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Abstract

Similarly to the global case, the local structure of a holomorphic subvariety at a given
point is described by its local irreducible decomposition. Geometrically, the key require-
ment for obtaining a local irreducible decomposition is to compute the local monodromy
action of a generic linear projection at the given point, which is always well-defined on
any small enough neighborhood. We characterize some of the behavior of local mon-
odromy actions of linear projection maps under analytic continuation thereby allowing
computations to be performed beyond a local neighborhood. Using this characteriza-
tion, we then present an algorithm to compute the local monodromy action following
the paradigm of numerical algebraic geometry. A germ of an algebraic subvariety at
a point is represented by a numerical local irreducible decomposition comprised of a
local witness set for each local irreducible component. The results are illustrated using
several examples facilitated by an implementation in an open source software package.
MSC2020: 65H14, 14Q65, 14Q15, 32S50
Keywords: local monodromy action, local monodromy group, local witness sets, nu-
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1 Introduction

Theories to understand the geometry and topology of a space at its singular points comprise
a major and ongoing area of mathematical study. Some classically studied aspects of singu-
larity theory include local invariants, local monodromy groups, and integration over singular
spaces (for a general overview, see the book [1]). Computational methods directed towards
identifying singularities, understanding local structure, and stratifying spaces increasingly
arise in applications as well, e.g., [8, 13, 16, 21, 23]. We will focus here on a classical setting:
given a system of algebraic or analytic equations and a point which satisfies them as input,
compute information about the local structure of the solution set at that point in CN .

Understanding the global structure of a solution set of a system of algebraic equations is
the foundational problem of algebraic geometry. Globally, the solution set can be decomposed
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into finitely many irreducible components. The set of regular points of each irreducible
component is connected.

For a germ of a complex algebraic subvariety, there is a natural analog yielding the
local irreducible decomposition such that the set of regular points of each local irreducible
component is connected. In fact, the theory contained here applies to germs of holomorphic
subvarieties, though we will consider examples with algebraic inputs. Holomorphic germs
also have a unique local irreducible decomposition (e.g., see [14, Thm. II.B.7]). Although
well-defined locally, challenges remain regarding the local neighborhood on which to perform
the necessary computations. Our main theoretical result is summarized in the following and
allows for computations to be performed beyond such a local neighborhood.

Theorem. If V is a reduced germ of a holomorphic subvariety of CN with pure dimension d,
there is a Zariski open dense set of linear projections CN → Cd where, if π̃ is a member, the
projection map germ π̃|V : V→ Cd, has a well-defined local monodromy action. Moreover,
if π̃|V : V → Cd is a proper projective holomorphic map with pure (d−1)-dimensional critical
locus representing π̃|V, then the local monodromy action is a sub-action of the monodromy
action of π̃|V . The corresponding local monodromy group decomposes into orbits with one
orbit for each local irreducible component.

This theoretical result permits computation using the numerical algebraic geometric
paradigm (for a general overview, see the books [5, 25]). Since irreducibility need not be
stable under perturbations, the input polynomial system is assumed to be known exactly.1

For example, xy = 0 is reducible consisting of two lines while xy − ϵ = 0 is an irreducible
curve of degree 2 for all ϵ ∈ C−{0}. Globally, each irreducible component is represented by
a witness set yielding a corresponding numerical irreducible decomposition. One key prop-
erty is that global irreducibility is maintained under intersection by a general hyperplane for
irreducible components of dimension at least two. Therefore, all computations associated
with deciding irreducibility of positive-dimensional components can be reduced down to the
complex curve case.

An analog following the numerical algebraic geometric paradigm via local witness sets
and a numerical local irreducible decomposition was described in [9]. As with the global case,
assume that the input polynomial system and input point are known exactly so that, for
example, proper decisions regarding which homotopy solution paths limit to the point can be
made correctly using adaptive precision path tracking [4] and endgames (e.g., see [5, Chap. 3]
and [25, Chap. 10]). Although [9] posited the existence of a numerical local irreducible de-
composition, it did not actually consider how to compute such a decomposition. Using the
main theoretical result above, we show how to compute a numerical local irreducible de-
composition in Algorithm 2. Practically speaking, this sidesteps theoretical difficulties with
finding small enough restrictions for monodromy computations at the cost of deciding which
paths limit to the point using endgames. A software package implementing the algorithm is
available at https://github.com/P-Edwards/LocalMonodromy.jl.

One challenge with the local case is that, in contrast with the global case, one can not al-
ways simplify reducibility questions down to curves by intersecting with general hyperplanes.
To illustrate, consider the cone defined by x2

1 + x2
2 − x2

3 = 0, which is an irreducible surface

1See [12] for robust numerical algebraic geometry allowing perturbations in the input system.
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Figure 1: Intersecting the cone (blue) with a general slice (green) yields an irreducible curve
(cyan), while intersecting with a general slice through the origin (red) yields two lines (black).

in C3 whose real part is illustrated in Figure 1. For a general α ∈ C3, one can intersect this
surface with a general hyperplane defined by x1 = α1x2 + α2x3 + α3 yielding an irreducible
curve. Equivalently, (α1x2 + α2x3 + α3)

2 + x2
2 − x2

3 is an irreducible polynomial for general
α ∈ C3. The origin is a singular point of the cone at which the cone is locally irreducible as
will be demonstrated below. However, for a general hyperplane of the form x1 = α1x2+α2x3

passing through the origin, (α1x2 + α2x3)
2 + x2

2 − x2
3 is no longer irreducible since every

singular quadratic plane curve is simply a pair of intersecting lines as shown in Figure 1.
Reprising the notation and conditions of the above theorem, we first define a local mon-

odromy action for any representative π̃|V by restricting loops used for generating the action
to a complex line in Cd. This construction is motivated by a theorem of Hamm and Lê Dũng
Tráng [15] on the fundamental group of an analytic hypersurface and is a localized version
of a construction for global monodromy actions taken in [19] using a theorem of Zariski [26].
Although the global case can always be reduced to curves, the theorem in [15] permits a
reduction down to surfaces in the local case.

Restricting π̃|V to small enough open balls in the domain and codomain around a point
of interest, one has from the local parameterization theorem that orbits of the monodromy
action correspond to local irreducible components (Lemma 2.1). The theorem of [15] permits
one to restrict loops to a complex line in the codomain to recover this information, though
possibly requiring even smaller balls. Unfortunately, it is unclear how or whether appropri-
ately small balls may be computed in practice. Our main theoretical result avoids this issue
completely by instead characterizing how the local monodromy action obtained by restrict-
ing π̃|V includes in a simple way into the monodromy action of the unrestricted cover π̃|V .
Equivalently, if π̃|V is an appropriate analytic continuation of a different representative of
its germ π̃|V at a point, we show that domain and codomain of monodromy computations
may be extended to those of π̃|V . The following example gives an overview of this approach.

Illustrating example Reconsider the cone C ⊂ C3 defined by f(x) = x2
1+x2

2−x2
3 = 0. At

the origin, its germ in C3 is reduced with pure dimension 2. For illustrative purposes, consider
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Figure 2: Intersection of the cone (blue) with line (red) yields two points (black) which are
the start points of two paths (yellow) that limit to the origin (green).

(a) (b)

Figure 3: (a) Critical points (magenta) with respect to π̃ on the cone (blue); (b) critical
locus (magenta) in the image of π̃ intersected with a line (black) passing through γ1 (cyan)
yielding two points (blue).

the sufficiently general linear projection π̃(x) = (x1 + x2, x3). Thus, for the sufficiently
general point γ1 = (1/2, 1) ∈ C2, note that π̃−1(γ1) is a line in C3 and the fiber π̃−1(γ1) ∩ C
of π̃|C consists of two points. Along the segment γ(t) = tγ1 for t ∈ [0, 1], the intersection
π̃−1(γ(t))∩C defines two solution paths s̃1, s̃2 : [0, 1]→ C starting at these two fiber points.
We first “localize” the fiber by retaining those fiber points s̃i(1) whose solution paths limit
to the origin, i.e., with s̃i(0) = 0. In this example, all the fiber points localize in this way as
illustrated in Figure 2. We denote them s̃1 = s̃1(1) and s̃2 = s̃2(1), abusing notation.

Next, we need to consider the critical points of π̃|C , which comprise a hypersurface on
the cone as illustrated in Figure 3(a). Once the critical points are removed, π̃C is a covering
map of its image. We again localize these critical points and their images similar to how
we localized the fiber points. To compute the critical locus in terms of the projection π̃,
consider another sufficiently general linear projection π : C2 → C with z 7→ z1 − z2/4. Let
θ(1) = π(γ1) and consider the linear space Lθ(1) ⊂ C2 defined by π(z) = θ(1). Since the
determinant of the Jacobian matrix of f and π̃ is 2x1 − 2x2, the critical points and critical
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(a) (b)

Figure 4: (a) Illustration of a basic loop starting at γ1 and only encircling p1 once counter-
clockwise; (b) pictorial illustration of monodromy action interchanging s̃1 and s̃2 with the
vertical direction corresponding to arc length around the basic loop in (a).

locus of π̃|C are defined the system


f(x)

π̃(x)− z

det J(f, π̃)(x)

π(z)− θ(1)

 =


x21 + x22 − x23
x1 + x2 − z1

x3 − z2
2x1 − 2x2

z1 − z2/4− 1/4

 = 0. (1)

In terms of the z coordinates, there are two points in the intersection of π−1(θ(1)) with the
critical locus in C2 as illustrated in Figure 3(b). Replacing θ(1) with θ(t) = π(γ(t)) = t/6
in (1), yields two solution paths p1, p2 : [0, 1] → C2 lifting θ starting at these two points.
Similarly to our previous localization, both paths limit to the origin, i.e., p1(0) = p2(0) = 0.
We retain the two points and denote them p1 = p1(1) and p2 = p2(1), abusing notation.

