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Abstract

An approach for approximate kinematic synthesis of mechanisms is proposed in this paper which computes
a graph that identifies minima of an objective function as vertices and connections between them as edges.
Such a graph is interactively presented to a designer, whereby edges are continuously traversed to navi-
gate families of design candidates in between minima. Candidates are evaluated continuously according to
auxiliary considerations for the exploration of design trade-offs. Relevant design specifications tend to be
particular per application and are either unclear as how to incorporate into an objective, or clear but with
great consequence to the complexity of function evaluation. Computing the aforementioned graphs begins
with finding all minima and saddles of an objective function through polynomial homotopy continuation.
Connections between minima that minimize their maximum objective value must pass through a saddle to
do so. Therefore, after gathering saddles, each is perturbed both ways in its least eigendirection to seed
gradient descent paths which connect two minima when pieced together. Discovered connections between
minima are organized into a graph, where edges correspond to gradient descent paths.
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1. Introduction

Kinematic synthesis aims to find the dimensions of a mechanism after desired constraints have been
posed on its motion. For exact synthesis, the number of constraints and dimensional design variables are
equal. For approximate synthesis, the former exceeds the latter. Our approach to approximate synthesis
begins by constructing an objective function from motion specifications, of which minima and saddles can be5

computed via homotopy continuation. Minima are subsequently connected by computing gradient descent
paths emanating from saddles that are pieced together and organized into a graph which we call a saddle
graph. The resulting paths in design space connect two minima while minimizing the maximum objective
value along the way (which is the saddle it passes through). A saddle graph organizes stationary points and
their connections by representing saddles and minima as vertices and gradient descent paths as edges. After10

computing and constructing a saddle graph, it may be displayed to a designer for perusal in an interactive
and continuous fashion.

The utility of such interactive exploration is augmented by evaluating all design candidates that comprise
a saddle graph according to auxiliary performance metrics. To navigate trade-offs, this information is
relayed to the designer during interaction with the saddle graph. The value of a saddle graph hinges on15

the supposition that a designer would recognize greater utility along one of its edges rather than on a
minimum vertex. Such cases arise because applications often drive a diverse set of design specifications
which together do not lend to a neat objective function. Some specifications have no clear formalization,
some do but greatly increase the complexity of function evaluations, and some are omitted due to low priority.
Blending such specifications into an application-specific objective leads to intricate optimization that hinders20

generalizability and is thus not pursued here. Instead, we form the objective from motion specifications,
which take a polynomial form, and evaluate auxiliary metrics on an ad hoc basis after saddle graphs have
been formed, aiding in generalizability.
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1.1. Background

Early works that applied homotopy continuation for the exact synthesis of mechanisms include [1, 2, 3].25

This is achieved by finding the roots of a system of polynomial equations that arise naturally from the
mathematical model. This body of work has evolved with the development of newer and better techniques
to address the problem of finding these roots. As homotopy continuation advanced, it enabled solutions to
more complicated problems of exact kinematic synthesis [4, 5, 6, 7]. On a different front, the methods of
approximate kinematic synthesis have focused on optimization [8, 9], Fourier descriptors [10], evolutionary30

algorithms [11, 12], and machine learning [13]. Approximate synthesis allows for the inclusion of a much
greater number of motion specifications, and with numerical optimization techniques, inequality constraints
can be handled as well. Both search-based and gradient-based algorithms are popular in these works. A
less-explored pathway to design mechanisms is to frame the optimization objective and to find all the critical
points of the same. In this hybrid framework, the design problem poses an objective and the tools of numerical35

continuation are used to compute minima and saddles. The general characteristics of optimization problems
that can be solved using homotopy continuation are as follows:

1. The objective function must have a finite number of stationary points

2. It is preferable to construct an objective function whose monomial structure is invariant with respect
to the number of design specifications, enabling a unified formulation.40

Liu and Yang [14], in one of the first works of this kind, solved a class of problems in the design of four-
bar mechanisms and reported a root-count of 33 for these optimization problems. More recently, more
complicated problems, including the design of systems with two degrees of freedom, can be solved using
more advanced numerical continuation techniques [15]. In these works, emphasis was on finding all of the
isolated critical points. The current work aims to construct a network of critical points by establishing45

connections between them leading to a thorough exploration of the design space. Since the construction of
these networks are enabled from the computation of saddle points, we refer to these networks as saddle graphs.
The construction involves the tracking of gradient-descent paths starting from the saddle points leading into
the adjoining minima. This leg of the work has precedence in literature, such as Morse and Morse-Smale
complexes [16, 17, 18]. One-dimensional slow invariant manifolds for dynamical systems arising in [19] were50

used to compute a saddle network in studying the equilibria and slow dynamics in the composition space of
reactive systems. In a more recent work [20], a similar network is used to study an energy landscape related
to the snappability of pin-jointed bar frameworks. In both these applications, directed graphs connecting
saddle points to the adjoining minima are computed similar to our notion of saddle graphs. The novelty of
this work is to leverage the construction of saddle graphs to find parametric families of solutions that aid in55

the development of a design tool in the optimal synthesis of mechanisms.

