

N → C
n and L : C

N → C
ℓ. If L̂ : C

N → C
ℓ consists of ℓ linear

polynomials with dim Var(L̂) = N −ℓ, we want to compute Ŵ = V ∩Var(L̂)
given W = V ∩Var(L). Since L consists of ℓ general linear polynomials, we

know, counting multiplicity in Ŵ , |Ŵ | ≤ |W |. Define n∞ = |W | − |Ŵ |.
Let A ∈ C

(N−l)×n be generic and consider a general randomization of f ,
R(f) : C

N → C
N−l, defined by R(f) = A · f . Since V is ℓ dimensional, V

is an irreducible component of R(f)−1(0). The randomization R(f) allows
us to construct the “square” homotopy H : C

N × C → C
N defined by

H(x, t) =

[
R(f)(x)

(1 − t)L̂(x) + tL(x)

]
. (1)

Starting at t = 1 with the points in W , continuation allows one to track
the path defined by H(x, t) ≡ 0 as t goes from 1 to 0. See [17] for more
information about path tracking and continuation.

Of the |W | paths tracked using the homotopy H, n∞ of them will diverge

as t approaches 0. The set Ŵ = V ∩ Var(L̂) is the set of endpoints of the
paths that converge to a point in C

N as t approaches 0.

2 Linear maps

Let f : C
N → C

n be a polynomial system having an irreducible component
V ⊂ f−1(0) of dimension ℓ and π : C

N → C
K be a linear map. In particular,

there exists B ∈ C
K×N such that π(x) = Bx. By deflating and updating

the objects as needed, we may assume that V is generically reduced with
witness set {f,L, W}.

Since V is irreducible and π is a linear map, π(V ) is irreducible. Since
π(V ) is constructible, it contains a nonempty Zariski open set V with V =
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π(V ) [17, §12.5]. Thus dimπ(V ) is well defined, i.e., dimV = dimπ(V ).
Moreover in light of Corollary 2, deg π(V ) is also well defined. Thus we will
abuse notation and deal with π(V ) as if it was an algebraic set, while in fact
we are talking of properties of V or π(V ).

There are four important invariants related to π(V ). The first two are the
dimension and degree of π(V ), denoted dimπ(V ) and deg π(V ), respectively.
For general y ∈ π(V ), the fiber over y with respect to V is the algebraic
set {v ∈ V | π(v) = y}. The other two invariants are the dimension and
degree of the fiber over a generic point in π(V ) with respect to V , denoted
dimgf (V, π) and deggf (V, π), respectively.

An important part of constructing a witness set for π(V ) is to compute
the dimension of π(V ), which is described in the following lemma.

Lemma 3. Let x∗ ∈ V be generic and J(x∗) be the Jacobian matrix of f at

x∗. The dimension of the null space of

[
J(x∗)

B

]
, say p, is the dimension

of the fiber over x∗. In particular, dimgf (V, π) = p and dimπ(V ) = ℓ − p.

Proof. This is a special case of [17, Theorem A.6.1].

The following definition describes a witness set for π(V ).

Definition 4. Using the setup described above, a witness set for π(V ) is the

quadruple {f, π, L̂, Ŵ} where Ŵ = V ∩ Var(L̂) for a system L̂ : C
N → C

ℓ

of ℓ linear equations L̂1, . . . , L̂ℓ of the form L̂i(x) = bi · x − 1 where for
i = 1, . . . , ℓ′ := dimπ(V ), bi ∈ C

N , bi is a general element in the row span
of B and, for i = ℓ′ + 1, . . . , ℓ, the bi are general elements of C

N .

Remark 5. Computations performed on π(V ) using this definition of a
witness set are actually performed on V .

Upon computing dimπ(V ) using Lemma 3, we can construct b1, . . . , bℓ,
L̂1, . . . , L̂ℓ, and L̂ as in Definition 4. Since dimπ(V ) ≤ rankB and

dimgf (V, π) = l − dimπ(V ) ≤ dim nullB,

b1, . . . , bℓ are linearly independent yielding that dim Var(L̂) = N − ℓ. In

particular, Ŵ = V ∩ Var(L̂) consists of finitely many points.

The set Ŵ is computed using the homotopy H defined by Equation 1.
Starting from the points in the witness point set W , the set Ŵ is the set
of endpoints that converge in C

N and let n∞ be the number of paths that
diverge. Due to the genericity of the bi’s, each ŵ ∈ Ŵ is the endpoint
of a unique path. The following lemma uses Ŵ to compute deg π(V ) and
deggf (V, π).
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Theorem 6. With the setup described above, deg π(V ) is the number of

distinct elements in π(Ŵ ) = {π(ŵ) | ŵ ∈ Ŵ}. Given any y ∈ π(Ŵ ),

deggf (V, π) =
∣∣∣{ŵ ∈ Ŵ | π(ŵ) = y}

∣∣∣. In particular, deg π(V )·deggf (V, π) =
∣∣∣Ŵ

∣∣∣ and

deg π(V ) · deggf (V, π) + n∞ = deg V.

