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Abstract

We describe an algorithm for computing Macaulay dual spaces for multi-graded ideals. For
homogeneous ideals, the natural grading is inherited by the Macaulay dual space which has
been leveraged to develop algorithms to compute the Macaulay dual space in each homogeneous
degree. Our main theoretical result extends this idea to multi-graded Macaulay dual spaces
inherited from multi-graded ideals. This natural duality allows ideal operations to be translated
from homogeneous ideals to their corresponding operations on the multi-graded Macaulay dual
spaces. In particular, we describe a linear operator with a right inverse for computing quotients
by a multi-graded polynomial. By using a total ordering on the homogeneous components of the
Macaulay dual space, we also describe how to recursively construct a basis for each component.
Several examples are included to demonstrate this new approach.

Keywords Macaulay dual spaces; Hilbert functions; multi-grading; symbolic-numeric computing

1 Introduction

For a polynomial system F Ď Crx1, . . . , xN s, many algebraic properties of the ideal I “ xF y

generated by F can, for example, be deduced from a Gröbner basis of I, such as its Hilbert function.
In many instances, one often knows a generating set F for an ideal I, but computing a Gröbner
basis of I could be computationally infeasible. From a generating set F , another approach to
compute information about the corresponding ideal is to use Macaulay dual spaces which Macaulay
formulated as inverse systems in [18] and have been utilized in a variety of scenarios such as [1, 2,
6, 7, 11, 13, 15, 17, 19, 22, 24–26]. One particular application of interest here is to compute Hilbert
functions of ideals up to a given degree which are graded by a finitely generated abelian group M ,
called multi-graded ideals.

Since multi-graded ideals are a generalization of homogeneous ideals, multi-graded Macaulay
dual spaces are a generalization of homogeneous Macaulay dual spaces. Moreover, multi-graded
ideals naturally arise when considering multi-projective varieties, and more generally, subvarieties of
a smooth toric variety. One key theoretical result is Thm. 3.2 which states that the Macaulay dual
space of a multi-graded ideal inherits the multi-grading from the ideal. This is applied in Section 4
to ideal operations with another key theoretical result being Thm. 4.8 for computing ideal quotients
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using Macaulay dual spaces. For Zk-gradings, an algorithm is described for computing each graded
piece of the dual space sequentially up to a given degree. This is in contrast to other known Gröbner
basis techniques over semigroup algebras [3, 8].

The rest of the paper is organized as follows. Section 2 summarizes necessary background
regarding multi-graded ideals and Macaulay dual spaces. Section 3 describes multi-graded Macaulay
dual spaces which are used in ideal operations in Section 4. Section 5 provides an algorithm for
computing multi-graded Macaulay dual spaces and summarizes a proof-of-concept implementation
which is used in the examples presented in Section 6. A short conclusion is provided in Section 7.

2 Background

The following summarizes necessary background information on multi-graded ideals and Macaulay
dual spaces.

2.1 Multi-graded ideals

The first step in defining a multi-graded ideal is to have a multi-grading on a polynomial ring.

Definition 2.1 Let R “ Crx1, . . . , xN s and M be a finitely generated abelian group. Then, R is
M -graded if there is a direct sum decomposition of the form

R “
à

mPM

Rm

where Rm1 ¨ Rm2 Ď Rm1`m2 for all m1,m2 P M . Moreover, if m P M and f P Rm, then f is M -
homogeneous of degree m, denoted degpfq “ m. Finally, if I Ď R is an ideal, then I is M -graded
if I is generated by M -homogeneous polynomials.

If α P pZě0qN , then consider

|α| “

N
ÿ

i“1

αi, α! “

N
ź

i“1

αi!, and xα “

N
ź

i“1

xαi
i . (1)

Hence, the standard grading of R is a Z-grading with

Rm “ spanC
␣

xα : |α| “ m,α P pZě0qN
(

.

The following is an example with a different grading.

Example 2.2 Consider R “ Crx1, x2s and M “ Z such that degpx1q “ 2 and degpx2q “ 1. Then,
for m P Z,

Rm “ spanCtxa1x
m´2a
2 : m ě 2a, a P Zě0u. (2)

Hence, f “ x1 ´ 3x22 P R2, i.e., f is an M -homogeneous polynomial with degpfq “ 2.

Such a construction used in Ex. 2.2 can be naturally generalized to define an M -grading on R,
namely select m1, . . . ,mN P M and assign degpxiq “ mi. Thus, for any α P pZě0qN ,

degpxαq “

N
ÿ

i“1

αimi.

In particular, for m P M , one has

Rm “ spanC
␣

xα : degpxαq “ m,α P pZě0qN
(

.
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Remark 2.3 If M “ Z and degpx1q “ ¨ ¨ ¨ “ degpxN q “ 1, then the Z-grading on R is the standard
grading.

Example 2.4 Let M “ Z2, R “ Crx1, x2, x3, x4s, and r P Zą0. Set

degpx1q “ p1,´rq, degpx2q “ p0, 1q,
degpx3q “ p1, 0q, degpx4q “ p0, 1q.

This is the Cox ring of the rth Hirzebruch surface Hr [5, § 5.2]. Just as there is a correspondence
between homogeneous ideals and projective varieties, there is a correspondence between M -graded
ideals of R and subvarieties of Hr.

For an M -graded ideal I, the multi-graded Hilbert function simply records information about
the corresponding dimensions of homogeneous components of R{I [20, §8.2]. In order to have
finite dimensions, we will only consider M -gradings in the remainder of this article such that
dimCpRmq ă 8 for all m P M . This is equivalent to R0 “ C, that is, every polynomial of degree 0
is constant.