1.2. Motivation

The goal is to develop a tool that offers continuous families of design candidates to a user. This is
important since, from a designer’s standpoint, there are several auxiliary design considerations that are
difficult to account for in an objective function such as branching or circuit defects. For a four-bar linkage60

and other mechanisms derived from four-bar loops, inequality constraints can be derived to detect branching
and then implemented with a constrained optimizer [21, 22]. However, for more complex mechanisms, such
inequalities are unavailable. Branching defects can be detected through a discretized solution of the direct
kinematics which is easy and flexible via post-processing analysis but difficult to force-fit into an objective
function. Moreover, the topic of branch and circuit defects has more gray area than is usually considered65

by past literature. For example, [23, 24] found utility in “defective” mechanisms which produced most but
not all precision points. Therefore, the designer’s and application’s tolerance for kinematic inaccuracy could
be additionally included into an objective, neither of which information tends to be readily available. Such
a tolerance can be modeled by adding weighting factors to the objective, which often leads to hand-tuning
until a desired minimum is found. Such hand-tuning activities cast into doubt the correlation between an70

objective value and true design utility. In [25], this uncertainty is described as “fuzziness” in the design
criteria and constraints.

Dimensional sensitivity provides a second example point. Generically, such a metric measures how changes
in dimension affect an output motion. In practice, what entails changes in dimension and output motion
is application-specific. Sometimes components of the design space gradient with respect to an objective75
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sufficiently describe sensitivity, sometimes eigenvalues of the design space Hessian are additionally required,
and for specific output motions, a full Monte Carlo simulation may be needed. Performing these analyses
individually is more or less tractable, but incorporating such activities into an objective is at best cumbersome
and at worst intractable.

Another metric that is straightforward to evaluate in post-process but cumbersome to incorporate into an80

objective is its spatial envelope, which is frequently computed as a maximum length or area over all relevant
configurations of a mechanism. Inequality constraints, commonly imposed on link lengths, are naturally
handled with interior point methods [26]. In our methodology, we do not handle inequality constraints up
front, but instead assess link packaging as auxiliary considerations in post process. Finally, we argue that
some design considerations are never formalized and remain latent to the designer’s mind. For example, the85

designer might expect a certain aesthetic. Although never formalized, these considerations additionally skew
the designer’s judgment of utility away from the minima of the objective function. This all motivates the
need for delivering families of design candidates that the designer can choose from.
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Figure 1: Process flow diagram of homotopy-based optimization.

1.3. Outline

A flow diagram is presented in Fig. 1 which summarizes our saddle graph approach. The rest of the paper90

is organized as follows. Section 2 provides details regarding homotopy-based optimization and saddle graphs.
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Section 3 summarizes four-bar function generation which is applied in Section 4 to a humanoid finger and a
flapping motion for a hummingbird. A discussion regarding the results is provided in Section 5 followed by
a short conclusion in Section 6.

2. Homotopy-based optimization95

The process flow for the mathematical modeling of homotopy-based optimization can be summarized in
the following five step procedure:

1. For any given problem specification such as the design of a function generator, the vector loop equations
are derived. All the passive configuration variables are eliminated to arrive at a scalar equation referred
to as the residue condition hereon. This elimination step is crucial to render the optimization problem100

invariant to the number of design specifications. Otherwise, the number of variables would increase
with the number of specifications. The residue condition is a function of, say, n design variables and
the design specifications such as the angular displacements given by the function to be generated.

2. For N > n generic design specifications, it is impossible to meet all conditions exactly with zero residual
error. Hence, an objective function is proposed as a sum of squares of the residue condition for the N105

design specifications. The residue condition and hence objective function are polynomial.

3. The first-order necessary conditions of optimality are derived by setting the partial derivatives of the
function with respect to the design vector of dimension n to zero. This always leads into a square
system with the same number of equations and variables. The monomial structure of this system of
polynomials is one measure of complexity of the underlying system and can be used to dictate the110

choice of the numerical technique used to find the roots. Note that the monomial structure is invariant
with respect to the number of design specifications for a given model.

4. Several standard methods of numerical continuation techniques exist for solving polynomial systems
such as a multi-homogeneous homotopy [27], polyhedral homotopy [28], regeneration [29], and mono-
dromy-based techniques [4, 5, 30, 31]. For small systems with, say, expected root counts in the hundreds,115

a straight-forward multi-homogeneous homotopy is often preferred based on its simplicity. For more
complicated systems with a comparatively higher root count, monodromy-based techniques can be quite
efficient [32]. A generic design specification is randomly chosen and one of the available techniques is
used to compute the critical points. This is called the ab initio step and the solution set found serves
as the start points for the subsequent step, namely, parameter homotopy.120

5. Once the ab initio step is completed, the polynomial system is considered solved. Any different design
specification set for this model can be solved via a parameter homotopy from the start system found
in the previous step to the target of interest. By successfully completing this step, all possible critical
points of the objective function are known leading to full exploration of the design space. This is one
of the main advantages of formulating a polynomial objective function and utilizing numerical contin-125

uation techniques over using traditional optimization toolboxes that only find one or a few minima.