Our theoretical results show that one can compute the local monodromy action of the
germ of the cone at the origin by considering the local monodromy action arising from loops
in Lθ1 − {p1, p2} lifted to the cone. In particular, one can identify Lθ1 − {p1, p2} with the
plane R2 with two points removed and observe that the action of a basic loop starting at γ1
that only encircles p1 once counterclockwise, as illustrated in Figure 4(a), suffices to generate
the local monodromy action. Such a loop lifts to two paths in C starting at s̃1 and s̃2. In fact,
the corresponding path starting at s̃1 ends at s̃2 and vice versa as pictorially illustrated in
Figure 4(b). Note that a basic loop starting at γ1 that only encircles p2 once counterclockwise
performs the same monodromy action as a basic loop encircling p1 clockwise. Hence, the
local monodromy action has a single orbit and the local monodromy group is the symmetric
group on two elements. Transitivity of this action corresponds to the germ of the cone at
the origin being irreducible.

The rest of the paper justifies this process and is organized as follows. Section 2 recalls
some essential results and definitions about germs of holomorphic subvarieties and their local
irreducible decompositions. Section 3 lays out our theory of local monodromy actions and
groups for projection maps, which is used in Section 4 to justify an algorithm for computing
these objects. Section 5 contains several examples computed using an implementation of the
algorithm. A short conclusion is provided in Section 6.
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2 Background

We review local parameterization of holomorphic subvarieties, give an overview of homo-
topy continuation and numerical algebraic geometry, and state Hamm and Lê Dũng Tráng’s
theorem on fundamental groups of hypersurface complements [15].

2.1 Local irreducible decomposition and local parameterization

A germ V of a holomorphic subvariety of an open set Ũ ⊆ CN at x∗ ∈ Ũ has an irreducible
decomposition. More precisely, using Gunning’s notation [14, Thm. II.B.7], V can be written
as a finite union of germs V = V1 ∪V2 ∪ · · · ∪Vm where each Vj is an irreducible germ,
Vj ̸= V if m > 1, Vj ̸⊆ Vk for j ̸= k, and the germs Vj are uniquely determined up to
relabeling. Following [9], the local irreducible decomposition of an irreducible subvariety
(algebraic or holomorphic) V at x∗ ∈ V is the decomposition given by the germ of V at x∗.
Moreover, if V is reducible, then the local irreducible decomposition of V at x∗ is the union
of local irreducible decompositions of its (global) irreducible components.

Since one may always translate x∗ to the origin, it suffices to consider germs at the origin,
which we will do going forward to simplify notation except where otherwise indicated. While
holomorphic subvarieties may exhibit more complicated global behavior, they exhibit the
structure of finite branched coverings locally. The following collects several standard results
making this precise in a useful format for our purposes.

Lemma 2.1. Let V be a pure d-dimensional germ of a holomorphic subvariety of CN

with V a representative. There exists an (algebraically) Zariski open set of linear pro-
jections CN → Cd where the following holds provided that π : CN → Cd is a member. For
all small enough open balls B̃ ⊆ CN and B ⊆ Cd at the origin, V̂ := V ∩ B̃∩π−1(B) has the
form V̂ = V̂1 ∪ · · · ∪ V̂m where the V̂i are irreducible holomorphic subvarieties representing
the irreducible components of V. Furthermore:

1. π|V̂ and π|V̂i
are finite branched holomorphic coverings of B with 0 ∈ CN the only

element of the fiber over 0 ∈ Cd for both maps.

2. The image of the branch locus for π|V̂ and π|V̂i
is a holomorphic subvariety of B with

the same dimension as the branch locus.

3. If R̃ and R̃i are the branch loci of π|V̂ and π|V̂i
respectively, the monodromy action

on any fiber of π|V̂i−R̃i
is transitive and the monodromy action of π|V̂−R̃ on any fiber

partitions the fiber into orbits, one for each local irreducible component.

Proof. The first statement follows from the local parameterization theorem, e.g., see [14,
Lem. II.E.12]. Noting that the branch locus and its image are holomorphic subvarities for a
finite holomorphic branched covering, e.g., see [14, Thm. II.C.13,14], the second statement
follows from the first using Remmert’s proper mapping theorem, e.g., see [14, II.N.1]. Since

the germ of V̂i at the origin is irreducible, possibly shrinking B further, we have that V̂i− R̃i

is path connected [14, II.E.13] and the corresponding monodromy action is transitive. Any
point in the intersection of two distinct irreducible components of V̂ is a branch point of π|V̂ ,
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so, in particular, every point in a fiber over a regular point of π|V̂ is contained in one and

only one irreducible component V̂i.

Definition 2.2. Reprising the notation of the above lemma, if V fulfills its conditions and
π, B̃, B, V̂ fulfill the conclusions, π|V̂ is a local parametrization of V.

Remark 2.3. Taking the balls B̃ and B in the above lemma small enough, we may assume
that V̂ is defined as the zero set of a system F of holomorphic functions on Ũ ⊆ CN . If V̂
is a reduced complete intersection with respect to such a system, the critical points of π|V̂
and π|V̂i

are either empty or holomorphic subvarieties of dimension d− 1 which contain the
corresponding branch points. In this case, Lemma 2.1 remains true replacing branch loci
with the corresponding critical loci. Critical loci are commonly used to facilitate numerical
algebraic geometric computations involving branch loci, e.g., see [6, 19]. Equations for branch
loci are generally challenging to obtain from F , whereas critical loci admit a straightforward
formulation using rank-dropping conditions via determinants or null space conditions [2].

Remark 2.4. An essential observation in numerical algebraic geometry is that if V ⊆ CN

is algebraic of pure dimension d, then there is a Zariski open subset of linear projections
CN → Cd where, if π : CN → Cd is a member, then π|V is a finite branched covering map.
This follows from the Noether normalization theorem. For symmetry, call such a map a
global parametrization for V . A core part of the theoretical justification for the localization
heuristics presented in [9] can then be summarized using Lemma 2.1 as follows. A linear
projection π is generically a global parametrization for V which, after restricting the domain
and codomain, is a local parametrization of V at the origin.

2.2 Witness sets and homotopy continuation

Numerical algebraic geometry (for a general overview, see the books [5, 25]) represents an
irreducible algebraic variety via a witness set. Suppose that f : CN → Cn is a polynomial
system and V(f) = {x ∈ CN | f(x) = 0}. If V ⊂ V(f) is irreducible of dimension d, then for
a general codimension d linear space L, the intersection V ∩ L is finite and the number of
such points in the intersection is equal to deg V . The set {f,L, V ∩L} is called a witness set
for V and V ∩L is called a witness point set for V . If V is of pure dimension but reducible, a
witness point set for V is a union of witness point sets for each irreducible component of V .
A single codimension d linear space L is used to intersect all irreducible components. The
following considers a local version of these definitions [9].

Definition 2.5 (Definition 1 from [9]). Let f : CN → Cn be a system of functions which
are holomorphic in a neighborhood of x∗ ∈ CN with f(x∗) = 0. Let V ⊆ CN be a lo-

cal irreducible component of V(f) at x∗ of dimension d and L̃1, . . . , L̃d : CN → C be

general linear polynomials such that L̃i(x
∗) = 0. For u ∈ Cd, consider the linear space

Lu = V (L̃1 − u1, . . . , L̃d − ud) ⊂ CN . A local witness set for V is the triple {f,Lu∗ ,W} de-
fined in a sufficiently small neighborhood U ⊂ Cd of the origin for general u∗ ∈ U where W
is the finite subset of points of V ∩Lu∗ which converge to x∗ as t→ 0 along any path defined
by V ∩ Lu(t) such that u : [0, 1]→ U with u(0) = 0 and u(1) = u∗.
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Definition 2.6 ([9]). A numerical local irreducible decomposition of a holomorphic subva-
riety V at x∗ ∈ V is a formal union of local witness sets, one for a representative of each
irreducible component of the germ V at x∗.

The set W in Definition 2.5 is called a local witness point set. In analogy with the global
case, a local witness point set for a reducible pure dimension germ V is a union of local
witness point sets for the irreducible components of V. Some conditions which [9] leaves
implicit are required for Definition 2.5 to make sense. It is sufficient for the projection map
π : CN → Cd defined by the linear forms L̃1, . . . , L̃d to have π|V ∩π−1(U) be an (unbranched)
covering map. For example, if V is algebraic, the Noether normalization theorem shows that
this is true for a Zariski open set of linear forms with U = Cd − R the complement of the
image of the branch locus of π|V . If V is reduced with respect to f , then one may instead
complement by the image of the critical locus of π|V .