Definition 2.5 If R is M -graded and I Ď R is an M -graded ideal, then the multi-graded Hilbert
function of I is the function HI : M Ñ Z defined by

HIpmq “ dimCpRmq ´ dimCpRm X Iq.

Example 2.6 Following the setup from Ex. 2.2 with I “ xx1 ´ 3x22y, one can easily verify that

HIpmq “

"

0 if m ă 0,
1 if m ě 0.

Example 2.7 An illustration of a grading which will not be considered is R “ Crx1, x2s and M “ Z
with degpx1q “ 1 and degpx2q “ ´1. Thus, for example, degpxk1x

k
2q “ 0 for any k P Zě0 so that

dimCpR0q “ 8.

2.2 Macaulay dual spaces

Macaulay dual spaces are a modern form of inverse systems studied by Macaulay [18]. Let
R “ Crx1, . . . , xN s, α P pZě0qN , and y P CN . Following (1), consider the operator Bαrys : R Ñ C
defined by

Bαryspgq “
1

α!

B|α|g

Bxα1
1 . . . BxαN

N

ˇ

ˇ

ˇ

ˇ

ˇ

x“y

.

When the context is clear, we will write Bα instead of Bαrys.

Example 2.8 For R “ Crx1, x2s, α “ p3, 2q, and y “ p1, 2q, we have

Bαryspx41x
3
2 ` 3x31x

2
2 ´ 2x21 ` 3x2 ´ 1q “

144x1x2 ` 36

3!2!

ˇ

ˇ

ˇ

ˇ

x“p1,2q

“ 27.

In particular, 27 is the coefficient of px1 ´ 1q3px2 ´ 2q2 in a Taylor series expansion of x41x
3
2 `

3x31x
2
2 ´ 2x21 ` 3x2 ´ 1 centered at y “ p1, 2q.
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The Macaulay dual space is a C-vector space contained inside of

Dy “ spanC
␣

Bαrys : α P pZě0qN
(

.

Definition 2.9 Let I Ď R be an ideal and y P CN . The Macaulay dual space of I at y is the
C-vector space

DypIq “ tB P Dy : Bpgq “ 0 for all g P Iu.

If the dimension of DypIq is finite, then dimCDypIq is the multiplicity of y with respect to I. If
the dimension ofDypIq is infinite, then y is a nonisolated solution in CN of the variety corresponding
to I. This fact was exploited in [1] to develop a numerical local dimension test.

Example 2.10 Let R “ Crx1, x2s and I “ x29{16x31 ´ 2x1x2, x2 ´ x21y arising from the Griewank-
Osborne system [10]. It is well-known that y “ p0, 0q has multiplicity 3 with respect to I and one
can easily verify that

D0pIq “ spanC
␣

Bp0,0q, Bp1,0q, Bp0,1q ` Bp2,0q

(

(3)

is a 3-dimensional vector space.

From [24], for i “ 1, . . . , N , there are linear anti-differentiation operators Φi : Dy Ñ Dy which
are defined via

ΦipBαq “

#

Bα´ei if αi ą 0

0 otherwise
(4)

where ei is the ith standard basis vector. From the Leibniz rule, one can easily verify that, for any
f P R and B P Dy,

ΦipBqpfq “ Bppxi ´ yiqfq (5)

The following, from [24,26], uses these linear operators to compute DypIq via the so-called closed-
ness subspace condition which has been exploited to improve the efficiency of computing dual
spaces [6, 13].

Proposition 2.11 Let I “ xf1, . . . , fty Ď Crx1, . . . , xN s, y P CN , and B P Dy. Then, B P DypIq if
and only if Bpfiq “ 0 for all 1 ď i ď t and ΦjpBq P DypIq for all 1 ď j ď N .

One key aspect of this closedness condition is that any basis for the ideal I can be utilized.

Example 2.12 Continuing with Ex. 2.10 where f1 “ 29{16x31 ´ 2x1x2 and f2 “ x2 ´ x21, consider
δ “ Bp0,1q ` Bp2,0q. Clearly, δpf1q “ 0 since the monomials x21 and x2 do not appear in f1. Next, it
is easy to verify that δpf2q “ 1 ´ 1 “ 0. Finally, Φ1pδq “ Bp1,0q and Φ2pδq “ Bp0,0q. Hence, given
that Bp0,0q, Bp1,0q P D0pIq, Prop. 2.11 allows one to conclude that δ P D0pIq.

3 Multi-Graded Macaulay Dual Spaces

For a multi-graded ideal I Ď R “ Crx1, . . . , xN s, one can consider investigating the Macaulay dual
space at y “ 0 P CN to determine properties about I. The following shows that the multi-graded
structure of I extends to D0pIq.

Suppose that R is M -graded where the M -grading is induced by assigning degpxiq “ mi P M
such that dimCpR0q “ 1. In particular, after selecting a basis of M , say β “ tβ1, . . . , βku, one can
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express each mi in terms of β. Let A be the k ˆ N matrix whose ith column corresponds with mi

in terms of β. Hence, for any m P R, a basis of monomials for Rm is

txα : A ¨ α “ m,α P ZN
ě0u.

In particular, dimCpR0q “ 1 is equivalent to null A X ZN
ě0 “ t0u.

Example 3.1 With the setup from Ex. 2.4, using a standard basis β “ te1, e2u for M “ Z2, one
has

A “

ˆ

1 0 1 0
´r 1 0 1

˙

and N “

¨

˚

˚

˝

1 0
r ´1

´1 0
0 1

˛

‹

‹

‚

where the columns of N span null A. The first and third rows of N clearly show null A X Z4
ě0 “ t0u.