Proof. This is a variant of a classical result [9, Theorem 5.11]. We assume
without loss of generality that ℓ′ := dimπ(V ) has dimension at least one.

Let Lℓ′+1, . . . , Lℓ be general linear equations on C
N . By Seidenberg’s

Theorem [3, Theorem 1.7.1], V ′ = V ∩ Var
(
Lℓ′+1, . . . , Lℓ

)
is irreducible of

dimension ℓ − ℓ′. Since it meets a general fiber in a finite set of points (by
Theorem 1), π(V ′) is dense in π(V ). Note (e.g., by [3, Theorem A.4.20]) that
πV ′ is a covering when restricted to V ′∩π−1(U ′) for a nonempty Zariski open
U ′ of π(V ′). Note that the number of points in a general fiber is deggf (V, π).

Let L1, . . . , Lℓ′ be general linear equations on C
K . We have

deg π(V ) = |π(V ) ∩ Var(L1, . . . , Lℓ′)|.

Note that by multiplying each Li by a nonzero number and composing with
π, we get L̂1, . . . , L̂ℓ′ as in Definition 4.

Using Corollary 2, we see that V ′ ∩ Var
(
L̂1, . . . , L̂ℓ′

)
consists deg π(V )

general fibers of π : V ′ → π(V ′). This proves the theorem.

Remark 7. It is helpful to consider the simple case of Var(y − x2) ⊂ C
2.

Let π : C
2 → C denote the projection (x, y) → x. The fiber over any point

x is the unique point (x, x2). The degree of Var(y − x2) is two, so n∞ = 1.

Lemma 3 and Theorem 6 justify the following algorithm which summa-
rizes the computation of a witness set for π(V ).

Procedure {f, π, L̂, Ŵ} = ProjectionWitnessSet(π, {f,L, W})

Input A linear map π : C
N → C

k and a witness set for an irreducible and
generically reduced V ⊂ f−1(0) where f : C

N → C
n and L : C

N → C
ℓ.

Output A witness set for π(V ).

Begin 1. Construct B ∈ C
k×N such that π(x) = Bx.

2. Pick w ∈ W and compute r := l−dimnull

[
J(w)

B

]
, where J(w)

is the Jacobian of f at w.
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3. Let a1, . . . , ar ∈ C
k be random and, for i = 1, . . . , r, compute

bi := BT ai.

4. Compute j := dim nullB and a matrix N ∈ C
N×j whose columns

form a basis for nullB.

5. Let ar+1, . . . , al ∈ C
j be random and, for i = r+1, . . . , ℓ, compute

bi := Nai.

6. Set L̂i(x) := bi · x − 1 and L̂ :=




L̂1
...

L̂l


.

7. Let A ∈ C
(N−l)×n be random. Construct R(f) := A · f and

H(x, t) :=

[
R(f)(x)

(1 − t)L̂(x) + tL(x)

]
.

8. Initialize Ŵ := {}.

9. For each w ∈ W

(a) Track the homotopy path defined by H(x, t) ≡ 0 starting at
w at t = 1.

(b) If the path converges to, say ŵ ∈ C
N , as t → 0, update

Ŵ := Ŵ ∪ {ŵ}.

Return {f, π, L̂, Ŵ}.

Remark 8. If we work over projective space and use linear projections,
and consider homogeneous coordinates as sections of the hyperplane section
bundle, the algorithm is still true. The key fact is that linear projection
π : P

N → P
K are not everywhere well defined. The center C of the projection

π (see [17, §A.8.2]) is the set of indeterminacy of π. It is of dimension
N − K − 1 and contained in each fiber of π.

3 Examples

We first restate part of the construction of a witness set for a projection when
the projection takes a simplified form. We then deal with two examples.

3.1 Projections

A projection map is a linear map π : C
N → C

K such that, upon possibly
renaming variables, π(x1, . . . , xN ) = (x1, . . . , xK). In particular, π(x) = Bx
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where B =
[

IK 0
]
∈ C

K×N and IK is the K × K identity matrix. Due
to the structure of B, computing a witness set for the projection of an
irreducible algebraic set is simplified.

Let f : C
N → C

n be a polynomial system and {f,L, W} be a witness set
for an irreducible, generically reduced component V ⊂ f−1(0) of dimension
ℓ. Let J(x) denote the Jacobian matrix of f at x and J(x)[··· ,K+1:N ] denote
the matrix consisting of the last N − K columns of J(x). By Lemma 3,
for any w ∈ W , dimgf (V, π) = dim nullJ(w)[··· ,K+1:N ] and dimπ(V ) =
ℓ − dimgf (V, π).