Definition 2.5 is dependent upon computing start points of paths which converge to x∗.
This is an example of the use of homotopy continuation in numerical algebraic geometry.
In particular, suppose that π : V → Y is a finite branched holomorphic covering map and
γ : [0, 1]→ Y is a path with γ|(0,1] a smooth path into the regular part of Y . Then, π−1(γ(1))
is finite with, say, k points and γ lifts through π to a set of k paths γ̃i : [0, 1] → V , each
having γ̃i(1) a distinct point of π−1(γ(1)). See, e.g., [24, Thm. 3] for more details. These
lifts are smooth and disjoint in the sense that each restriction γ̃i|(0,1] is smooth and none of
the images of the γ̃i|(0,1] intersect. Each lift γ̃i is a solution to an initial value problem with
initial values given by π−1(γ(1)) and implementations of numerical homotopy continuation
methods are designed to track the solutions numerically. The lifts γ̃i are solution paths.

Assume for the moment that solutions to lifting problems of this type can be solved
exactly using homotopy continuation. Also assume that, given algebraic V and a generic
codimension d linear space L, we can compute the witness point set V ∩ L. Computing
such an intersection using homotopy continuation is a standard maneuver. We immediately
obtain an algorithm for computing a local witness point set for V at a point x∗ ∈ V .

Algorithm 1: Local witness point sets
Input : A polynomial system f : CN → CN−d defining a reduced complete intersection V = V(f) ⊆ CN of

dimension d.
Input : A point x∗ ∈ V .
Input : A generic linear map π : CN → Cd with components L̃i.
Input : A generic smooth path γ : [0, 1] → Cd with γ(0) = π(x∗).
Output: A local witness point set W l for the germ of V at x∗.

1 Compute the witness point set W g := V ∩ Lγ(1) = {v1, . . . , vk} ;

2 Compute solution paths γ̃i : [0, 1] → V for the map π|V corresponding to initial conditions γ̃i(1) = vi;

3 Return the subset W l of points γ̃i(1) where γ̃i(0) = x∗ ;

Note that this algorithm differs slightly from Definition 2.5 in that it does not assume
π(x∗) = 0. This will be useful in discussing practical numerical issues in localization, which
we take up in Section 4. It is straightforward to translate to the case π(x∗) = 0. As long as
W g is finite in Step 1 above and can be computed, one may otherwise relax the requirement
that f be polynomial to f holomorphic.

Using homotopy continuation to move linear slices in a witness set is a powerful tool in
numerical algebraic geometry. In the current context, we can consider general loops in the
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corresponding Grassmannian to induce a monodromy action that can be used to identify the
global and local irreducible components by partitioning the fiber into orbits, one for each
global and local irreducible component, respectively.

Example 2.7. Globally, the cone V = V(x2
1+x2

2−x2
3) ⊂ C3 is irreducible of dimension 2 and

degree 2. Consider the sufficiently general line L(1/2,1) = V(x1 + x2 − 1/2, x3 − 1) ⊂ C3 as in
the Introduction. Equivalently, as input to Algorithm 1, consider π : C3 → C2 defined by
π = (x1+x2, x3) with L(1/2,1) = π−1(1/2, 1). Figure 2 illustrates the witness point set V ∩L.

Define γ : [0, 1] → C2 by γ(t) = (t/2, t). Let Lt = Lγ(t) = V(x1 + x2 − t/2, x3 − t) ⊂ C3

so that V ∩ Lt defines 2 paths lifting γ starting from the two points in V ∩ L(1/2,1). As also
shown in Figure 2, both lifts converge to the origin. Thus, both points in V ∩ L(1/2,1) are
elements of the local witness point set for the V at the origin output by Algorithm 1. As
discussed in the Introduction, the cone is irreducible at the origin so that the corresponding
local monodromy group is a transitive group on two elements, i.e., the symmetric group S2.

2.3 Heuristic numerical local irreducible decomposition

On the one hand, the localized definitions in the previous section are at least somewhat geo-
metrically intuitive. On the other, one can also motivate them via the local parametrization
theorem. The following result is a direct consequence of Lemma 2.1. In less precise terms,
it states that if one translates a local witness point set for V close enough to the point of
localization, the induced monodromy action of small loops near the point of localization en-
codes a numerical local irreducible decomposition. The property of a local parametrization
having a unique element in the fiber over 0 ∈ Cd is essential.

Proposition 2.8. Let V be a pure d-dimensional holomorphic subvariety of CN defined by
f : CN → Cn at the origin and let π : CN → Cd be a global parametrization of V that
restricts to a local parametrization π|V̂ of V. Set U = Cd − π|V (R̃) where R̃ ⊆ V is the
branch locus of π|V . Let γ : [0, 1]→ Cd be a smooth path beginning at γ(0) = 0. Then:

• The set W l obtained from Algorithm 1 with inputs as indicated in this proposition is
a local witness point set for V.

• Suppose that γ̃1, . . . , γ̃k : [0, 1] → V are the lifts of γ corresponding to the points
in W l and that γ̃i(t) ∈ V̂ for all i and some t ∈ (0, 1]. Denote W l

t := {γ̃i(t)}ki=1.
There exists a ball B ⊆ Cd containing the origin where the orbits of W l

t under the
monodromy action of π1(B−U, γ(t)) through π|V̂ partition W l

t into local witness point
sets for the irreducible components ofV. There is exactly one orbit per local irreducible
component.

This suggests the heuristic algorithm for computing a numerical local irreducible decom-
position implicitly proposed in [9]. First, choose a projection π̃ : CN → Cd uniformly at
random. With probability 1, it fulfills the conditions necessary for Proposition 2.8 and is
a global parametrization for V . Next, choose a path γ : [0, 1] → Cd starting at π̃(x∗) and
ending nearby at a point chosen uniformly at random. A straight line path suffices with
probability 1. Use Algorithm 1 to compute a local witness point set for V at x∗ using this
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data. Finally, compute the orbits of the monodromy action induced by random “small”
loops in Cd based at γ(1). Here, “small” means loops whose image contains only points with
small distance to γ(0).

There are several obstructions which render this a heuristic rather than theoretically
complete algorithm for computing a numerical local irreducible decomposition for V at x∗.
One does not know a priori how small the loops used for computing monodromy actions
must be to capture only local behavior. The points in the local witness set may also be
relatively far away from x∗. It therefore no longer follows directly from Lemma 2.1 that
computed orbits correspond to local irreducible components, though it follows from the
theory we will develop in Section 3 that this is true. Finally, in the global case, one uses
trace tests which provide a stopping criteria for when additional loops will stop reducing the
number of observed orbits. Analogous tests do not exist in the local case.

2.4 Hyperplane sections and fundamental groups of complements

As mentioned in the Introduction, Zariski’s theorem [26] was used in [19] to compute global
monodromy groups via a surjection of fundamental groups under slicing. In order to consider
the local case, let B̃r denote the ball of radius r in CN centered at the origin and Br

denote the same in Cd for r > 0. A “Zariski theorem of Lefschetz type” due to Hamm
and Lê Dũng Tráng [15] shows that the map induced by inclusion of fundamental groups
π1((Bρ−R)∩Lθ, b)→ π1(Bρ−R, b) is surjective for a holomorphic hypersurface R, sufficiently
small ρ, and any well-behaved complex line Lθ ⊆ Cd. For any hyperplane L ⊆ Cd, by abuse of
notation, let L also denote some fixed linear form such that L = 0 defines the hyperplane L.
Let Lθ = V(L− θ) for θ ∈ C.

Lemma 2.9. Let R be a pure (d− 1)-dimensional holomorphic subvariety of Cd containing
the origin with d ≥ 2. There exists a Zariski open subset of hyperplanes U ⊆ Gr(d−1, d)d−1,
depending on R, with the following property. If (L1, L2, . . . , Ld−1) ∈ U , there exists a
maximum radius A > 0 for balls Bρ at the origin such that, where if 0 < ρ ≤ A, then
the fundamental group of Bρ − R is generated by homotopy classes of loops restricted to
∩d−2

i=1Li ∩ Lθ
d−1 for all small enough θ. Note that, when d = 2, ∩d−2

i=1Li is defined to be C2.
More precisely, there is θ(ρ) > 0 such that if 0 < |θ| ≤ θ(ρ), the homomorphism induced

by inclusion
π1((Bρ −R) ∩d−2

i=1 Li ∩ Lθ
d−1, b)→ π1(Bρ −R, b)

is surjective for any b ∈ (Bρ −R) ∩d−2
i=1 Li ∩ Lθ

d−1.

Proof. This is simply repeated application of [15, Thm. 0.2.1]. Each application requires
that R be defined as the vanishing locus of a single holomorphic function. This is true for
small enough ρ for pure (d− 1)-dimensional R, e.g., see [14, II.G.5].