2.1. Critical points

Critical points of an optimization problem are generally classified as either a minimum, maximum, or a
saddle point based on the definiteness of Hessian matrix of the objective function. If all the eigenvalues of the
Hessian matrix evaluated at a critical point are positive, then the critical point is a minimum. On the other130

hand, if all of the eigenvalues are negative, then the critical point is a maximum. A unified classification
scheme is adopted in this work to classify a critical point as a saddle of index k where k is the number of
eigenvalues of the Hessian matrix evaluated at the critical point which are negative. By this scheme, for
an n-dimensional problem, an index 0 saddle is a minimum and an index n saddle is a maximum. This
classification scheme simplifies the discussion on saddle graphs.135

2.2. Saddle graphs

Suppose that f(d) is the polynomial objective function of the optimization problem where d is the set
of n design variables. Let d∗ denote a saddle point of index k satisfying the first-order necessary condition
for optimality, namely, fd(d∗) = 0 where fd is the gradient vector of f with respect to d. Let fdd be the
Hessian matrix of f with respect to d. Then, the eigenvalues of fdd(d∗) are referred to as principal curvatures140
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and the corresponding eigenvectors are the principal directions of curvature. For j = 1, . . . , k, let ej be the
principal directions corresponding to the negative principal curvatures λj < 0 of fdd(d∗). Therefore, in a
small neighborhood of d∗, these principal directions with negative principal curvature represent a basis for
the subspace of directions for which the objective f instantaneously decreases.

Consider the following:
dd

dt
= −fd, d(0) = d∗,

dd

dt
(0) = s · ej , (1)

where s ∈ {−1,+1}. The solution ds(t) to (1) represents a solution to the gradient descent optimization145

emanating from a saddle point along a negative principal direction. For the problems under consideration, we
know f is bounded below (in fact, nonnegative since a sum of squares) and coercive, i.e., lim‖d‖→∞ f(d) =∞,
which implies that limt→∞ ds(t) is a saddle point of index at most k − 1. In particular, all solutions to (1)
have bounded length.

Numerically, one typically combines the initial value conditions in (1) into a single condition:

d(0) = d∗ + δ · s · ej

for some 0 < δ � 1. Due to numerical error when computing the saddle point d∗ and corresponding principal150

direction ej , implementing the initial condition using a perturbation, and employing a numerical scheme such
as Runge-Kutta-Fehlberg [33, pp. 539-549] for approximating ds(t), the corresponding numerical trajectory
will, almost surely, lead to a local minima since local minima are stable solutions of gradient descent. This
is not a concern as the goal is to compute paths connecting minima together.

For an index 1 saddle point d∗, the two gradient descent solutions, denoted d+(t) and d−(t), must lead to155

two minima (index 0 saddles). In some cases, they both could lead to the same minimum albeit via distinct
paths. If the two minima are distinct, the mountain pass theorem [34, p.114] provides that the corresponding
path between the two minima and d∗ is a minimizer of the maximum value of the objective function over the
set of smooth paths connecting the two minima. These paths are referred as separatrix lines of valley type
in [18]. Note that such a path can easily be constructed when the saddle points are known while constructing160

such a path is an extremely challenging problem when only the minima are known.
For saddles of index at least 2, there are multiple negative principal directions. In the following analysis,

we only consider one principal direction which has the most negative principal curvature. One reason for
this consideration is that this direction is dominant in that other orthogonal directions where the principal
curvature is larger, i.e., either positive or less negative, is attenuated fast in comparison. Further, due to165

numerical considerations described above, numerical tracking of gradient descent paths starting from high
index saddles almost surely converge to minima. In particular, saddle points of positive index are unstable
equilibria for gradient descent and there are practical challenges in numerically approximating such unstable
paths.

This process allows for all of the saddle points of index ≥ 1 to be connected with the set of local minima.170

We represent this connectivity in the form of a graph, which we call the saddle graph. Each edge of this
graph represents a continuous parametric family of mechanisms. In particular, this graph provides greater
insights by representing the design space extensively as opposed to just examining the minima. Auxiliary
design considerations can be used to sift through this graph of solutions to identify candidate designs.

2.2.1. Example of a saddle graph175

To illustrate the construction of saddle graphs, consider Himmelblau’s function

f(l1, l2) = (l21 + l2 − 11)2 + (l1 + l22 − 7)2

which is bounded below and coercive as shown in Fig. 2a. There are nine critical points: four minima
(index 0), four index 1 saddle points, and a local maximum (index 2). The index 1 saddles connect the minima
via gradient descent paths as a consequence of the mountain pass theorem forming a roughly quadrilateral
shape as shown in Fig. 2b.

For the index 2 saddle (local maximum), Fig. 2b plots the trajectory arising from the principal direction180

with the most negative principal curvature. We demonstrate why we made this selection by considering
various trajectories resulting from small perturbations along any linear combination of the two principal
descent directions. Each plot in Fig. 3 shows trajectories with various sizes of perturbations δ emanating
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(a)
(b)

Figure 2: Illustration of the saddle graph for Himmelblau’s function: (a) A 3-dimensional plot of Himmelblau’s function with
its saddle graph; (b) A 2-dimensional contour plot of Himmelblau’s function with its saddle graph.

from the same combinations of negative principal directions. Thus, when δ is sufficiently small, all the
descent paths converge with the one along the principal direction with the most negative principal curvature185

thereby justifying the restriction of saddle graph analysis to the principal direction with the most negative
principal curvature.