One can extend the M -grading to D0, namely, for each m P M ,

Dm
0 “ spanC

␣

Bαr0s : A ¨ α “ m,α P ZN
ě0

(

.

Hence, there is a direct sum decomposition of the form

D0 “
à

mPM

Dm
0 . (6)

The following is the key theoretical result that D0pIq inherits the multi-grading from I.

Theorem 3.2 Suppose that I Ď R is an M -graded ideal. Then, the Macaulay dual space D0pIq is
also M -graded, that is,

D0pIq “
à

mPM

Dm
0 pIq

where Dm
0 pIq “ Dm

0 X D0pIq.

Proof. Suppose that B P D0pIq. Thus, from (6), one can write

B “
ÿ

mPM

Bm

where each Bm P Dm
0 . The result follows by showing Bm P D0pIq for all m P M . To that end, let

g P I. Since I is M -graded, one has
g “

ÿ

mPM

gm

where each gm P Rm X I. We claim that, for any m P M ,

Bmpgq “ Bmpgmq “ Bpgmq “ 0.

The first equality follows from Bm being a linear operator such that Bmppq “ 0 for any p P Rq for
q ‰ m. The second equality follows from linearity along with δpgmq “ 0 for any δ P Dq for q ‰ m.
The last equality follows from gm P I and B P D0pIq. The result now follows since both g P I and
m P M were arbitrary. l
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Example 3.3 Continuing with the setup from Ex. 2.10, one can view I as M -graded by taking
M “ Z such that degpxiq “ i, i.e.,

A “
`

1 2
˘

.

Hence, one can interpret (3) as

D0pIq “ D0
0pIq ‘ D1

0pIq ‘ D2
0pIq

where
D0

0pIq “ spanCtBp0,0qu, D
1
0pIq “ spanCtBp1,0qu, and

D2
0pIq “ spanCtBp0,1q ` Bp2,0qu.

(7)

Adapting, for example, the proof of [11, Thm. 3.2], the multi-graded Hilbert function is simply
the dimension of the corresponding Macaulay dual space.

Proposition 3.4 Suppose that R is M -graded and I Ď R is an M -graded ideal. Then, for all
m P M ,

HIpmq “ dimCpDm
0 pIqq.

Example 3.5 From Ex. 3.3, one has HIp0q “ HIp1q “ HIp2q “ 1 and otherwise equal to 0.

With theM -grading onD0, one can view the anti-differentiation operators Φi in (4) as operators
from Dm

0 to Dm´A¨ei
0 and refine the closedness subspace condition in Prop. 2.11 to the multi-

graded case.

Corollary 3.6 Suppose that I “ xf1, . . . , fty Ď R is an M -graded ideal where each fi is M -
homogeneous. For each m P M , let

Cm
0 pIq “

!

B P Dm
0 : ΦipBq P Dm´Aei

0 pIq for i “ 1, . . . , N
)

.

be the closedness subspace of degree m. Then,

Dm
0 pIq “ tB P Cm

0 pIq : Bpfiq “ 0 for all i such that degpfiq “ mu .

The equation-by-equation approach described in [13] for computing closedness subspaces can
easily be adapted to this multi-graded situation. Moreover, to compute Cm

0 pIq, one must have
already computed Dm´Aei

0 pIq for each i “ 1, . . . , N . There is a natural question about which order
one has to compute these spaces. To answer this, we make the following definition.

Definition 3.7 For an M -grading, the weight semigroup of M is

ω “ tm P M : Rm ‰ 0u. (8)

The partial ordering induced by ω, denoted ĺω is defined by

m1 ĺω m2 ðñ m2 ´ m1 P ω.

Note that ω is indeed a semigroup and, by our assumptions on the M -grading of R, the positive
hull of ω, denoted ωR, in M b R is a pointed polyhedral cone, called the weight cone of M .

Proposition 3.8 ĺω is a partial ordering on ω.
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Proof. Reflexivity follows since m ´ m “ 0 P ω so that m ĺω m. For anti-symmetry, suppose
m1 ĺω m2 and m2 ĺω m1. Hence, both m1 ´ m2 and ´pm1 ´ m2q are in ω. Our assumptions
on the M -grading imply that a,´a P ω if and only if a “ 0. Hence, m1 “ m2. For transitivity,
suppose m1 ĺω m2 and m2 ĺω m3. Then, since m2 ´m1,m3 ´m2 P ω and since ω is a semigroup,

m3 ´ m1 “ pm3 ´ m2q ` pm2 ´ m1q P ω.

Hence, m1 ĺω m3. l

Let ďω be any linear extension of ĺω. Thus, C
m
0 pIq can be computed from knowing Ds

0pIq for
all s ăω m as illustrated next.

Example 3.9 Consider Ex. 2.4 with r “ 2 so that degpxiq is the ith column of

A “

ˆ

1 0 1 0
´2 1 0 1

˙

.