Remark 2.10. In the case of curves, i.e., when d = 1, then R is 0-dimensional. Thus, Bρ−R
is a real 2-dimensional disc with a finite number of punctures for any ρ. There is at least one
puncture at the origin as we have assumed R contains the origin. The fundamental group
of Bρ − R is generated by a set of homotopy classes of based loops, each winding around a
distinct puncture once counterclockwise. Slicing is no longer necessary.
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Let d ≥ 2. Continuing the same notation with Lθ := ∩d−2
i=1Li ∩ Lθ

d−1 for sufficiently
small θ, note that (Bρ − R) ∩ Lθ = (Bρ ∩ Lθ) − (Bρ ∩ R ∩ Lθ). For general Lθ, possibly
shrinking Bρ further, one has from Lemma 2.1 that Bρ ∩ R ∩ Lθ is finite. Subsequently,
(Bρ − R) ∩ Lθ is homeomorphic to a real plane with the finitely many points Bρ ∩ R ∩ Lθ

missing. Its fundamental group is generated by a set of homotopy classes of based loops,
one per missing point. Each loop in such a set encircles exactly one point in Bρ ∩ R ∩ Lθ

once counterclockwise.

3 Local monodromy actions and groups

Our major objective in this section is to establish how the monodromy action of a local
parametrization behaves under continuation. This will illuminate whether and how local
witness point sets can be used with homotopy continuation for local monodromy computa-
tions. Given that our development of the corresponding theory is somewhat more abstract
than is typical in numerical algebraic geometry, it is helpful to frame it with the following
somewhat informal “theorem” as an objective. The full version is Theorem 3.26. Effectively,
it says that local witness point sets for a variety and its critical point locus suffice to com-
pute local irreducible components. Equivalently, local monodromy computations need not
be performed close to a singular point, provided one first computes local witness point sets.

Theorem. Let 0 ∈ V ⊆ CN with V pure d-dimensional. Let π̃ : CN → Cd, π : Cd → Cd−1,
and γ : [0, 1] → Cd be generic with γ(0) = 0. Define R := π̃(crit(π̃|V )), θ = π ◦ γ, and
L1 = π−1(θ(1)). Let W̃ l be the local witness point set for V computed from Algorithm 1
with π̃, γ, and 0 as input. Let W l be the local witness point set for R computed from
Algorithm 1 using π, θ and 0 as input. Then, the monodromy action through π̃ on W̃ l from
loops encircling the points in W l restricted to L1 is well-defined and the orbits are local
witness point sets for the local irreducible components of V at 0.

To state and prove this rigorously, we require two types of ingredients. First, we must
carefully define the data required to use both homotopy continuation and slicing with
Lemma 2.9 simultaneously, as well as how to restrict that data. Second, we must prove
that monodromy actions constructed from such data change in a continuous way under
change-of-basepoint isomorphisms.

3.1 Monodromy representatives

When d ≥ 2, denote any intersection of the form ∩d−2
i=1Li ∩ Lθ

d−1 as in that Lemma 2.9
by Lθ. When d = 1, let Lθ denote C for all θ. We will require some machinery to define
a limiting process that behaves well with respect to homotopy continuation methods. The
following setup definition is motivated by the requirements of one of Morgan and Sommese’s
foundational parameter homotopy continuation theorems [24, Thm. 3].

Definition 3.1. A monodromy representative for a germ of a holomorphic map π̃ : V→ Cd

is comprised of the following sets, maps, and commutative diagram, where π̃ is a represen-
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tative of π̃:

CN Cd Cd−1

V R

R̃

π̃ π

⊆ ⊆

⊆

Furthermore:

• V is a pure d-dimensional holomorphic subvariety of CN containing the origin.

• R̃ is a pure (d− 1)-dimensional holomorphic subvariety of V containing the origin.

• π̃|V is a proper projective holomorphic map and the restriction π̃|V−R̃ is a finite un-
branched covering of its image.

• R = π̃(R̃) is a pure (d− 1)-dimensional holomorphic subvariety of Cd.

• The restriction π|R is a proper projective holomorphic map.

Remark 3.2. We will reuse the notation in Definition 3.1 going forward to refer to the
components of any given monodromy representative.

Remark 3.3. Let V be a pure d-dimensional germ of a holomorphic subvariety at the origin
in CN . As discussed in the previous section, for a linear projection π̃ : CN → Cd satisfying
Lemma 2.1, there is a representative V̂ of V where π̃|V̂ is a finite branched holomorphic
covering of a ball B centered at 0 ∈ Cd and 0 ∈ CN is the unique element in π̃|−1

V̂
(0). If V

is reducible then the origin is necessarily a singular point of V̂ (the contrapositive follows
from the implicit function theorem). The map π̃|V̂ therefore has a nonempty branch locus

R̃ ⊆ V̂ which has codimension at least 1 in V̂ . If the codimension is larger than 1, simple
connectedness yields trivial local monodromy. Moreover, as in Remark 2.3, one can always
replace the branch locus with the critical locus which, by abuse of notation, we will also
call R̃. Therefore, without loss of generality, we can assume that R̃ has codimension 1 in V̂ .
Denote R = π̃(R̃).

If d ≥ 2, possibly shrinking B further, let L1, . . . , Ld−1 ⊆ Cd be hyperplanes for which
Lemma 2.9 applies to R and B, and such that the projection π : Cd → Cd−1 defined by
(L1, L2, . . . , Ld−1) has π|R a finite proper branched covering of its image. This is true for
generic choices of hyperplanes since Lemma 2.9 and the local parameterization theorem
both apply generically. If d = 1, let π : C1 → C0 be the obvious map and shrink B so that
B ∩R = {0}. Then, the diagram in Definition 3.1 with V replaced by V̂ and other notation
referring to the specific choices in this remark’s setup is a monodromy representative for π̃|V.

Definition 3.4. Given a pure d-dimensional germ V of holomorphic subvariety of CN , call
any monodromy representative of a linear projection π̃ : V→ Cd which fulfills the conditions
in Remark 3.3 a localized monodromy representative for V.
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Example 3.5. Let V = V(f) ⊆ CN be a pure d-dimensional algebraic complete intersection
where f : CN → CN−d is algebraic and d ≥ 1. Let Jf(x) denote the Jacobian matrix of f at
x ∈ CN . Assume that V is reduced with respect to f in the sense that N − rank(Jf(v)) = d
at every regular point v ∈ V and suppose that V has a singular point at the origin. Let
π̃ : CN → Cd be a linear projection where π̃|V represents the germ of a local parameterization
at the origin in the sense of Lemma 2.1. Hence, the critical locus of π̃, which contains the
branch locus, is either empty or of pure dimension d−1 since it is characterized by satisfying
the critical equations: f(z) = 0 and det J(f, π̃)(z) = 0.

Typically, it is challenging to compute equations defining the image of the critical locus
under π̃ directly. Instead, consider the graph G := {(ṽ, v) ∈ CN × Cd | f(ṽ) = 0, π̃(ṽ) = v}.
The critical points of π̃|V correspond to the points on this graph defined by

CG := {(ṽ, v) ∈ G | rank J(f, π̃)(ṽ) < N}.

Define R̃ to be the image of the projection of CG onto the first factor with R = π̃(R̃)

being the projection onto the second factor. Note that R̃ is the critical locus of π̃|V which
contains the branch locus. The elements of Definition 3.1 with notation referring to the
specific choices in this example are a monodromy representative for π̃|V .

Our limiting procedure for defining local monodromy groups in this context will proceed
by tracking the monodromy action defined by a monodromy representative along a contin-
uous path γ : [0, a] → Cd that goes from 0 to some other point. The constraints we need
to place on γ are determined again by parameter homotopy continuation considerations.
For convenience, the following lemma collects those constraints and is a direct corollary
of [24, Thm. 3-(2,4)]. The solution paths can be tracked using homotopy continuation.

Lemma 3.6. Given a monodromy representative as in Definition 3.1, let γ : [0, a]→ Cd be
a continuous path with γ|(0,a] smooth, im(γ) ⊆ π̃(V ). There exist Zariski open dense subsets
V0 ⊆ π̃(V ) and R0 ⊆ π(R) where:

1. IfK1 is the line containing γ(0) and γ(a), then there are at most countably many points
in K1−(K1∩V0) and they are geometrically isolated. If also γ((0, a]) ⊆ K1∩V0, then γ
lifts to V through π̃|V as a disjoint set of finitely many smooth paths [0, a]→ V .

2. If additionally im(π ◦ γ) ⊆ π(R) and K2 is the line in Cd−1 containing π(γ(0)) and
π(γ(a)), then there are at most countably many points in K2− (K2∩R0) and they are
geometrically isolated. If also (π ◦ γ)((0, a]) ⊆ K2 ∩R0, then π ◦ γ lifts through π|R as
a disjoint set of finitely many smooth paths [0, a]→ R.

Remark 3.7. When d = 1 in the above lemma, Cd−1 = C0 and π ◦ γ lifts through π|R as
constant maps.

Definition 3.8. Fix a monodromy representative as in Definition 3.1. A path γ : [0, a]→ Cd

starting at 0 is a limiting path for that representative if:

• γ fulfills all the conditions from Lemma 3.6, including those in Items 1 and 2;

• ∥γ∥ : [0, a]→ R is an increasing function; and
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• im(γ) ⊆ ∩d−2
i=1Li if d ≥ 3.