Figure 3: Evolution of finitely many descent paths starting from the index 2 saddle against step length δ of the initial pertur-
bation.

One observes that the saddle graph captures all the main characteristics of Himmelblau’s function near
each minima. Translating to mechanisms, this means that the saddle graph captures the main characteristics
of the design space near each minima and potentially opens more choices for the designer. The following190

demonstrate the utility of saddle graphs in the context of a four-bar function generation.

3. Function generation of a four-bar mechanism

The mathematical model of the optimization follows [35]. Here, we expand on it at greater detail for
completeness. Consider the four-bar mechanism shown in Fig. 4. For function generation, the objective
is to coordinate the angles µ and ψ swept by the proximal links in a predefined manner from a home195

configuration yet to be determined. Since such a function generated by the mechanism does not change
when the mechanism is rotated, stretched, or translated, this allows us to fix the two ground pivots at (0, 0)
and (1, 0), thereby removing four free choices from the model. The two proximal links are defined at a home
or reference configuration using the variables (u, v) and (s, t), respectively, as shown. The floating coupler
link is of length r. We consider a rotated configuration of the mechanism where the angular displacement of200

the two proximal links are µj and ψj , respectively, which are the design specifications.
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(u,v)
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(1+s,t)r
φj

Figure 4: Schematic of the function generation problem.

Let us first write a vector loop equation running from the ground-pivot at origin to the other pivot
at (1, 0) between the home configuration and the displaced configuration. Considering the rigidity of the
coupler link of length r, the following equation can be written:

r2 − ||R[µj ] · (u, v)> − (1, 0)−R[ψj ] · (s, t)>||2 = 0, (2)

where R[α] represents 2D rotation matrix of angle α (say). Note that, this step already removes the passive
angle φj from the model. Upon expansion, a modifier variable rm = 1

2

(
−1 + r2 − s2 − t2 − u2 − v2

)
is

introduced to simplify the equation and reduce the degree of above equation in the variable r. The simplified
residue condition is:

ηj := rm + (su+ tv) cos(µj − ψj) + (tu− sv) sin(µj − ψj)− s cosψj + t sinψj + u cosµj − v sinµj = 0. (3)

The above condition is associated with the design position j. The number of variables in the design
set is 5, namely, d = {rm, s, t, u, v}. Hence, for a generic design specification, up to a maximum of 5
design positions can be solved with zero residue. This is the classical exact synthesis problem that admits a
maximum of three feasible solutions [36, p. 210]. On the other hand, this work deals with an optimization205

problem where the number of design positions can be arbitrarily large. Since most practical problems require
more than just five positions, it is useful to solve this problem in an optimal fashion.

3.1. Optimization model

The objective function must be one that reduces the residue across all design positions via a sum of
squares of the residuals, namely:

f =
1

2

N∑
j=1

η2j . (4)

A point to note is that the approach does not directly minimize the error in the function generated, instead it
relies on the residue condition to indirectly achieve the same. The issue with a direct minimization approach210

is that µj and ψj would be variables that proliferate with the number of design positions in such a model
with (3) being the constraint as opposed to being the objective. Hence, the proposed objective function is
deemed appropriate.

This is an unconstrained optimization problem in the five design variables, d = {rm, s, t, u, v}. The
critical points of the objective function are the points where the gradient of the objective function is zero,
which is the necessary condition for optimality, namely:

fd =

N∑
j=1

ηj
∂ηj
∂d

= 0. (5)

This results in a system of five polynomial equations in five variables. Irrespective of the number of
design positions, N , the structure of the above set of polynomial equations remain the same, in the sense215

of the distinct monomials present in them. This means the complexity of the problem is invariant to the
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number of design positions, which provides an important advantage. A way of quantifying the complexity
of the problem is by finding an upper bound to the maximum number of roots this polynomial system
admits. The total degree of the system is 2 · 34 = 162 since the degrees of the five polynomials to solve
are 2, 3, 3, 3, 3, respectively. Hence, the number of critical points to this optimization problem is bounded220

by 162. Tighter upper bounds exist for these polynomial systems based in algebraic geometry. For example, a
multi-homogeneous Bézout number [37] of 53 can be found using the grouping {{rm, s, t}, {u, v}}. There also
exists a sharper Bernshtein-Kushnirenko-Khovanskii (BKK) bound [37] of 33 (including the trivial solution
at the origin) for this system. Note that these numbers are only upper bounds for the maximum number of
roots and the actual number called the root count may be lesser than the smallest of these bounds. We refer225

to Appendix A for more details on the nature of these equations. In the following, a numerical continuation
technique is used to estimate the root count for the system of equations formulated in this section via direct
computation.