Consider I “ xfy where f “ x3 ´ x1x
2
2 is M -homogeneous with degpfq “ p1, 0q. Suppose that

one aims to build up to compute C
p1,1q

0 pIq “ D
p1,1q

0 pIq via Cor. 3.6. The first step is to order all
the points v P ω such that v ĺω p1, 1q. There are 8 such points corresponding to the lattice points
in ωR X pp1, 1q ´ ωqR, i.e., the lattice points in the quadrilateral with vertices p0, 0q, p0, 3q, p1, 1q,
and p1,´2q. The following illustrates the lattice points and the Hasse diagram of the interval
rp0, 0q, p1, 1qs.

p1, 1q

p0, 3q p1, 0q

p0, 2q p1,´1q

p0, 1q p1,´2q

p0, 0q

There are 8 linear extensions of the partial order ĺω and we just pick one, say

p0, 0q ăω p1,´2q ăω p0, 1q ăω p1,´1q ăω p0, 2q

ăω p0, 3q ăω p1, 0q ăω p1, 1q.

By Cor. 3.6, for every α ăω p1, 0q, we know Dα
0 pIq “ Dα

0 since I has no generators of these degrees
and the closedness subspace condition is trivial in this range. Thus, one just needs to compute

D
p1,0q

0 pIq and then lift to C
p1,1q

0 pIq “ D
p1,1q

0 pIq.
For p1, 0q, we have that

C
p1,0q

0 pIq “ spanC
␣

Bp1,2,0,0q, Bp1,1,0,1q, Bp1,0,0,2q, Bp0,0,1,0q

(

.
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Imposing the vanishing condition for f yields

D
p1,0q

0 pIq “ spanC
␣

Bp0,0,1,0q ` Bp1,2,0,0q, Bp1,1,0,1q, Bp1,0,0,2q

(

.

For p1, 1q, there are four linear maps that need to be considered to compute C
p1,1q

0 pIq “ D
p1,1q

0 pIq.

The maps Φ1 : D
p1,1q

0 Ñ D
p3,0q

0 and Φ3 : D
p1,1q

0 Ñ D
p0,1q

0 can safely be ignored since the correspond-
ing Macaulay dual spaces of degrees p3, 0q and p0, 1q are spanned by all mononomials of their

respective degrees and thus do not add any restrictions to C
p1,1q

0 pIq. Now, the maps Φ2,Φ4 :

D
p1,1q

0 Ñ D
p1,0q

0 do need to be considered as D
p1,0q

0 pIq has a non-trivial relation. In particular,

C
p1,1q

0 pIq “ Φ´1
2 pC

p1,0q

0 pIqq X Φ´1
4 pC

p1,0q

0 pIqq, namely

C
p1,1q

0 pIq “ D
p1,1q

0 pIq

“ spanC

"

Bp1,3,0,0q ` Bp0,1,1,0q, Bp1,1,0,2q

Bp1,2,0,1q ` Bp0,0,1,1q, Bp1,0,0,3q

*

.

Hence, HIp1, 1q “ 4.

4 Ideal Operations

For an M -graded ideal I Ď R “ Crx1, . . . , xN s, there is an expected duality between Im and Dm
0 pIq

for every m P M . This allows for ideal operations to be translated to operations of multi-graded
Macaulay dual spaces as summarized below.

4.1 Ideal membership test

The following summarizes testing membership using a multi-graded Macaulay dual space.

Corollary 4.1 If R is M -graded, I Ď R is an M -graded ideal, and g P Rm, then g P I if and only
if Bpgq “ 0 for all B P Dm

0 pIq.

Proof. This follows immediately from the definition of Dm
0 pIq and Thm. 3.2. l

Note that the key to this membership test is the multi-grading provided by Thm. 3.2. Since
this was not included in the statement of [17, Thm. 4.6], a counter example for that statement was
provided in [14, §. 4], which is considered next in the multi-graded context.

Example 4.2 For R “ Crx1, x2s, consider the M “ Z-grading with degpxiq “ i. The ideal J “

xx2 ´ x21, x
2
2y is M -graded and g “ x2 P R2. It is easy to verify that

D0pJq “ D0
0pJq ‘ D1

0pJq ‘ D2
0pJq ‘ D3

0pJq

where
D0

0pJq “ spanCtBp0,0qu, D
1
0pJq “ spanCtBp1,0qu,

D2
0pJq “ spanCtBp0,1q ` Bp2,0qu, D

3
0pJq “ spanCtBp1,1q ` Bp3,0qu.

(9)

In particular, using D2
0pJq, since

`

Bp0,1q ` Bp2,0q

˘

pgq “ 1 ‰ 0, one concludes g R J .
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4.2 Inclusion, sum, and intersection

The following considers additional ideal operations.

Corollary 4.3 Suppose that R is M -graded and I, J Ď R are M -graded ideals.

1. I Ă J if and only if Dm
0 pIq Ą Dm

0 pJq for all m P M .

2. Dm
0 pI ` Jq “ Dm

0 pIq X Dm
0 pJq for every m P M .

3. Dm
0 pI X Jq “ Dm

0 pIq ` Dm
0 pJq for every m P M .

Proof. The first statement immediately follows from Cor. 3.6.
Since I, J Ď I ` J , we know by the first statement that

Dm
0 pIq X Dm

0 pJq Ě Dm
0 pI ` Jq

for all m P M . On the other hand, if B P Dm
0 pIq X Dm

0 pJq and f ` g P I ` J , then Bpf ` gq “

Bpfq ` Bpgq “ 0. Hence, B P Dm
0 pI ` Jq showing the second statement.

Since I X J Ď I, J , the first statement implies

Dm
0 pI X Jq Ě Dm

0 pIq ` Dm
0 pJq

for all m P M . One way to see equality is by verifying that they have the same dimension, namely,
for all m P M ,

dimCDm
0 pI X Jq “ HIXJpmq

“ HIpmq ` HJpmq ´ HI`Jpmq

“ dimCpDm
0 pIqq ` dimCpDm

0 pJqq

´ dimCpDm
0 pIq X Dm

0 pJqq

“ dimCpDm
0 pIq ` Dm

0 pJqq.

l

Although the first statement in Cor. 4.3 regarding ideal containment suggests that one needs
to test all m P M , coupling with Cor. 3.6 provides that one only needs to test the values of m P M
for which there is a generator of either I or J .