Definition 3.9. Let ϵ̃, ρ > 0. The restriction of a monodromy representative with limiting
path γ : [0, a]→ Cd to B̃ϵ̃ and Bρ is obtained by replacing:

• V with V ∩ B̃ϵ̃ ∩ π̃−1(Bρ)

• R̃ with R̃′ = R̃ ∩ B̃ϵ̃ ∩ π̃−1(Bρ)

• R with R′ = π̃(R̃′)

• γ with γ|[0,β] where β = sup({t ∈ [0, a] | γ([0, t]) ⊆ Bρ ∩ π−1(π(R′))}). One has β > 0
since ∥γ∥ is increasing.

To fix some notation, for a monodromy representative and a limiting path γ : [0, a]→ Cd,
note that there exists by Lemma 3.6 a disjoint set of paths s̃1, . . . , s̃k : [0, a] → V lift-
ing γ through π̃|V and similarly a disjoint set of paths p1, . . . , pj : [0, a] → R lifting π ◦ γ
through π|R. At any t ∈ [0, a], denote {s̃i(t)}ki=1 by S̃(t) and similarly {pi(t)}ji=1 by P (t).

Remark 3.10. Suppose that γ is a limiting path for a monodromy representative for a germ
of dimension d ≥ 2. For any t ∈ [0, a], if L1, L2, . . . , Ld−1 are hyperplanes in Cd defined
by the vanishing of each corresponding component function of π = (L1, L2, . . . , Ld−1) and
γ(t) ∈ ∩d−2

i=1Li, then P (t) = R ∩ Lθ(t) where θ(t) = Ld−1(γ(t)). In particular, the indicated
intersection of R with hyperplanes is finite, and Lθ(t) is homeomorphic to a plane in 2 real
dimensions. The fundamental group π1((π̃(V )−R)∩Lθ(t), γ(t)) is subsequently generated by
homotopy classes of j loops in (π̃(V )−R)∩Lθ(t) based at γ(t), each of which encircles exactly

one distinct point in P (t), and this fundamental group acts on the fiber S̃(t) = π̃|−1
V (γ(t))

by monodromy.
In the case d = 1, recall that Lθ(t) = Cd = C1 for all θ(t) and π : C1 → C0 is constant.

The paths p1, . . . , pj are therefore also constant. Equivalently, R = P (t) for all t. The
fundamental group π1((π̃(V )−R)∩Lθ(t), γ(t)) is generated by j loops in (π̃(V )−R)∩Lθ(t)

based at γ(t) and this fundamental group acts on the fiber S̃(t) = π̃|−1
V (γ(t)) by monodromy.

Definition 3.11. With notation as in Remark 3.10, call a loop ℓi : [0, 1]→ (π̃(V )−R)∩Lθ(t)

a basic loop for pi(t) if it is the concatenation of a straight line path, a path winding once
counterclockwise around a circle centered at pi(t) which encircles no other point in P (t), and
the reverse of the first straight line path.

Remark 3.12. Given a localized monodromy representative for a germV with projections π̃|V
and π|R, and limiting path γ, note that since 0 ∈ CN and 0 ∈ Cd are the only elements in

the fibers of π̃|V and π|R over 0 respectively, we must have that S̃(0) = {0} and P (0) = {0}.

3.2 Monodromy functors

Consider a monodromy representative together with limiting path γ. As alluded to above,
for any t, we can consider two monodromy actions: the action of π1(π̃(V ) − R, γ(t)) on
the fiber π̃|−1

V (γ(t)), and the sliced version as in Remark 3.10. It is natural, and will prove
computationally useful, to characterize how actions at different values of t are related.
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Indeed, the unsliced case is an instance of standard covering space theory. For different
values of t, γ induces a change-of-basepoint isomorphism between corresponding unsliced
monodromy actions. We cannot generally compute unsliced monodromy actions directly,
however, so our primary interest is in understanding the sliced case.

Our setup for approaching this question is category theoretic. The advantage is largely
organizational, as it allows us to fully specify important relationships concisely. We will see
that the unsliced and sliced monodromy actions behave in essentially the same way, and a
functor-based framework suggests where proof is necessary to show this in the sliced case. As
a useful guide, our main technical observation (Lemma 3.17) is that the sliced monodromy
actions for the same monodromy representative are isomorphic at any two values of t.

A monodromy representative together with a limiting path can be used to define a functor
of monodromy actions along the path. For any interval I ⊆ R, let, by abuse of notation, I also
denote the corresponding category obtained from the poset (I,≤) where ≤ is the standard
order. Let Act be the category of group actions on sets. In the following, we suppress giving
an explicit symbol for a group action where it is clear from context. More precisely, Act is
the category where:

• If G is any group and S any set, any group action of G on S is an object of Act, which
is denoted by (G,S).

• An arrow (G1, S1)→ (G2, S2) in Act is a pair (h, ι) where h : G1 → G2 is a homomor-
phism and ι : S1 → S2 is a map such that h(g)ι(s) = ι(gs) for all g ∈ G1, s ∈ S1.

• Composition and identities are component-wise.

Remark 3.13. There is a functor im : Act→ Group. For any object (G,S) of Act, view the
group action as a homomorphism ν : G→ Aut(S). Then, im(G,S) is im(ν). Given an arrow
(h, ι) : (G1, S1)→ (G2, S2), the homomorphism im(h, ι) : im(ν1)→ im(ν2) is ν2 ◦ h ◦ ν−1

1 .

Definition 3.14. Given a monodromy representative with a limiting path γ, the (un-
sliced) monodromy functor for this representative, denoted by Monγ : (0, a] → Act where
the monodromy representative is clear from context, is defined by the monodromy action
Monγ(t) = (π1(π̃(V ) − R, γ(t)), S(t)). For any t1 ≤ t2 ∈ (0, a], the map Monγ(t1 ≤ t2) is
defined on the fiber by si(t1) 7→ si(t2) for s1(t1), . . . , sk(t1) ∈ S(t) and on the fundamental
group by the standard change-of-basepoint isomorphism2 induced by ℓ 7→ γ|[t1,t2] ·ℓ·γ|[t1,t2] for
all loops ℓ based at γ(t1). The sliced monodromy functor for the monodromy representative,
Mons

γ : (0, a]→ Act, is the same as Monγ but replacing π1(π̃(V )− R, γ(t)) with the image
of the map on fundamental groups induced by the inclusion (π̃(V )∩Lθ(t))−R ↪→ π̃(V )−R.
When dim(V ) = 1, note Mons

γ = Monγ.

Proposition 3.15. Monγ and Mons
γ are functors.

Proof. We first prove the unsliced case. The only property that is non-routine to check is
that Monγ(t1 ≤ t2) as defined is a map of group actions for any t1 ≤ t2 ∈ (0, a]. Denote that
map as (iso, ι). For any [ℓ] in the fundamental group component of Monγ(t1), let ℓ̃ be the

2We adopt the typical convention here that an overline denotes the reverse of a path and · denotes
concatenation of paths.
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(a) (b) (c)

Figure 5: Illustrating first translation homotopy in Lemma 3.17: (a) loop ℓt1i (black, orange
arrow), ℓt2i (pink, dashed), path pi|[t1,t2] (red), and path γ (bottom, blue arrow); (b) loop ℓt1i
has been translated to ℓt1i + ct for some t ∈ [t1, t2]; (c) loop ends translation at ℓt1i + ct2 .

unique lifting of ℓ through π̃|V . For any s̃i(t1) ∈ S̃(t1), note that ℓ̃ ends at [ℓ]s̃i(t1), which
we denote by s̃z(t1). Also, note that s̃i|[t1,t2] · ℓ̃ · s̃z|[t1,t2] lifts γ|[t1,t2] · ℓ · γ|[t1,t2], starts at s̃i(t2),
and ends at s̃z(t2). This yields

ι([ℓ]s̃i(t1)) = ι(s̃z(t1)) = s̃z(t2) = iso([ℓ])s̃i(t2).

The sliced case follows from the unsliced case, with one caveat. We must show that
Mons

γ(t1 ≤ t2) is well-defined for t1 < t2. I.e., we need to check that γ|[t1,t2] · ℓ · γ|[t1,t2]
is basepoint preserving homotopic to a loop in Lθ(t2) for any loop ℓ in Lθ(t1). This follows
from the stronger Lemma 3.17, so we defer the proof to that result.

Definition 3.16. The local monodromy action of a monodromy representative with a limit-
ing path is lim←−Monγ. Similarly, the local monodromy group is lim←− im ◦Monγ.

These inverse limits are the natural category-theoretic objects which “fill in” the miss-
ing value of Monγ at 0. As we remarked earlier, however, the change-of-basepoint maps
Monγ(t1 ≤ t2) are isomorphisms of actions. An inverse is given by taking s̃i(t2) 7→ s̃i(t1) for
all i = 1, . . . , k and by taking the change-of-basepoint isomorphism on fundamental groups
corresponding to the reverse path γ|[t1,t2]. It follows directly that the local monodromy ac-
tion (and group) of a monodromy representative always exists and is isomorphic to Monγ(t)
for any t ∈ (0, 1]. A priori, lim←−Mons

γ does not necessarily exist. The behavior of sliced
monodromy functors is similar to the unsliced case in higher dimensions, however, as the
next result shows.