3.2. Ab initio solve

Any general parameterized square system of polynomials admits a finite number of isolated zeroes, called230

roots. According to the theory of numerical continuation, once the roots of a numerically general [38] version
of a target polynomial system have been completely found ab initio, those roots may serve as start points
for computationally efficient parameter homotopies to target systems with engineering relevance. This is a
consequence of the technique called parameter homotopy [39] in which such a subsequent target system can
be solved via a continuous deformation process from the solved system to the unsolved one. Theoretically,235

with probability one, there exists a one-to-one map between the roots of these two systems.
For the ab initio solve, as described in Item 4 in Section 2, the choice of the technique is usually incumbent

upon the scale and complexity of the problem. For relatively simple problems such as the function generation
one being discussed here, a multi-homogeneous homotopy is adequate. A generic parameter set (µj , ψj) for
j = 1, 2, ..., N of random complex numbers is chosen to define the ab initio system to be solved. Using the240

partition {{rm, s, t}, {u, v}} of two homogenized groups, Bertini [38, 40] is used to track 53 paths yielding
the 25 roots. All the computations of this work are carried out using a Intel®Core™ 2.80 GHz system using
a single core. It is of note that one of the 25 solutions is the trivial solution where all five variables take the
value zero. Unexpectedly, this seemingly useless trivial solution provides strong utility for the designer via
a saddle graph which will be expanded upon in the numerical case studies.245

Remark. It is worth pointing out that some critical points of an objective function lie at infinity. For
example, f(x) = x2 has a minimum at x = 0 and a maximum as x tends to infinity. It is possible to represent
critical points at infinity by working with projective coordinates as demonstrated in [19]. However, for the
numerical examples considered in this work, the critical points at infinity were degenerate and did not lead
to results with meaningful engineering impact. Therefore, further studies on the matter were not pursued.250

4. Numerical case studies

In this paper, we consider two numerical case studies. For each, we report on the computation of a
parameter homotopy to find all saddles, the computation of eigenvalues of the Hessian matrix to classify
each saddle, the computation of gradient descent paths from saddles of index ≥ 1 perturbed in negative
principal directions, the organization of saddles into a graph according to descent path connections yielding255

a saddle graph, and the evaluation of such graphs according to auxiliary design considerations.

4.1. Humanoid finger

The first case study is that of the design of a humanoid finger, adopted from [35]. This example deals
with the design of a constrained 3R humanoid finger with two degrees of freedom. The human finger consists
of three phalanges: proximal, middle, and distal phalanx. For most people, the motion between middles and260

distal phalanxes is coordinated. In building a humanoid finger, their motions can be coupled using a four-bar
mechanism by solving a function generation problem. Since the range of motion is continuous, it is desirable
to have as many discrete design positions as possible. Thus, this problem falls within the framework of the
homotopy-based optimization framework described earlier.

The input specifications are obtained from a video of a human index finger to record the angular dis-265

placement of the phalanges. After processing the raw data (refer to [35] for more information), 21 design
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1 2 3 4 5 6 7 8 9 10 11

µ 0 -0.060 -0.120 -0.180 -0.240 -0.300 -0.360 -0.420 -0.480 -0.540 -0.600
ψ 0 0.0245 0.0532 0.0860 0.123 0.164 0.210 0.259 0.313 0.371 0.433

12 13 14 15 16 17 18 19 20 21

µ -0.660 -0.720 -0.780 -0.840 -0.900 -0.960 -1.020 -1.080 -1.140 -1.200
ψ 0.499 0.569 0.644 0.723 0.806 0.893 0.984 1.080 1.179 1.283

Table 1: Design specification for the function generation problem of a human finger motion.

- 0.25- 0.5- 0.75- 1- 1.25

0.25

0.5

0.75

1

1.25Raw data

Quadratic fit

Design specification

μ (rad)

ψ (rad)

Figure 5: Data processing to arrive at the design specification for the function generation problem of a human finger motion.

positions are chosen (listed in Table 1) from a quadratic curve that fits the data as shown in Fig. 5. Begin-
ning from the 25 start points of the general system solved earlier, a parameter homotopy is used to solve
the system associated with the humanoid example in the Bertini software in about 1.5 s. All 25 paths
converged successfully and those corresponding to physical linkage geometry are reported in Table 2 yielding270

the critical points of the design objective function.

4.1.1. Construction of a saddle graph

The saddle graph for this humanoid finger example is presented in Fig. 6. Each edge of this graph
represents a continuous family of design candidates in terms of a parameter t between 0 and 1. The straight
line edges shown are only representative. In other words, the connections shown are topologically consistent,275

however the true connections are 1-dimensional smooth manifolds embedded in a 5-dimensional space. Such
connections cannot be visualized in their original space unlike in the case of Himmelblau’s function in Fig. 2b.
It is observed that some of these edges offer design solutions that are very distinct from any of the minima.
This is particularly interesting along the edges that map to the trivial global minimum solution such as
2-7, 3-7 and 6-7. While the trivial solution is practically useless by itself, the edges leading into them often280

produce excellent design candidates. One such design returning a very small objective value comparable
with even all other local minima barring the trivial solution is shown in Fig. 8. It is a snapshot from a design
tool we developed in Wolfram Mathematica [41] to visualize the continuous family of design candidates that
occur along the connecting edges of the graph. The design shown is along the edge connecting #6 to the
trivial solution #7 (refer to Table 2).285