Example 4.4 Since ideals I from Ex. 2.10 and J from Ex. 4.2 have the same grading, one can ob-
serve from (7) and (9) that J Ĺ I. In fact, Dk

0pIq “ Dk
0pJq for k “ 0, 1, 2 and D3

0pIq “ t0u Ĺ D3
0pJq.

4.3 Ideal quotient

For M -graded ideals I, J Ď R, the quotient of I by J is the ideal

I : J “ tf P R : f ¨ J Ď Iu.

In particular, if g P R, then

I : xgy “ I : g “ tf P R : f ¨ g P Iu.
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Hence, if J “ xg1, . . . , gty, then

I : J “

t
č

i“1

I : gi

so that, for every m P M , Cor. 4.3 yields

Dm
0 pI : Jq “ Dm

0

˜

t
č

i“1

I : gi

¸

“

t
ÿ

i“1

Dm
0 pI : giq. (10)

Thus, one needs to only consider quotients by principal ideals.
The maps Φi from (4) arise from quotients by variables.

Proposition 4.5 For every m P M and i “ 1, . . . , N ,

ΦipD
m
0 pIqq “ ΦipD

m
0 pI X xxiyqq “ Dm´Aei

0 pI : xiq.

Proof. Let B P Dm
0 pIq and g P I : xi. Since xig P I, (5) yields

ΦipBqpgq “ Bpxigq “ 0.

Hence, ΦipD
m
0 pIqq Ď Dm´Aei

0 pI : xiq.
Let δ P Dm´Aei

0 pI : xiq and f P I X xxiy. Define h “ f{xi P I : xi. Consider the linear map
Ψi : D

m´Aei
0 Ñ Dm

0 with ΨipBαq “ Bα`ei . Clearly, Φi ˝ Ψi is the identity map. Hence,

Ψipδqpfq “ Ψipδqpxihq “ ΦipΨipδqphqq “ δphq “ 0

so that Dm´Aei
0 pI : xiq Ď ΦipD

m
0 pI X xxiyqq.

Finally, suppose δ “ ΦipBq P ΦipD
m
0 pI X xxiyqq and f P I. Then,

δpfq “ ΦipBqpfq “ Bpxifq “ 0

so that ΦipD
m
0 pI X xxiyqq Ď ΦipD

m
0 pIqq. l

Example 4.6 Continuing with the setup from Ex. 2.10, (3) provides

D0pI : x1q “ Φ1pD0pIqq “ spanC
␣

0, Bp0,0q, Bp1,0q

(

,

D0pI : x2q “ Φ2pD0pIqq “ spanC
␣

0, 0, Bp0,0q

(

.

Hence, the multiplicity of 0 with respect to I : x1 and I : x2 is 2 and 1, respectively.

One can generalize from quotients by a variable xi using Φi from [24] via (5) to quotients by a
M -homogeneous polynomial g by defining the linear operator Φg : D0 Ñ D0 where

ΦgpBqpfq “ Bpgfq.

The Leibniz rule provides
ΦgpBαq “

ÿ

γPZN
ě0

A¨γ“deg g

BγpgqBα´γ

which has degree A ¨ pα ´ γq “ A ¨α´ deg g. The following shows that Φg has a right-sided inverse
by providing an explicit construction.
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Theorem 4.7 For g P Rm, there is a linear function Ψg such that Φg ˝ Ψg is the identity map.

Proof. Let ă be a lexicographic ordering on pZě0qN and write

g “
ÿ

α

gαx
α.

Define α0 “ minătα : gα ‰ 0u. For any β, γ P pZě0qN , define

Gpβ, γq “

#

gγ´β if γ ĺ β

0 otherwise.
.

Thus, define ΨgpBβq “
ř

α cαpβqBα where

cαpβq “

#

1
gα0

´

δpα ´ α0, βq ´
ř

γąαGpα ´ α0, γqcγpβq

¯

if α0 ĺ α

0 otherwise

with δpγ, βq being Kronecker’s delta. Consider the following

ΦgpΨgpBβqq “
ÿ

α

cαpβqΦgpBαq

“
ÿ

α

cαpβq
ÿ

γ
A¨γ“deg g

BγpgqBα´γ

“
ÿ

α

cαpβq
ÿ

γ
A¨γ“deg g

Gpγ, αqBα´γ

“
ÿ

γ
A¨γ“deg g

˜

ÿ

α

Gpγ, αqcαpβq

¸

Bγ .

All that remains is to show
ř

αGpγ, αqcαpβq “ δpγ, βq. To that end, we break up the sum as
follows:

ÿ

α

Gpγ, αqcαpβq “
ÿ

αăγ`α0

Gpγ, αqcαpβq

` Gpγ, γ ` α0qcγ`α0pβq `
ÿ

αąγ`α0

Gpγ, αqcαpβq.

Suppose α ă γ ` α0. If α ğ α0, then cαpβq “ 0. Otherwise, Gpγ, αq “ 0 by construction of α0.
Thus,

ÿ

αăγ`α0

Gpγ, αqcαpβq “ 0.

The definition of cγ`α0pβq finishes the claim due to the following.

