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Abstract. Polynomials which arise via elimination can be difficult to
compute explicitly. By using a pseudo-witness set, we develop an algo-
rithm to explicitly compute the restriction of a polynomial to a given
line. The resulting polynomial can then be used to evaluate the original
polynomial and directional derivatives along the line at any point on the
given line. Several examples are used to demonstrate this new algorithm
including examples of computing the critical points of the discriminant
locus for parameterized polynomial systems.
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1 Introduction

Parameterized polynomial systems arise in various applications in science and
engineering, such as in computer vision [16, 18, 23], kinematics [15, 24], and chem-
istry [1, 20]. Often in these applications, real solutions are desired. The comple-
ment of the discriminant locus associated with the parameterized polynomial
system consists of cells where the number of real solutions is constant. Elim-
ination methods (e.g., see [9, Chap. 3]) theoretically provide an approach to
explicitly compute a defining equation for the discriminant locus. If the discrim-
inant locus is a curve or surface, there are several numerical methods that can
be used to plot it, e.g., [7, 8, 19]. When the explicit expression is difficult to com-
pute, this paper develops a numerical algebraic geometric approach based on
pseudo-witness sets [14] for both evaluating implicitly defined polynomials and
directional derivatives. In particular, the approach yields an explicit univariate
polynomial equal to the defining equation restricted to a line which can then be
evaluated or differentiated as needed. When the parameterized system and line
have rational coefficients, the resulting univariate polynomial also has rational
coefficients which can be computed exactly from the numerical data [2].

One application of this new approach is to compute the critical points of
the discriminant polynomial which are outside of the discriminant locus without
explicitly computing the discriminant. This set of critical points contains at least
one point in each compact cell in the complement of the discriminant locus [11]
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which can be useful for determining the possible number of real solutions as well
as the real monodromy structure [12].

The remainder of the paper is as follows. Section 2 describes the approach
based on using pseudo-witness sets. Section 3 presents an algorithm for per-
forming the computations with some illustrative examples. Section 4 provides
two examples of computing critical points.

2 Implicit representation of a polynomial

In numerical algebraic geometry, e.g., see [4, 22], a witness point set for a hy-
persurface H ⊂ Cn consists of the intersection points of H with a line L ⊂ Cn.
Suppose that f(x) is a given polynomial and H is the hypersurface defined by
the vanishing of f . Then, the witness point set for H corresponds with the roots
of the univariate polynomial obtained by restricting f to the line L. Since every
univariate polynomial is defined up to scale by its roots, one can recover f |L by
computing its roots along with knowing f |L(T ) for some value T which is not a
root of f |L. The following is an illustration of this basic setup.

Example 1. Consider the polynomial f(x, y) = y − x2 with corresponding hy-
persurface H ⊂ C2 and the line L ⊂ C2 defined parametrically by:

x(t) = t y(t) = 2t+ 1.

Therefore, one can explicitly compute

f |L(t) = f(x(t), y(t)) = −t2 + 2t+ 1 = −
(
t− 1 +

√
2
)(

t− 1−
√

2
)
. (1)

For t1 = 1−
√

2 and t2 = 1 +
√

2, one has

H ∩ L = {(t1, 2t1 + 1), (t2, 2t2 + 1)}. (2)

Hence, f |L(t) = s(t − t1)(t − t2) for some constant s which can be computed
from, say, requiring f |L(T ) = 1 where T = 2, i.e., s = −1. Therefore, one has
recovered f |L(t) in (1) from H∩L with f |L(T ) = 1 as illustrated in Figure 1(a).