Lemma 3.17. For any t1 ≤ t2, let iso be the homomorphism component of Mons
γ(t1 ≤ t2).

If ℓt1i is a basic loop for pi(t1) and ℓt2i is a basic loop for pi(t2), then iso([ℓt1i ]) = [ℓt2i ]. In
particular, Mons

γ(t1 ≤ t2) is an isomorphism.

Proof. For any t ∈ (0, a], let d(t) denote the minimum of both mini ̸=z{∥pi(t) − pz(t)∥} and
min{∥pi(t)∥}ji=1, and let D = mint∈[t1,t2] d(t). Note that D > 0 as it is the minimum of
a continuous positive function on a compact interval. Without loss of generality, we can
assume the radius of the loops ℓt1i and ℓt2i is less than D/2.
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First, consider the simpler case where pi(t) ∈ BD/2(pi(t1)+γ(t)−γ(t1)) for all t ∈ [t1, t2].
If necessary, shrinkD further such that the indicated ball does not contain 0 or any point pz(t)
for z ̸= i and any t ∈ [t1, t2]. In this case, there is a basepoint-preserving homotopy of loops
H : I × I → (π̃(V ) − R) between iso(ℓi(t1)) and ℓi(t2). It is given in two steps. To define
the first homotopy H1 with domain I × [t1, t2], let ct be the constant loop at γ(t) − γ(t1).
Then, set

H1(•, t) = γ|[t,t2] · (ℓ
t1
i + ct) · γ|[t,t2].

See Figure 5. At the end of this homotopy, H1(•, t2) is homotopic to the translated loop
ℓt1i + ct2 with circular portion of radius less than D/2 centered at pi(t1) + γ(t2)− γ(t1), the
ball BD/2(pi(t1)+ γ(t2)− γ(t1))∩Lθ(t2) contains pi(t2), and it contains no other point pz(t2).
Note that ℓt1i + ct2 and ℓt2i have images contained in (π̃(V ) ∩ Lθ(t2)) − R ∼= B − F for some
closed ball B ⊆ R2 and a finite set F . It is subsequently straightforward to see that ℓt1i + ct2
and ℓt2i are endpoint-preserving homotopic in π̃(V )−R.

For the general case, notice that since t 7→ ∥pi(t)− (pi(t
′) + γ(t)− γ(t1))∥ is continuous

for fixed t′ ∈ [t1, t2], for every t ∈ [t1, t2] there is an open neighborhood of t in [t1, t2]
for which the simple case applies. Since [t1, t2] is compact, the first part of the lemma
follows from finitely many applications of the simpler case. The map on actions given by
s̃i(t2) 7→ s̃i(t1) for i = 1, . . . , k and induced by [ℓi(t2)] 7→ [ℓi(t1)] for i = 1, . . . , j is therefore
an inverse to Mons

γ(t1 ≤ t2).

It follows directly that the inverse limit of a sliced monodromy functor Mons
γ exists and is

isomorphic to Mons
γ(t) for any t in the domain of γ. We find the following observations useful.

Proposition 3.18. If γ1 : [0, a1]→ Cd and γ2 : [0, a2]→ Cd are limiting paths for the same
monodromy representative, then lim←−Mons

γ1
∼= lim←−Mons

γ2
.

Proof. There exist some t1, t2 ∈ (0,min(a1, a2)] with ∥γ1(t1)∥ ≤ ∥γ2(t2)∥ since the paths
are increasing in norm. Form a new limiting path γ3 : [0, a3] → Cd that ends at γ2(t2)
and includes γ1(t1) in its image. By Lemma 3.17, all the maps Mons

γi
(t′1 ≤ t′2) are isomor-

phisms for i = 1, 2, 3 with t′1 ≤ t′2 in the appropriate interval. The limits in question are
therefore isomorphic to Mons

γi
(ti) for i = 1, 2, and there is an isomorphism between those

defined by Mons
γ3
.

Proposition 3.19. Consider a monodromy representative with a limiting path restricted
to B̃ϵ̃ and Bρ. Let γ1 : [0, a1] → Cd be the original limiting path and γ2 = γ1|[0,a2] be the
restriction of the original limiting path so obtained. If Monr

γ2
is the (sliced or unsliced) mon-

odromy functor of the restricted monodromy representative and Monγ2 for the unrestricted
representative with path γ2, there is a natural transformation Monr

γ2
⇒ Monγ2 induced by

inclusion. The natural transformation induces a map lim←−Monr
γ2
→ lim←−Monγ2 .

Proof. This follows from a routine checking of definitions. To be somewhat more explicit, for
any fixed t there is an inclusion S̃(t)∩ B̃ϵ ⊆ S̃(t) of the restricted fiber into the unrestricted
fiber. Similarly, there is an inclusion on fundamental groups induced by the inclusionBρ ⊆ B,
where B ⊆ Cd is the ball covered by the unrestricted monodromy representative. The
indicated map between inverse limits is equal to this inclusion for any t up to isomorphism.
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3.3 Local monodromy actions of holomorphic subvarieties

We are now in position to state and prove our collection of main results, which will allow for
computations with sliced monodromy functors rather than unsliced ones. Using the notation
of Definition 3.1, we will assume throughout this subsection that limiting paths are restricted
to codomain ∩d−2

i=1Li for dimensions d ≥ 3 in order to fulfill the requirements of the local
Lefschetz-Zariski theorem in Lemma 2.9. If d = 2 the following results and proofs also hold
replacing ∩d−2

i=1Li with C2. If d = 1 the results also hold with simpler arguments that do not
appeal to Lemma 2.9 and minor corresponding notational adjustments.

Theorem 3.20. Given any localized monodromy representative for a pure d-dimensional
germ V of a holomorphic subvariety of CN with limiting path γ1 : [0, a1] → ∩d−2

i=1Li, the
local monodromy action of this representative exists and is isomorphic to the sliced limit
lim←−Mons

γ2
for some restriction γ2 = γ1|[0,a2].

Proof. By Lemma 2.9 and the definition of a localized monodromy representative, there
exists θ > 0 such that, if |Ld−1(γ1(t))| < θ, then Mons

γ1
(t) ∼= Monγ1(t). Since γ1 is an

increasing path, |Ld−1 ◦ γ1| is a continuous increasing function. It follows that there exists
a2 > 0 with |Ld−1(γ1(t))| < θ for all t ∈ [0, a2]. From Lemma 3.17 one immediately has that
lim←−Mons

γ2
exists and is isomorphic to Mons

γ2
(t) for any t ∈ [0, a2]. The result now follows

from Proposition 3.18.

Definition 3.21. The local monodromy action of a pure d-dimensional holomorphic germ V
of an open subset of CN is the local monodromy action of any localized monodromy repre-
sentative for V along any limiting path γ. Define the local monodromy group of V similarly.

In principle, this definition depends on the generic choices of data used to construct a
localized monodromy representative for V, and we must check that different choices yield
isomorphic local monodromy actions. The following corollary first justifies referring to the
local monodromy action and group of a localized monodromy representative.

Corollary 3.22. For any localized monodromy representative with limiting paths

γ1, γ2 : [0, ai]→ ∩d−2
i=1Li

for a pure d-dimensional germ V of a holomorphic subvariety of CN :

1. The local monodromy action is isomorphic to Mons
γ1
(t) for any t ∈ (0, a1].

2. The local monodromy actions defined by γ1 and γ2 are isomorphic.

3. The local monodromy actions defined by any two restrictions of the same localized
monodromy representative for V with limiting path γ are isomorphic.

Proof. The first statement follows from Theorem 3.20 and Lemma 3.17. The second follows
from Theorem 3.20 and Proposition 3.18. For the third statement, note that for any two
restrictions of the same localized monodromy representative, there exists a common restric-
tion of both with monodromy action Mon1. Let Mon2,Mon3 be the monodromy actions of
the other two restrictions. From the first statement, we know that there is some t0 such
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that lim←−Moni
∼= Mons

i (t0) for i = 1, 2, 3. We can further choose t0 small enough that the

corresponding fibers S̃i(t0) and Pi(t0) have the same number of points for i = 1, 2, 3. From
Proposition 3.19, we have induced maps Mons

1(t0) → Mons
i (t0) for i = 2, 3, and one may

observe that these are isomorphisms from their definition.

It is also natural to ask whether the choice of generic projections π̃ and π for the localized
monodromy representative impact the action. Handling π is straightforward, but π̃ takes
some care since this determines the branch locus.

Proposition 3.23. The local monodromy actions of any two localized monodromy repre-
sentatives which differ only in the linear projections π1, π2 : Cd → Cd−1 have isomorphic
local monodromy actions.