The construction of such a design interface is made possible by the computation of all critical points
(including all saddle points) of the optimization problem via homotopy continuation. Auxiliary consider-
ations are taken up at this stage to find practical designs along the edges of this graph. These auxiliary
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#2
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#1

#4

#5
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#7

Degenerate
solution

Global minimum

Local minimum

Gradient descent path from a saddle point to a minimum

Index 1 saddle point

Index 2 saddle point

Figure 6: Saddle graph for the function generation optimization to design a humanoid finger. Edges may be traversed continu-
ously to peruse linkage design candidates as they correspond to gradient descent paths in 5D design space.
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Max.
Design parameters (m) Saddle error† Obj.

# r s t u v Type index (rad) f
1 1.553 −0.118 −0.948 0.079 0.384 Min. 0 0.010 0.00003
2 1.146 −0.103 −0.369 −0.055 0.280 Saddle 1 0.055 0.00012
3 0.546 −0.289 0.028 0.153 0.281 Saddle 2 N/A 0.00448
4 0.443 −0.607 0.049 0.359 0.502 Saddle 1 0.025 0.00007
5 0.945 −0.913 1.259 0.216 0.321 Min. 0 N/A 0.00003
6 0.087 −0.428 0.307 0.447 0.320 Saddle 1 N/A 0.00005
7 1 0 0 0 0 Min.∗ 0 N/A 0
∗ Global minimum.
† N/A denotes a defective design.

Table 2: Design candidates for the function generation problem of a human finger data.

considerations provide a justification for the design candidate presented in Fig. 8.

4.1.2. Auxiliary considerations of the design process290

The discussion on saddle graphs so far has primary considered only the objective function value of the
optimization. The computed edges represent paths between saddle points and adjoining minima in a way
that minimizes the objective function. However, as mentioned earlier, there may be other considerations
that are very pertinent to the design process. The following discusses a few which are shown in Fig. 7.

a) Branch/circuit defect index kb: Linkages found through kinematic synthesis are often plagued295

by branch and circuit defects [42]. Engineers have proposed strategies in literature to analyze and design
mechanisms free of these defects [43, 44, 45]. These defects occur as a consequence of the fact that parallel
mechanisms admit multiple assembly modes for the same input, e.g., elbow-up and elbow-down configurations
in the case of four-bar mechanisms. Hence, in some cases, two branches of configurations occur separated by
a singular configuration. In the case of a branch defect, the synthesized motion is divided by a singularity.300

In the case of a circuit defect, the synthesized motion is divided onto disconnected configuration assembly
modes. It is useful to evaluate the extent that such defects occur on the saddle graph itself. To do so, we
determine which branch or circuit each approximate function point belongs to, then determine which branch
or circuit possesses the most design points. The percentage of function points belonging to this branch or
circuit is used as a metric of desirability. For instance, if all of the design specifications occur on the same305

branch, then the candidate is very desirable (kb = 1). It is possible that a design position does not belong
to either branch. Since this is an approximate synthesis procedure, no design position is expected to occur
on any of the branches with zero residue. We pick a small error tolerance (say 2.5◦) in the output value of
the function generated to determine the percentage of design positions close to each branch and pick the
maximum as the index.310

b) Polygon diagonal index kp: Another useful characteristic to look at corresponds with the overall
sizing of the mechanism. The size of a four-bar mechanism is based on its four pivots, two moving and two
fixed. A natural choice of characteristic length is the largest diagonal (including the sides) of the quadrilateral
defined by these pivots over the desired range of motion of the mechanism. Unlike the branch defect index kb,
the polygon diagonal index kp is a relative index scaled to lie between 0 and 1 where 1 corresponds with the315

desirable scenario of having the smallest diagonal length among all the designs that constitute the saddle
graph. Due to the relative nature of this measure, a mechanism with kp = 0 may still be useful.

c) Maximum length index kl: Maximum length of the mechanism is also worth considering when it
comes to sizing. This measure is not dependent on the range of motion but only the link lengths. In reference
to the schematic in Fig. 4, this can be expressed mathematically as:

max(1,
√
u2 + v2, r,

√
s2 + t2). (6)

This also is a relative index scaled to fit between 0 and 1 where 1 corresponds with the mechanism having
the smallest maximum length among all the designs that constitute the saddle graph.
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Figure 7: Auxiliary considerations visualized in the saddle graph for the design of a humanoid finger.