The remainder of this section extends this idea using pseudo-witness sets
when f is a polynomial over C that is not known explicitly, but the corresponding
hypersurface H arises as the closure of a projection of an algebraic set. For
simplicity of presentation, assume that F : CN → Cr is a polynomial system
and that V is a pure d-dimensional subset of V(F ) = {x ∈ CN | F (x) = 0}.
Let π(x1, . . . , xN ) = (x1, . . . , xn) such that H = π(V ) ⊂ Cn. Note that one has
n − 1 ≤ d ≤ N − 1. A pseudo-witness set [14] for H, say {F, π,M,W}, is a
numerical algebraic geometric data structure that permits computations on H
without knowing the defining polynomial f for H. The last two items are a linear
space M⊂ CN and a finite set W = V ∩M. In particular, M = L × L′ where
L′ ⊂ CN−n is a codimension d − (n − 1) general linear space so that M has
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(a) (b) (c)

Fig. 1. A visual representation of the pseudo-witness set for H defined by y − x2 with
a linear slice, L, that is (a) generic, (b) special with one root of multiplicity one, and
(c) tangent. The black dots represent the roots t1, . . . , tk and the black stars represent T
selected for scale.

codimension d. Hence, π(W ) = H ∩ L is a witness point set for H with respect
to L. With this setup, the local multiplicity of each point in H∩L can be easily
computed via [6, Prop. 6] (see also [10, pg. 158]). Thus, parameterizing L by t
and denoting t1, . . . , tk as the corresponding points in H ∩ L with multiplicity
m1, . . . ,mk, respectively, yields

f |L(t) =
f |L(T )

(T − t1)m1 · · · (T − tk)mk
· (t− t1)m1 · · · (t− tk)mk (3)

as shown in the following.

Theorem 1. The univariate polynomial describing f along the line L is cor-
rectly described by (3).

Proof. The assumption on T is that f |L(T ) 6= 0, i.e., L 6⊂ H. Hence, f |L is a
nonzero polynomial which has finitely many roots, namely t1, . . . , tk with multi-
plicity m1, . . . ,mk, respectively. Thus, mi ≥ 1 with deg (f |L) = m1 + · · ·+mk.
Since the roots define the univariate polynomial up to scale, the leading coeffi-
cient is used to achieve the desired value at T and thus everywhere along L.

The following illustrates a pseudo-witness set and Theorem 1.

Example 2. Consider the hypersurface H ⊂ C2 from Ex. 1 under the assumption
that we are given H = π(V ) where π(x, y, s) = (x, y) and V = V(F ) with

F (x, y, s) =

[
x− s2
y − s4

]
.

Since n = 2 and d = dimV = 1, we have M = L × C with

W = V ∩M = {(t1, 2t1 + 1,±
√
t1), (t2, 2t2 + 1,±

√
t2)}

where t1 and t2 are as in Ex. 1 with m1 = m2 = 1. Hence, π(W ) = H ∩ L as
in (2). Therefore, with T = 2 and f |L(T ) = 1, (3) simplifies to f |L(t) in (1).
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The only assumption on the line L is that L 6⊂ H so that one can find T
such that f |L(T ) 6= 0. Of course, one can check if L ⊂ H by a pseudo-witness set
membership test [13] in which case one would simply have fL(t) ≡ 0. Thus, L is
not necessarily assumed to intersect H transversely, so the number of roots and
multiplicities can vary for different choices of L. Nonetheless, Theorem 1 applies
as is illustrated in the following two examples.

Example 3. Reconsider Ex. 2 with L being the vertical line parametrized by

x(t) = 1 y(t) = t

as shown in Figure 1(b). One hasM = L×C and W = V ∩M = {(1, 1,±1)} with
t1 = 1 and m1 = 1. For scale, consider T = 2 with f |L(T ) = 1. Thus, (3) yields

f |L(t) = t− 1.

Example 4. Reconsider Ex. 2 with L being the horizontal line parametrized by

x(t) = t y(t) = 0

as shown in Figure 1(c). One hasM = L×C and W = V ∩M = {(0, 0, 0)} with
t1 = 0 and m1 = 2. For scale, consider T = 1 with f |L(T ) = −1. Thus, (3) yields

f |L(t) = −t2.

Clearly, once the univariate polynomial f |L(t) in (3) is computed explicitly,
one can easily determine the value of f at any point along L via evaluation.