Proof. By Theorem 3.20, there is a limiting path γ for both monodromy representatives and
t0 > 0 where, denoting the corresponding sliced monodromy actions by Mons

i for i = 1, 2, one
has that the corresponding local monodromy actions are isomorphic to Mons

i (t0) for i = 1, 2,
respectively. By standard parameter homotopy continuation results, e.g., see [24], given a
generic path Γ : [0, 1]→ Gr(d− 1, d)d−1, i.e., Γ(T ) = (L1(T ), . . . , Ld−1(T )), and denoting

LT := ∩d−2
i=1 {Li(T ) = 0} ∩ {Ld−1(T ) = [Ld−1(T )](γ(t0))},

the set {R∩LT}T∈[0,1] can be parameterized as a disjoint set of smooth paths δi : [0, 1]→ Cd

for i = 1, . . . , j. If Γ starts at the hyperplanes defining π1 and ends at those defining π2, a
similar loop-translating argument to Lemma 3.17 produces an isomorphism of group actions
Mons

1(t0)→ Mons
2(t0). This isomorphism is the identity on the fiber component. On the

fundamental group component, it is induced by a map which takes a basic loop for δi(0) to
a basic loop for δi(1) for each i = 1, . . . , j.

Proposition 3.24. The local monodromy actions of any two localized monodromy repre-
sentatives which differ only in the linear projections π̃1, π̃2 : CN → Cd have isomorphic local
monodromy actions.

Proof. One can follow a similar argument as in Proposition 3.23, but now apply parameter
homotopy continuation results, e.g., see [24], to a parameter homotopy between π̃1 and π̃2

so that the local monodromy actions along the path between them are isomorphic.

Taken together, Corollary 3.22 and Propositions 3.23 and 3.24 show that the various
generic choices made when forming a localized monodromy representative yield isomorphic
local monodromy actions.

Theorem 3.25. The local monodromy actions of a pure d-dimensional holomorphic germ V
of an open subset of CN defined by any two sets of localized monodromy representative data
are isomorphic.

Our last order of business is to use the structural results in this section to see how a
monodromy representative, rather than localized monodromy representative, encodes infor-
mation about the corresponding germ’s local monodromy action. Recall from Remark 3.12
that the fiber points S̃(t) and critical points P (t) limit to 0 (in CN and Cd respectively) as
t → 0 for a localized monodromy representative. This observation provides a constructive
way to filter “local” and “non-local” points in these sets.
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Theorem 3.26. Given any monodromy representative which restricts to a localized mon-
odromy representative with limiting path γ1 : [0, a1] → ∩d−2

i=1Li of a pure d-dimensional

germ V of a holomorphic subvariety of CN , consider S̃l(t) and P l(t) which are the subsets
of fiber points and sliced branch points respectively for t ∈ [0, a1] with corresponding solu-
tion paths beginning at 0. Then, for any t ∈ (0, a1], the local monodromy action of V is
isomorphic to the sub-action of Mons

γ1
(t) which is comprised of the subgroup generated by

homotopy classes of basic loops around the points of P l(t) acting on the points of S̃l(t).

Proof. By assumption, there is some restriction of the monodromy representative which is
a localized monodromy representative for V, say with restricted limiting path γ2 = γ1|[0,a2],
sliced monodromy action Mons

γ1
for the original representative, and (sliced) monodromy func-

tor Monr
γ2

for the restriction of the monodromy representative. For any t ∈ (0, a2], one may
observe directly by definition that the image of the arrow Monr

γ2
(t)→ Mons

γ2
(t) = Mons

γ1
(t)

as in Proposition 3.19 is the described sub-action of Mons
γ1
(t) and that the arrow is monic. For

t ≥ a2, compose the arrow Monr
γ2
(a2)→ Mons

γ1
(a2) with the isomorphism Mons

γ1
(a2 ≤ t).

4 Computing local monodromy actions

The theoretical results of Section 3 yield an approach for computing local monodromy ac-
tions. In particular, this theory shows that one can use analytic continuation to extend
beyond the small enough neighborhood restriction for localizing monodromy computations.
We will discuss the corresponding numerical local irreducible decomposition algorithm based
on this theory in two parts: a main theoretical description followed by considerations when
trying perform such computations.

4.1 Algorithm

In the following, we specialize the setup to the situation in Example 3.5. Recalling that
notation, assume f : CN → CN−d is a system of polynomial equations defining a pure d-
dimensional algebraic complete intersection V = V(f) and that V is reduced with respect
to f . We assume that f is specified exactly as input. Similar to statements in the beginning
of Section 3.3, the case of d ≥ 3 is considered for notational convenience though the algorithm
is easily adjusted for the d = 2 and d = 1 cases. Let x∗ ∈ V be a point, which we assume
is specified exactly as input. We will not assume x∗ = 0 in this section as this will be more
convenient when discussing potential sources of difficulty with practical considerations.

Consider a linear projection map π̃ : CN → Cd constructed by filling the entries of a d×N
matrix uniformly at random, say with real and imaginary parts of entries between 0 and 1 to
be definite. Then, with probability 1, π̃|V is a global parametrization of V that (1) restricts
to a local parameterization of V at x∗ and (2) fulfills parameter homotopy continuation

conditions. Let R̃ denote the critical locus of π̃ and R = π̃(R̃) denote its image. Choosing a
linear projection π : Cd → Cd−1 in a similar random fashion, one obtains with probability 1
a map with π|R fulfilling the same properties relative to R as π̃|V fulfills relative to V .
Translating notation to x∗, let L∗

i denote the hypersurface V(πi(x)− πi(π̃(x
∗))) ⊆ Cd for all

i = 1, . . . , d− 2.
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The final generic choice to be made for localization is selecting a path γ : [0, 1]→ ∩d−2
i=1L

∗
i .

It suffices to choose a point γ(1) ∈ B∗
1 ∩d−2

i=1 L
∗
i where B

∗
1 ⊆ Cd is the ball of radius 1 centered

at π̃(x∗), and set γ(t) = (1 − t)π̃(x∗) + tγ(1). The choice of radius 1 here is arbitrary, as
any other positive radius would also suffice. With probability 1, this data can be used to
construct a monodromy representative with limiting path for the germ of π̃|V at x∗ which
restricts to a localized monodromy representative for the germ of V at x∗ as defined in
Section 3. Denote θ = π ◦ γ and denote the complex line L∗

θ(1) := ∩
d−2
i=1L

∗
i ∩ π−1

d−1(θ(1)).
In the following algorithm, recall that CG denotes the critical point correspondence

for π̃|V . That is, CG := {(ṽ, v) | (ṽ, v) ∈ graph(π̃|V ), rank J(f, π̃)(ṽ) < N}. The image of
the critical point locus of π̃|V , R, is the image of CG projected onto its second factor. It
may also help to note that (x∗, π̃(x∗)) ∈ CG.

Algorithm 2: Numerical local irreducible decomposition
Input : A polynomial system f : CN → CN−d defining a reduced complete intersection V = V (f) ⊆ CN of

dimension d
Input : A point x∗ ∈ V .
Output: A numerical local irreducible decomposition of V at x∗.

1 Select a linear map π̃ : CN → Cd uniformly at random;

2 Select a linear map π : Cd → Cd−1 uniformly at random;

3 Select γ(1) ∈ B∗
1 ∩d−2

i=1 L∗
i uniformly at random and set γ(t) = (1− t)π̃(x∗) + tγ(1) for t ∈ [0, 1]. Denote θ := π ◦ γ;

4 Compute a local witness point set W̃ l for V at x∗ using Algorithm 1 with inputs π̃, γ;
5 Compute a local witness point set W ′ for CG at (x∗, π̃(x∗)) using Algorithm 1 with inputs (π̃, π) and path

(γ, θ) : [0, 1] → Cd × Cd−1;

6 Set W l equal to {v}(ṽ,v)∈W ′ , which forms a local witness point set for R at π̃(x∗);

7 Compute the partition W̃ l = w̃1
∐

w̃2
∐

· · ·
∐

w̃k given by the monodromy action on W̃ l through π̃ of basic loops in

L∗
θ(1)

based at γ(1) encircling the points of W l ;

8 Return the sets {f, π̃, w̃i} for i = 1, . . . , k ;

Theorem 4.1. Assuming generic choices for π̃, π, and γ in Algorithm 2, the output of the
algorithm is a numerical local irreducible decomposition of the germ of V at x∗.

Proof. We continue with notation as in Algorithm 2. By Theorem 3.26, the local monodromy
action of V, the germ of V at x∗, is isomorphic to the monodromy action on W̃ l by the
subgroup of homotopy classes of based loops at γ(1) generated by the set of homotopy classes
of basic loops encircling the points ofW l contained in L∗

θ(1). By Lemma 2.1 and Corollary 3.22
the orbits of the local monodromy action of V are in bijection with the local irreducible
components of V. It is straightforward to observe by definition that the orbits of W̃ l so
computed are local witness point sets for their corresponding local irreducible components.

4.2 Practical considerations

There are two distinct portions of Algorithm 2 which are relevant for further discussion when
performing computations. The first consists of the local witness point computations in lines 4
and 5. The second is the computation of monodromy actions from lifting basic loops in line 7.
Several software packages are able to perform the homotopy continuation computations in the
key parts of Algorithms 1 and 2. These include Bertini [3], HomotopyContinuation.jl [10],
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and NAG4M2 [22]. We focus our discussion here on practical considerations which are unique
to our algorithm rather than those faced by homotopy continuation methods in general.