If ℓ′ = dimπ(V ), let C =

[
C1 0
0 C2

]
∈ C

ℓ×N where C1 ∈ C
ℓ′×K and

C2 ∈ C
(ℓ−r)×(N−K) are general. Let bi denote the ith row of C, L̂i(x) =

bi · x − 1, and L̂ =




L̂1
...

L̂ℓ


. In particular, C1 defines r general linear

polynomials in the “projection variables” x1, . . . , xK and C2 defines ℓ − ℓ′

general linear polynomials in the “fiber variables” xK+1, . . . , xN .

3.2 A basic example

Consider f(a, b, c, x) =

[
ax2 + bx + c

2ax + b

]
and V = Var(f) with dimV = 2,

deg V = 3, and witness set {f,L, W}. Let π(a, b, c, x) = (a, b, c). The set
π(V ) is the discriminant locus of quadratic univariate polynomials. Since π

is a projection onto the first three coordinates and

J(a, b, c, x)[··· ,4:4] =

[
2ax + b

2a

]

is nonzero for generic (a, b, c, x) ∈ Var(f),

dim π(V ) = 2 and dimgf (V, π) = 0.

Let αi,j ∈ C be random for i = 1, 2 and j = 1, 2, 3. For i = 1, 2,

define L̂i(a, b, c, x) = αi,1a + αi,2b + αi,3c − 1 and L̂ =

[
L̂1

L̂2

]
. When using

the homotopy H defined by Equation 1, one of the three paths diverges as
t approaches 0. Since the endpoints of the two convergent paths map to
distinct points under π, deg π(V ) = 2 and deggf (V, π) = 1.
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3.3 Dual variety

Consider computing the degree of the dual variety of the smooth sextic curve
C = Var(f) ⊂ P

3 where

f(x, y, z, w) =

[
f1(x, y, z, w)
f2(x, y, z, w)

]
=

[
x2 + y2 + z2 + w2

xyz − w3

]

which is discussed in [12, §4.4]. The dual variety D of C is the union of all
hyperplanes in P

3 which are tangent to C. See [5] for more details regarding
dual varieties.

We computed the degree for the dual variety D of C as follows. Let
L1, L2 : C

4 → C be general linear polynomials. Then L1(x, y, z, w) =
L2(X, Y, Z, W ) = 0 defines an affine set, which under the natural projec-
tion

[
C

4 \ {(0, 0, 0, 0)
]
×

[
C

4 \ {(0, 0, 0, 0)
]
→ P

3 × P
3 goes one-to-one and

onto a general coordinate patch C
3 × C

3 ⊂ P
3 × P

3.
We work with the set of pairs consisting of a point in P

3 and a hyperplane
containing it. The condition that an hyperplane [X, Y, Z, W ] of P

3 vanish
at a point [x, y, z, w] gives the polynomial

xX + yY + zZ + wW = 0.

Thus we have five equations so far




f1(x, y, z, w)
f2(x, y, z, w)
L1(x, y, z, w)

L2(X, Y, Z, W )
xX + yY + zZ + wW




= 0.

Finally we need that the hyperplane [X, Y, Z, W ] is tangent to C at [x, y, z, w].
This condition translates into

rank




∇f1(x, y, z, w)
∇f2(x, y, z, w)
(X, Y, Z, W )



 = 2.

As explained in [1], a dense Zariski open set of this set may be identified
with the solution set of

[
v1∇f1(x, y, z, w)T + v2∇f2(x, y, z, w)T + v3 (X, Y, Z, W )T

L3(v1, v2, v3)

]
= 0

where L3 : C
3 → C is a general linear polynomial.
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If π1 and π2 are the projections of C
11 onto the first and second four

coordinates, respectively, then the images π1(S) and π2(S) of the algebraic
set S consisting of points (x, y, z, w, X, Y, Z, W, v1, v2, v3) ∈ C

11 such that




f1(x, y, z, w)
f2(x, y, z, w)

xX + yY + zZ + wW

v1∇f1(x, y, z, w)T + v2∇f2(x, y, z, w)T + v3 (X, Y, Z, W )T

L1(x, y, z, w)
L2(X, Y, Z, W )
L3(v1, v2, v3)




= 0

correspond to C and the dual variety D of C, respectively. In particular,
the degree of the dual variety D of C is the degree of π2(S).

Using one core of a 2.5 GHz Intel Xeon E5420 processor, Bertini v1.2.0
[2] employing regeneration [6] with intrinsic slicing computed a witness set
for S, a two dimensional irreducible surface of degree 54, in 8 seconds. Upon
computing the dimensions using Lemma 3, it took Bertini about a second
to track the 54 paths each for π1 and π2 using the homotopy H defined
by Equation 1. The results are summarized in Table 1. In particular, this
computation verifies that C is a sextic curve and shows that the dual variety
D of C is a degree 18 surface.

Table 1: Summary for π1(S) and π2(S)

i dimπi(S) deg πi(S) dimgf (S, πi) deggf (S, πi) n∞

1 1 6 1 1 48

2 2 18 0 1 36
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