Figure 8: A feasible design found by analyzing the saddle graph. This design is neither a minimum nor a saddle point, but lies
in a 1-dimensional manifold connecting the trivial global minimum #7 and a saddle point #6, found by solving (1).
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1 2 3 4 5 6 7 8 9 10 11

µ 0 π
10

π
5

3π
10

2π
5

π
2

3π
5

7π
10

4π
5

9π
10 π

ψ -0.613 -0.999 -1.212 -1.241 -1.100 -0.800 -0.400 0.003 0.356 0.644 0.866
12 13 14 15 16 17 18 19 20 21

µ 11π
10

6π
5

13π
10

7π
5

3π
2

8π
5

17π
10

9π
5

19π
10 2π

ψ 1.019 1.102 1.114 1.061 0.947 0.774 0.536 0.225 -0.167 -0.613

Table 3: Design specification for a mechanism to mimic hummingbird flapping motion.

d) Transmission angle index kt: The transmission angle is defined as the angle between the coupler and320

the follower link of a four-bar mechanism [46], which appears frequently in the relevant literature [47, 48]. A
transmission angle of ±π2 is the most desirable while 0 or π is undesirable in terms of input-output velocity
transmission. This essentially provides a measurement on the proximity of a mechanism to a singular
configuration. The index kt itself is computed by finding the minimum value of the sine of the transmission
angle over the range of motion of the design candidate. It is also a relative index that is scaled to take values325

between 0 and 1 where 1 is the most desirable.
e) Sensitivity index ks: From a designer’s standpoint, a mechanism is desirable if the output motion

is less sensitive to small deviations in link dimensions. This makes the mechanism robust to manufactur-
ing errors. There are several ways of defining the sensitivity of linkages to deviations in link dimensions,
e.g., [49, 50]. Following [24], a direct way of measuring the sensitivity of a design is by perturbing the design
variables {r, s, t, u, v} within an assumed manufacturing tolerance of 0.00012 mm (standard deviation), that
corresponds to CNC machining tolerance. A sample size of 100 perturbations is generated for each design via
a multi-normal distribution and the mean percentage deviation of the objective function over the sample is
considered. For illustration, if f0 is the objective value of a design d and fk, k = 1, 2, ..., 100 are the objective
values of the perturbed designs dk, k = 1, 2, ..., 100, respectively, then the sensitivity index is given by:

1

100

100∑
k=1

|fk − f0|
f0

.

This is then mapped to a linear scale such that ks = 0 corresponds to the most sensitive design and ks = 1
represents the least sensitive design.

In addition to these indices, the objective function value f associated with the saddle graph is also

shown in Fig. 7 via a normalized index 1 −
(

f
fmax

)
. Note that the region around the index 2 saddle shows330

the maximum objective value and the rest of the graph is comparable on this metric alone. Each of these
sub-plots can be associated with the saddle graph. These sub-plots are generated based on a discretization
scheme of fixed step length of 0.025 along each edge of the saddle graph. The computation time required for
creating these sub-plots is about 10 s. It can be readily identified from this visualization that the edge 6− 7
provides the best overall traits. Note that while the objective function decreases in value monotonically335

as we traverse from #6 to #7, there is a trade-off in the fact that the mechanism degenerates with the
two proximal links collapsing to zero-length at the global minimum #7, in the neighbourhood of which the
sensitivity index is poor. This justifies the choice of the design shown in Fig. 8. Effective implementation
of all the numerical computation of this allows for the quick development of a graphical user interface in
the Wolfram Mathematica2 environment. It may be noted that the list of performance indices and their340

definitions may not apply generally to all design scenarios and they may be modified based on the application
at hand. Nevertheless, other considerations can be easily accommodated within this framework.

4.2. Hummingbird flapping motion

The second example is taken from [51] which considers the design of a flapping wing mechanism wherein
a Watt six-bar linkage was designed to obtain large amplitude of flapping motion about 180◦ for a full-cycle345

2Refer to doi:10.7274/r781wd40q72 for supplementary resources showcasing a design interface.
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Design parameters (m) Saddle Obj.
# r s t u v Type index f
1 0.674 −0.963 0.308 0.644 0.173 Saddle 1 0.117554
2 0.682 −0.907 −0.196 −0.207 0.477 Saddle 1 0.119302
3 0.633 −0.751 0.085 0.277 0.121 Saddle 2 0.170992
4 0.665 −1.157 0.033 0.459 0.362 Min. 0 0.0907026
5 1 0 0 0 0 Min.∗ 0 0
∗ Global minimum.

Table 4: Real critical points for the design problem to create a flapping motion.

#5

#3#2

#4

#1

Global minimum

Local minimum

Index 1 saddle point

Index 2 saddle point

Gradient descent path from a saddle point to a minimum

Degenerate
 solution

Figure 9: Saddle graph for the function generation optimization to design a mechanism that creates a flapping motion.

of the crank motion. We attempt to design a four-bar mechanism that performs a similar motion as the
six-bar mechanism designed in [51]. The design specification obtained from [51] is shown in Table 3. For
this problem, the parameter homotopy yielded 5 real solutions which are listed in Table 4.

The saddle graph for this design problem is shown in Fig. 9. In this case, the index 2 saddle connects to
the same minimum upon descent along either direction of the eigenvector with the most negative eigenvalue.350

As in the earlier case, the regions around the trivial solution lead to the most useful set of design candidates
accounting for auxiliary considerations as shown in Fig. 10. In this example, the branch defect index plot
is generated by using a tolerance of 5◦ in the output value of the function generated in order to identify
the primary branch. While no useful solution can be found among the critical points themselves, the path
connecting them are found to lead to useful designs, e.g., the path connecting #1 and #5 contains useful355

designs such as the one shown in Fig. 11.