Gpγ, γ ` α0qcγ`α0pβq “ δpγ, βq ´
ÿ

αąγ`α0

Gpγ, αqcαpβq.

l

Although the following could be proved using ideal operations, it also follows from the right
inverse.
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Theorem 4.8 Let I, J Ď R be M -graded ideals, g P R be an M -homogeneous polynomial, and
m P M . Suppose that J “ xg1, . . . , gty where each gi is M -homogeneous.

1. ΦgpDm`deg g
0 pIqq “ ΦgpDm`deg g

0 pI X xgyqq “ Dm
0 pI : gq.

2.
řt

i“1ΦgipD
m`deg gi
0 pIqq “

řt
i“1D

m
0 pI : giq “ Dm

0 pI : Jq.

Proof. The first follows a similar approach as the proof of Prop. 4.5 using Thm. 4.7. The second
follows from the first and (10). l

Example 4.9 Consider computing J : I where I is from Ex. 2.10 and J is from Ex. 4.2. Let f1
and f2 as in Ex. 2.12 be generators for I with the Macaulay dual space for J provided in (9). Since
deg f1 “ 3, one only needs to compute

Φf1

`

Bp1,1q ` Bp3,0q

˘

“ Φf1

`

Bp1,1q

˘

` Φf1

`

Bp3,0q

˘

“ ´3{16 Bp0,0q

to see that D0pJ : f1q “ spanCtBp0,0qu. Now, since deg f2 “ 2, we start with

Φf2

`

Bp0,1q ` Bp2,0q

˘

“ Bp0,0q ´ Bp0,0q “ 0

so that D0
0pJ : f2q “ t0u. For completeness, one can verify that

Φf2

`

Bp1,1q ` Bp3,0q

˘

“ Bp1,0q ´ Bp1,0q “ 0.

Hence, D0pJ : f2q “ t0u which was expected since f2 P J yields J : f2 “ x1y. Therefore,

D0pJ : Iq “ spanCtBp0,0qu

which corresponds with J : I “ xx1, x2y.

In general, one can repeatedly compute ideal quotients, say

I : J, pI : Jq : J, ppI : Jq : Jq : J, . . .

denoted I : J , I : J2, I : J3, . . . , respectively. This sequence stabilizes after finitely many terms
and is equal to the saturation of I with respect to J , namely

I : J8 “ tf P R : f ¨ Jn Ď I for some n ě 1u.

In particular, I : Jp “ I : Jp`1 if and only if I : Jp “ I : J8. Saturation is useful, for example,
to compute information regarding a non-homogeneous ideal by homogenizing and saturating away
the component at infinity.

5 Algorithm and Software

The results from Sec. 3 and 4 lead to algorithms for computing multi-graded Macaulay dual spaces
as summarized below. Our proof-of-concept implementation using Macaulay2 [9] is available at
https://doi.org/10.7274/j098z894548.

In an effort to simplify our procedures and implementation, we assume that the multi-grading
is a Zk-grading. Moreover, we assume, for every m P Zk, Rm, the m-graded component of R “
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Crx1, . . . , xN s, is a finite dimensional complex vector space. Additionally, we will only consider
gradings that arise from a matrix A P ZkˆN where degpxiq is the ith column of A. Since it is useful
for us to have a half-space description of the weight semigroup ω as defined in (8), we assume there
is a matrix B P Zpˆk where the rows are the normal vectors of the half-spaces whose intersection
is the weight cone ωR, that is,

ωR “ ty P Rk : By ě 0u

and ω “ ωR X Zk, i.e., ω is saturated. Given m P Zk, this enables one to quickly ascertain whether
or not m is contained in ω or not.

As stated in Sec. 3, in order to compute Dm
0 pIq for some m P Zk, we first fix a total ordering

on the elements on the set
ωm “ ts P ω : s ĺω mu.

Since ω is a saturated semigroup, the set ωm can be realized as the lattice points in a polyhedron,
e.g., see Ex. 3.9. Hence, a lattice point s P ω is less than m in the partial order if and only if
Bpm ´ sq ě 0 and Bs ě 0. Therefore,

ωm “ ts P Zk : Bm ě Bs ě 0u.

Our first procedure below details how to find a linear extension of the partial order ăω on ωm.
Note that the most expensive part of this procedure is in computing the lattice points in ωm. Our
implementation used the Polyhedra package [4].

Procedure SortLatticePointspA,B,mq

Input The matrix A P ZkˆN where the ith column is degpxiq. The matrix B P Zpˆk where ωR “

ty : By ě 0u. A lattice point m P ω.

Output A total ordering of the lattice points in ω less than m in the partial ordering.

Begin

1. Let Unsorted :“ ts P ω : s ĺω muzt0u be the non-zero lattice points in ω less than m
in the partial order. This list is the set of non-zero integral solutions, s, to the system
of inequalities Bm ě Bs ě 0. Let Sorted :“ t0u

2. For every s P Unsorted, check for every i “ 1, . . . , N if

(a) s ´ Aei P Sorted or

(b) Bps ´ Aeiq ğ 0, so s ´ Aei R ω.

3. If one of (2a) or (2b) is true for every i, then add s to Sorted and delete it from
Unsorted.

4. Repeat steps 2 and 3 until Unsorted is empty.

Return Sorted

The following show the correctness of this procedure.

Lemma 5.1 The set ωm is finite.
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Proof. Note that ωm is the set of lattice points in the polyhedron ωR Xpm´ωRq. Our assumption
that R0 “ C implies that ωR is a pointed polyhedral cone, i.e., nullpBq “ ω X p´ωq “ t0u. In order
to show that ωm is finite, it is enough to show that ωR X pm ´ ωRq is bounded. We show this via
contradiction.