First, note that the input polynomial system f : CN → CN−d is assumed in Algorithm 2
to be provided in exact form, i.e., the coefficients of the corresponding polynomials are
specified exactly. This is an essential assumption unless x∗ ∈ V is nonsingular. Even small
generic perturbations to the coefficients of f will result in nonsingular V(f).

The point x∗ ∈ V is also assumed to be exact for convenience as the localization procedure
in Algorithm 1 must determine which solution paths converge to x∗ and which do not.
Moreover, when x∗ is singular, which is the case of interest for computing a local irreducible
decomposition, the Jacobian matrix is ill-conditioned in a neighborhood of a singular point
and so care needs to be taken when performing path tracking nearby. Adpative precision path
tracking [4] adjusts the precision based on the local conditioning to ensure enough digits are
being used to accurately track the path. Endgames (see [25, Chap. 10] and [5, Chap. 3]) can
be employed to accurately determine the endpoint of paths. To the best of our knowledge, no
certification procedures exist for certifying the output Algorithm 1 is correct. More precisely,
one expects in practice to be able to certify that some of the solution paths computed in
Algorithm 1 do not limit to x∗, but not necessarily to be able to perform certification for all
paths which have this property. We must always decide some small proximity or numerical
threshold at which we will classify distinct solution paths as having converged to x∗ rather
than a different point that can be made robust using adpative precision and endgames.

The main numerical difficulty in Algorithm 2, apart from localization, is in using ho-
motopy continuation to compute the monodromy action in line 7. In practice, this often
requires tracking paths which pass near the critical locus of π̃. See, e.g., Figure 7 in the next
section. This is precisely a situation where numerical methods may be poorly conditioned.
In particular, consider the critical points in the global witness point set W g for R from which
the local witness point set W l is computed using Algorithm 1. If the points in W g cluster
closely together, the corresponding basic loops encircling points from W l must necessarily
pass close to the critical locus. The advantage here is that the solution paths are generically
nonsingular. Hence, adaptive precision path tracking [4] with large enough precision will suc-
ceed and can be certified if desired. Options for certification include certified path tracking,
e.g., see [7, 18], and a posteriori certification of heuristic path tracking [17]. Alternatively,
it can often be computationally less expensive in practice to simply try again with different
random choices for π̃, π, and γ.

Restricting the input of Algorithm 2 to complete intersections is not strictly necessary,
but is stated this way for simplicity of presentation. There are standard techniques used in
numerical algebraic geometry, e.g., randomization and Bertini’s theorem [25, §A.9], for re-
ducing to this case. Note that such reduction techniques simply add pre- and post-processing
steps which do not change the core procedure.

Finally, we remark that in practice there are two possible algebraic formulations for
capturing the rank vanishing condition rank J(f, π̃) < N appearing in the definition of the
critical point set CG. The matrix J(f, π̃) is an N ×N square matrix with d constant rows
corresponding to π̃, so its rank vanishing is captured by setting the determinant equal to 0.
When N and the degree of f is modest, this works well. An alternative is to use a null space
formulation [2] which adds the cost of additional variables that capture the null space to
avoid computing large determinants.
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Figure 6: Illustration of the the Whitney umbrella.

5 Examples

We conclude with several examples of computing a numerical local irreducible decomposi-
tion using an implementation of Algorithm 2 available at https://github.com/P-Edwards/
LocalMonodromy.jl.3 This implementation uses HomotopyContinuation.jl [10] for path
tracking without certification. Computation times are reported with homotopy continuation
parallelized using an Intel Core i7-920 CPU with 8 CPU threads. Memory requirements
were less than 2GB. To fix some convenient terminology from Algorithms 1 and 2, call the
number of points in a global witness point set for V the global fiber degree of V , |w̃i| the
local fiber degree of each locally irreducible component Vi, the number of points in a global
witness point set for R the global branch degree, and the number of points in a local witness
point set for R at π̃(x∗) the local branch degree.

Example 5.1. The Whitney umbrella V ⊆ C3 is the surface defined by x2
1 − x3x

2
2 = 0

and has singular points along the line x1 = x2 = 0 as illustrated in Figure 6. At a point
x∗ = (0, 0, κ) with κ ̸= 0, there is a nontrivial factorization (x1−x2

√
x3)(x1+x2

√
x3) = 0 in

the local ring of holomorphic germs at x∗, so one expects V to be locally reducible with two
locally irreducible components at x∗. When κ = 0, this factorization is not available since
there is no holomorphic inverse to z 7→ z2 in a neighborhood of 0. One therefore expects V
to be locally irreducible at the origin.

Algorithm 2 at the origin computes one local irreducible component of local fiber degree 2,
global fiber degree 3, local branch degree 2, and global branch degree 4. The results at
x∗ = (0, 0,−1) were similar except having two local irreducible components, each having local
fiber degree 1. In these cases, the computations required took approximately 22 seconds.

This example is notable for having a critical point locus with an unreduced irreducible
component, namely the line x1 = x2 = 0 which is often called the “handle” of the Whitney
umbrella. It is unreduced in the sense of having generic multiplicity greater than 1. A stan-
dard approach in numerical algebraic geometry to perform computations on such components
is to deflate the component first described in [25, §10.5] (see also [20]). Our experiments
include a deflation step for this and other unreduced examples.

3A static version of the package together with files suitable for reproducing the examples is available at
https://doi.org/10.5281/zenodo.14532556.
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Figure 7: Branch points and corresponding localized monodromy loops of the branch locus
intersected with a complex line, identified with R2, for the Brieskorn manifold with global
fiber degree 174. For illustration purposes, only 65 of 174 global branch points are depicted.

Example 5.2. Table 1 collects data arising from various globally irreducible hypersurfaces
which have an isolated singularity at the origin. In particular, the last one is related to the
construction of a so-called Brieskorn manifold [11] with global branch degree 174. Figure 7
shows how increasing degree can complicate the clustering pattern of branch points.

Equation
Local
fiber
degrees

Global
fiber
degree

Local
branch
degree

Global
branch
degree

x2 + (y − 1)y2 = 0 1,1 3 1 3
(3x+ y + 2z)2x3 + (x− 1)(y + z)3 = 0 1,2 5 1 10

xy − z3 = 0 2 3 2 4
x2 + y2 + z2 = 0 2 2 2 2

x2 + y2 + z2 + w2 = 0 2 2 2 2
z21 + z22 + z23 + z34 + z595 = 0 2 59 2 174

Table 1: Summary of results for several hypersurfaces at the origin.

Example 5.3. Our final example arises in kinematics and studied in [12, §8.1] arising from
a coupler curve of a four-bar linkage. In particular, for the polynomial system

f(x, y, u, v, a, b, c, d) =

 x2 + y2 − a2

(u− b)2 + v2 − c2

(x− u)2 + (y − v)2 − d2

 ,

the set V = V (f) ⊂ C8 is irreducible of codimension 3. The variables a, b, c, d are mechanical
parameters of the four-bar linkage while x, y, u, v describe the coupler curve of the resulting
four-bar linkage. We consider the local irreducible decomposition of V at the origin. Here,
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the critical point locus has dimension 4. The computation found that the origin is locally
irreducible with local degree 8 and both the global and local branch degrees were 24. More-
over, the corresponding local monodromy group was computed to be the entire symmetric
group on the 8 fiber points. In total, this computation took approximately 45 seconds.

6 Conclusion

This paper introduced a theory of local monodromy actions for germs of holomorphic subva-
rieties, their behavior under continuation, algorithms which leverage that theory to compute
numerical local irreducible decompositions, and an open source software implementation for
doing so in the algebraic case. Several examples are used to demonstrate this novel theory
for computing local monodromy actions and numerical local irreducible decompositions. We
conclude with brief thoughts on possible future extensions.

First, certification of routines and robustness in the style of [7] of the numerical local
irreducible decomposition should be considered.

As discussed in the Introduction, a numerical local irreducible decomposition at a point
x∗ ∈ V with V algebraic encodes coarse stratified topological information about V at x∗.
More precisely, the number of d-dimensional local irreducible components at x∗ is the min-
imum number of d-dimensional strata local to x∗ in any stratification. There are natural
questions which correspondingly arise about assigning and computing local monodromy ac-
tions for higher dimensional objects. For instance, if V is d-dimensional and there exists
a stratification of V with x∗

1, x
∗
2 in the same (d − 1)-dimensional stratum, one expects the

local monodromy actions at those points to be isomorphic. Numerical computations related
to these types of questions should now be possible, e.g., by computing maps between the
corresponding local monodromy actions with homotopy continuation.

It is also natural to consider whether and how our theory could be adapted to the case of
real varieties, as these are of the most interest in engineering and science applications. There
is a version of the local parametrization theorem for germs of real holomorphic varieties, so
elements of the theory in Section 3 translate to the real case without significant modification.
Obstructions do arise, however. For instance, slicing a real holomorphic set with a comple-
mentary linear space near a point does not generally yield points on representatives for each
locally irreducible component. Nevertheless, our monodromy functor formalism provides a
framework for probing these questions in the context of numerical computations.
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