Moreover, if L is parameterized by v · t + u, then f |(k)L (t) is equal to the kth

directional derivative of f with respect to v at v · t+u, denoted D
(k)
v f(v · t+u).

Example 5. For L in Ex. 3 and Ex. 4, one has v = (0, 1) and v = (1, 0), re-
spectively. Hence, the corresponding directional derivatives are simply partial
derivatives of f(x, y) = y−x2 with respect to y and x, respectively. From Ex. 3,

one obtains ∂f
∂y (1, t) = 1 while Ex. 4 yields ∂f

∂x (t, 0) = −2t and ∂2f
∂x2 (t, 0) = −2.

3 Algorithm

Theorem 1 immediately justifies Algorithm 1 for explicitly computing a polyno-
mial restricted to a line. The following two examples exemplify this algorithm
applied to the discriminant locus.

Example 6. Consider the discriminant locus H ⊂ C2 for g(x; b, c) = x2 + bx+ c.

Hence, H = π(V ) where π(b, c, x) = (b, c) and V = V(F ) with

F (b, c, x) =

[
x2 + bx+ c

2x+ b

]
.

For the line L ⊂ C2 parameterized by

b(t) = t c(t) = t/3
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Algorithm 1 Computing a polynomial restricted to a line

Input: A line L ⊂ Cn parameterized by t, a pseudo-witness set {F, π,M,W} for a
hypersurface H defined by f such thatM = L×L′, and T along with f |L(T ) 6= 0.

Output: The univarite polynomial f |L(t) corresponding to f restricted to L.

1: Use the pseudo-witness set to extract the roots t1, . . . , tk of f along L and the
corresponding multiplicities m1, . . . ,mk.

2: Compute the scale factor s :=
f |L(T )

(T − t1)m1 · · · (T − tk)mk
.

3: Construct the univariate polynomial f |L(t) := s · (t− t1)m1 · · · (t− tk)mk .
4: (Optional) If L and F are defined with rational coefficients and T and f |L(T ) are

rational, expand f |L(t) and use exactness recovery [2] to compute the exact rational
coefficients of f |L(t).

5: Return f |L(t).

withM = L×C, one has W = V ∩M = {(0, 0, 0), (4/3, 4/9,−2/3)}. The other
input for Algorithm 1 is, say, T = 3 with f |L(T ) = 5 to set the scale. This setup
is illustrated in Figure 2(a).

The pseudo-witness set yields t1 = 0 and t2 = 4/3 with m1 = m2 = 1. The
corresponding scale factor is

s =
5

(3− 0)(3− 4/3)
= 1

so that Algorithm 1 returns f |L(t) = t(t− 4/3) = t2 − 4t/3.
Of course, one can easily compute that the discriminant of g satisfying

f(b(T ), c(T )) = 5 is f(b, c) = b2 − 4c with f |L(t) = f(b(t), c(t)) = t2 − 4t/3.

Example 7. Consider the discriminant locus H ⊂ C2 for g(x) = x3 + bx + c.

Hence, H = π(V ) where π(b, c, x) = (b, c) and V = V(F ) with

F (b, c, x) =

[
x3 + bx+ c

3x2 + b

]
.

For the line L ⊂ C2 parameterized by

b(t) = t c(t) = t+ 3

with M = L × C, one has, rounded to 4 decimal places with i =
√
−1,

W = V ∩M =

{
(−1.9511, 1.0489, 0.8064),

(−2.3995± 5.0378i, 0.6005± 5.0378i,−1.1532± 0.7281i)

}
.

The other input for Algorithm 1 is, say, T = −3 with f |L(T ) = −108 for scale.
This setup is illustrated in Figure 2(b).

The pseudo-witness set yields t1 = −1.9511, t2 = −2.3995 + 5.0378i, and
t3 = −2.3995−5.0378i with m1 = m2 = m3 = 1. The corresponding scale factor
is s = 4 so that f |L(t) = 4t3 + 27t2 + 162t+ 243.