Suppose ωRXpm´ωRq is unbounded. Then, there must exist s P ωRXpm´ωRq and a v P Rkzt0u

so that for every λ ě 0, s ` λv P ωR X pm ´ ωRq. Since s ` λv P ωR, we have

Bps ` λvq ě 0,

and since s ` λv P m ´ ωR, we have

Bpm ´ s ´ λvq ě 0

for all λ ě 0. Solving each inequality for λBv yields the following

Bpm ´ sq ě λBv ě ´Bs

for every λ ě 0. Since s,m, v, and B are all fixed, the only way this holds true is if Bv “ 0. This
contradicts ωR is pointed yielding that ωR X pm ´ ωRq is bounded. l

Theorem 5.2 The procedure SortLatticePoints terminates and the output is a linear extension of
the partial order ĺω.

Proof. Since, at each step in the procedure, at least one element is sorted. Finiteness from
Lemma 5.1 yields this procedure must terminate in finitely many steps. For the second claim,
suppose we are at the step in the procedure where we are about to add s to Sorted. The elements
t P ω which are covered by s are all of the form s ´ Aej for some j P t1, . . . , Nu. Therefore, by
induction, when s is sorted, all elements less than s in the partial order have already been sorted
and that no elements greater than s have been sorted yielding a linear extension. l

Our second procedure below computes Dm
0 pIq by utilizing the closedness subspace condition.

The correctness of this procedure is the content of Cor. 3.6 and illustrated in Ex. 3.9.
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Procedure DualSpacepm, I,A,Bq

Input The matrix A P ZkˆN where the ith column is degpxiq. A lattice point m P ω. A Zk-graded
ideal I “ xf1, . . . , fℓy with degpfiq “ di. The matrix B P Zpˆk with ωR “ ty : By ě 0u.

Output A basis for Dm
0 pIq.

Begin

1. Sort the lattice points in ω less than or equal to m, say
ts1, . . . , sru :“ SortLatticePointspA,B,mq where s1 “ 0 and sr “ m.

2. Set C0
0 pIq :“ spanCtBp0,...,0qu and D0

0pIq :“ C0
0 pIq.

3. For i from 2 to r do

(a) Compute a basis of Csi
0 pIq :“

ŞN
j“1Φ

´1
j pD

si´Aej
0 pIqq.

(b) Impose the linear conditions that Bpfjq “ 0 on the basis for Csi
0 pIq for j “ 1, . . . , t

to compute a basis for

Dsi
0 pIq :“ tB P Csi

0 pIq : Bpfjq “ 0 for 1 ď j ď tu

Return a basis for Dsr
0 pIq “ Dm

0 pIq

One approach to performing the computations in the procedure DualSpace is to utilize closed-
ness subspaces [13,26] computations. Another approach is to use integration [21] (see also [15,16]).

6 Examples

The following three examples were computed using our Macaulay2 implementation described in
Sec. 5. Since our implementation is a proof-of-concept, it is not yet competitive with highly re-
searched and optimized Gröbner basis methods. However, as mentioned in the Introduction, one
advantage of a dual space approach is that one can start computing dual spaces immediately up
to a given degree which would be particularly useful for problems in which computing a Gröbner
basis is computationally more difficult than the following examples. See Sec. 7 for comments
regarding future research directions including improved efficiency and incorporating parallel lin-
ear algebra routines.

6.1 Hirzebruch surface

Examples 2.4, 3.1, and 3.9 consider aspects of the Hirzebruch surface. The following considers H2,
which is a smooth projective toric surface. The Cox ring is a polynomial ring R “ Crx1, x2, x3, x4s

which is graded by the Picard group, namely Z2. The degree of each xi is given by the equivalence
class of ei in the cokernel of the transpose of

ˆ

´1 0 1 0
2 1 0 ´1

˙

.
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After choosing a basis, degpxiq P Z2 is given by the ith column of

A “

ˆ

1 0 1 0
´2 1 0 1

˙

which corresponds with the r “ 2 case in Ex. 3.1.
Consider f “ x21x

6
2 ` x21x

3
2x

3
4 ´ x23x

2
4 which is irreducible with deg f “ p2, 2q. Let I “ xfy. By

the toric ideal-variety correspondence [5, Prop. 5.2.4], I cuts out an irreducible curve C Ă H2. The
values from p0, 0q to p4, 4q of the multi-graded Hilbert function HIpi, jq are given in the table below.
A dash is put in position pi, jq if pi, jq ą p4, 4q or HIpi, jq “ 0.

j
i

0 1 2 3 4

12 13 - - - -
11 12 - - - -
10 11 24 - - -
9 10 22 - - -
8 9 20 26 - -
7 8 18 24 - -
6 7 16 22 28 -
5 6 14 20 26 -
4 5 12 18 24 30
3 4 10 16 22 28
2 3 8 14 20 26
1 2 6 12 18 24
0 1 4 9 15 21
-1 - 2 6 12 18
-2 - 1 4 9 15
-3 - - 2 6 12
-4 - - 1 4 9
-5 - - - 2 6
-6 - - - 1 4
-7 - - - - 2
-8 - - - - 1

Since the class of p1, 1q in PicpH2q is very ample, we can embed C in P5 via this divisor. By
looking at the values HIpa, aq for a ě 2, we see that the Hilbert polynomial of C Ď P5 is 8a ´ 2
from which we conclude that C has degree 8 and arithmetic genus 3.
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6.2 Parameter geography