As in Ex. 6, one can easily compute that the discriminant of g satisfying
f(b(T ), c(T )) = −108 is f(b, c) = 4b3 + 27c2 with f(b(t), c(t)) = f |L(t) as above.
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(a) (b)

Fig. 2. Pseudo-witness set for the discriminant locus of (a) the quadratic x2 + bx + c
and (b) the cubic x3 + bx+ c.

4 Computing critical points

When the line L is fixed, Algorithm 1 computes the restriction of a polynomial f
to L. The following presents two examples of combining this idea with homotopy
continuation to compute critical points of f , namely ∇f = 0. The set of real
solutions to ∇f = 0 with f 6= 0 contains at least one point in each compact cell
of Rn ∩{f 6= 0} [11]. The website dx.doi.org/10.7274/r0-0mc0-gt33 contains the
necessary files to perform these computations using Bertini [3].

4.1 Lemniscate

This first example demonstrates the approach given f(x, y) = x4−x2 +y2 which
defines a lemniscate, but utilizes a pseudo-witness set for the computation. The
aim is to compute all real solutions of ∇f = 0 and f 6= 0. For genericity, replace
∇f = 0 with the equivalent condition that the directional derivatives of f in
both the α = (α1, α2) and β = (β1, β2) directions, namely Dαf and Dβf , vanish
for general α and β. We used α1 = 1, α2 = 5 + 3

√
−1, β1 = 4 +

√
−1, and β2 = 1

in our computation.
Since one is setting directional derivatives equal to zero, the scale factor

is irrelevant and can be simply set to 1. We first compute a witness set for
each of the cubic curves defined by Dαf = 0 and Dβf = 0 where each of
them are expressed in terms of univariate roots following Section 2. Then, we
simply intersect these two cubic curves using a diagonal homotopy [21] that
tracks 32 = 9 paths. There are 3 finite endpoints corresponding with the 3
solutions of ∇f = 0, all of which are real and shown in Figure 3(a). Two of these
have f 6= 0 with one in each of the two compact cells of R2 ∩ {f 6= 0}.

4.2 Kuramoto model

The Kuramoto model [17] is a mathematical model of an oscillating system to de-
scribe synchronization. After a standard conversion to polynomials, the discrim-
inant locus for the steady states of the 3-oscillator Kuramoto model is modeled
by H = π(V ) where π(ω1, ω2, c1, c2, s1, s2) = (ω1, ω2) and V = V(F ) with



Evaluating and differentiating a polynomial using a pseudo-witness set 7

F (ω1, ω2, c1, c2, s1, s2) =


(s1c2 − c1s2) + (s1c3 − c1s3)− 3ω1

(s2c1 − c2s1) + (s2c3 − c2s3)− 3ω2

s21 + c21 − 1
s22 + c22 − 1

c21c2 + c1c
2
2 + c1c2 + s1s2c1 + s1s2c2

 . (4)

Letting f be a defining polynomial forH, the aim is to compute the real solutions
of ∇f = 0 with f 6= 0 using a pseudo-witness set for H. As in Section 4.1,
we replace ∇f = 0 with the equivalent condition that two general directional
derivatives vanish. In this case, the vanishing of a general directional derivative
of f yields a degree 11 curve, so a diagonal homotopy [21] to intersect the
vanishing of two directional derivatives tracks 112 = 121 paths. This yields 103
finite solutions consisting of 37 that satisfy f 6= 0 which can be verified using a
membership test via a pseudo-witness set for H [13]. Sorting through these 37
yields 19 real critical points with f 6= 0. Figure 3(b) plots the real part of H
along with these 19 real critical points on a contour plot of f showing that at
least one is contained in each compact cell of R2 ∩ {f 6= 0}.

(a) (b)

Fig. 3. (a) The lemniscate with 2 critical points satisfying f 6= 0 (red) and the other
satisfying f = 0 (green), and (b) the discriminant locus (black) for the 3-oscillator
Kuramoto model with contour plot and 19 real critical points (red) in the complement.
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