In [23], the authors study the following parameterized system Φ1pu, v;σq “ Φ2pu, v;σq “ 0 where
θ1, . . . , θ8 are taking to be generic and ζ “ 1:

Φ1pu, v;σq “

θ1v
2 ` ζuv ` θ2ζ

2u2 ` pθ1θ3 ´ θ1θ3σ ´ θ1 ` θ7ζquv2

`pθ4ζ ´ θ4ζσ ´ ζ ` θ2θ8ζ
2qu2v

`pθ2θ5ζ
2 ´ θ2θ5ζ

2σ ´ θ2ζ
2qu3 ` θ1θ6v

3 ´ pθ1θ3 ` θ7ζqu2v2

´pθ4ζ ` θ2θ8ζ
2qu3v ´ θ2θ5ζ

2u4 ´ θ1θ6uv
3

Φ2pu, v;σq “

θ1v
2 ` ζuv ` θ2ζ

2u2 ` pθ1θ6 ´ θ1θ6 ´ θ1qv3

`pθ7ζ ´ θ7ζσ ´ ζ ` θ1θ3quv2

`pθ2θ8ζ
2 ´ θ2θ8ζ

2σ ´ θ2ζ
2 ` θ4ζqu2v ` θ2θ5ζ

2u3

´pθ1θ3 ` θ7ζquv3 ´ pθ4ζ ` θ2θ8ζ
2qu2v2 ´ θ2θ5ζ

2u3v ´ θ1θ6v
4

Consider homogenizing by adding τ and w to consider the polynomial ring Crσ, τ, u, v, ws where
deg σ “ deg τ “ p1, 0q and deg u “ deg v “ degw “ p0, 1q. This yields a Z2-graded ideal with 2
generators and we view the zero locus of this system as a reducible curve in P1 ˆ P2. After slicing
this system with a generic linear form of degree p0, 1q, the following table lists multi-graded Hilbert
function up to p10, 10q computed via Macaulay dual spaces.

i
j

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11
1 2 4 6 8 8 8 8 8 8 8 8
2 3 6 9 12 11 10 9 8 8 8 8
3 4 8 12 16 14 12 10 8 8 8 8
4 5 10 15 20 17 14 11 8 8 8 8
5 6 12 18 24 20 16 12 8 8 8 8
6 7 14 21 28 23 18 13 8 8 8 8
7 8 16 24 32 26 20 14 8 8 8 8
8 9 18 27 36 29 22 15 8 8 8 8
9 10 20 30 40 32 24 16 8 8 8 8
10 11 22 33 44 35 26 17 8 8 8 8

Using Macaulay dual spaces, we saturated away the components lying along coordinate axes
resulting in the following multi-graded Hilbert function.

i
j

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7
1 2 4 6 7 7 7 7
2 3 6 8 7 7 7 7
3 4 8 9 7 7 7 7
4 5 10 10 7 7 7 7
5 6 12 11 7 7 7 7
6 7 14 12 7 7 7 7

Although this table provides information when viewed as a subvariety of P1 ˆ P2, the Hilbert
function of the system viewed in P4 via a Segre product is exactly HIpi, iq. Hence, since the values
along the main diagonal stabilize at 7, there are 7 non-zero complex solutions to this system for a
generic choice of σ matching the results in [23].

17



6.3 Chemical reaction network

Finally, consider a chemical reaction network known as the one-site phosphorylation cycle [12].
The steady-state degree of this chemical reaction network is the number of complex solutions to the
following system for generic parameters cA and kij .

f1“ xE ` xX1 ´ cE ´ cX1

f2“ xF ` xY1 ´ cF ´ cY1

f3“ xS0 ` xS1 ´ xE ´ xF ´ cS0 ´ cS1 ` cE ` cF

f4“ ´k01xS0xE ` k10xX1 ` k45xY1

f5“ ´k34xS1xF ` k12xX1 ` k43xY1

f6“ k01xS0xE ´ pk10 ` k12qxX1

f7“ k34xS1xF ´ pk43 ` k45qxY1

One way to compute the steady-state degree is to homogenize with respect to a new variable t,
saturate away the hyperplane at infinity, and compute the degree of the resulting projective variety.
Letting I be the ideal generated by the homogenization with respect to t of f1, . . . , f7, one obtains
the following using Macaulay dual spaces.

k 0 1 2 3 4 5 6 7 8 9 10
HIpkq 1 4 7 8 8 8 8 8 8 8 8
HI:tpkq 1 3 4 4 4 4 4 4 4 4 -
HI:t2pkq 1 3 3 3 3 3 3 3 3 - -
HI:t3pkq 1 3 3 3 3 3 3 3 - - -

Since HI:t2 “ HI:t3 , we can conclude that HI:t2 “ HI:t8 . Hence, this computation shows the
steady-state degree is 3 in agreement with the results found in [12].

7 Conclusion

Building on a key theoretical contribution in Thm. 3.2 which shows that the Macaulay dual space of
a multi-graded ideal is multi-graded, algorithms are presented for performing computations related
to such dual spaces including using Thm. 4.8 which describes how to compute ideal quotients using
dual spaces. Using a proof-of-concept implementation in Macaulay2 [9], ideal computations were
performed using multi-graded dual spaces on several different examples.

Some future research directions include incorporating more efficient and parallel numerical linear
algebra routines into the implementation to improve the performance, consider examples where
obtainig a Gröbner basis is computationally more challenging, consider errors and stability when
performing numerical linear algebra routines with dual spaces, and investigate the complexity of
performing computations using dual spaces.
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