5. Discussions

For the design of mechanisms, we provide a new methodology to find feasible designs accounting for the
primary motion requirement as well as auxiliary considerations such as kinematic defects, packaging and
design sensitivity. In this context, we offer a qualitative comparison with Pareto fronts generated through360
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Figure 10: Auxiliary considerations visualized in the saddle graph for the design of a four-bar to generate the flapping motion
of a hummingbird.

Figure 11: A feasible design for creating a flapping motion. This design lies in a 1-dimensional manifold connecting the global
minimum #5 and a saddle point #1. It is defect-free and exhibits full-cycle of motion as desired to create a flapping motion.
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a multi-objective optimization technique. Firstly, our framework can handle many auxiliary considerations
that do not need to be computed quickly. For instance, auxiliary considerations such as the sensitivity
index as we define it are computationally expensive. Hence, any conventional multi-objective optimization
technique that relies on an iterative algorithm will be time consuming in this regard. Further, multi-objective
optimization techniques rely on sophisticated search-based evolutionary algorithms such as [52] since these365

algorithms do not require gradient information of the objectives. These evolutionary algorithms are stochastic
in nature, and depend on hyper parameters such as population size, mutation, and recombination probability.
In comparison, the construction of saddle graphs is deterministic in nature. Saddle graphs provides a visual
interface to interact with a continuous representation of the design space that competes favorably with
Pareto fronts [53] and other trade-off charts such as a “snowflake” plot [25]. Snowflake charts are well-suited370

to visualize many objectives for a handful of designs, but are ill-suited to visualize many objectives over
continuous families of designs.

Further, there is no guarantee in these search based algorithms of ensuring that the feasible design space
is sufficiently explored. The authors of [53] note that these design spaces are highly sensitive to the design
variables. It underscores the key advantage of the construction of saddle graphs in that the directed gradient-375

descent paths from saddle points identify the “best” regions of this sensitive design space with respect to the
structural error objective. This is made possible by the computation of all the saddle points facilitated by
numerical polynomial continuation technique. This makes our design methodology arguably superior when
compared with other multi-objective optimization frameworks.

An open research question begs how to scale our work to larger problems, such as the path generation of380

four-bars. The path generation problem of four-bars and other design problems in six-bars are significantly
harder to solve compared to the four-bar function generation example discussed here. The challenge lies in
solving higher degree polynomial systems to compute all the critical points of the objective function. For
example, the root counts of such systems are on the order of tens of thousands or higher. Parameter homotopy
computations of these high degree systems typically suffer from significant numerical failures, which stifles385

the design process. Development of efficient numerical continuation algorithms that handle such stiff systems
without requiring high numerical precision would improve the scalability of our design process.

6. Conclusion

In this paper, an optimization framework to design mechanisms via homotopy continuation is proposed.
As the loop closure equations in rigid-body mechanisms are polynomial in nature, a sum of squares of390

the residue in these equations forms an unconstrained minimization problem of a polynomial objective.
The necessary conditions of optimality leads into a system of polynomial equations. Numerical polynomial
continuation enables the computation of all the critical points of such systems including the saddle points.
The mountain pass theorem guarantees the existence of saddle points in between two minima, forming natural
connections in the design space. These connections can be computed via a numerical integration routine395

starting from the saddle points leading to continuous families of design solutions to the problem at hand
that can be represented as a saddle graph. These graphs serve as a platform for building real-time design
tools where the continuous families of solutions can be sifted through for auxiliary requirements such as
defect-free mechanisms, favorable mechanical advantage characteristics, packaging considerations, etc. This
is demonstrated in the context of function generation of four-bar mechanisms. Two different case studies400

are shown: the design of a humanoid finger mechanism and the design of a mechanism to create flapping
motion. These examples showcase the utility of saddle graphs in helping the designer to design mechanisms
computationally in a fast and reliable manner.
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Appendix A. Equations of optimal four-bar function generation

The following equations are the expanded form of (5) described in Section 3.1. Here, the design variables
are {rm, s, t, u, v} and the coefficients are c1, c2, ..., c40.

2c40rm + c37s+ c34t+ c33u+ c39su+ c36tu+ c32v + c38sv + c35tv = 0;

c37rm + 2c26s+ c20t+ c17u+ c39rmu+ 2c29su+ c23tu+ c19u
2 + 2c31su

2 + c25tu
2 + c15v + c38rmv

+2c27sv + c21tv + c18uv + 2c30suv + c24tuv + c16v
2 + 2c28sv

2 + c22tv
2 = 0;

c34rm + c20s+ 2c9t+ c6u+ c36rmu+ c23su+ 2c12tu+ c8u
2 + c25su

2 + 2c14tu
2 + c4v + c35rmv

+c21sv + 2c10tv + c7uv + c24suv + 2c13tuv + c5v
2 + c22sv

2 + 2c11tv
2 = 0;

c33rm + c17s+ c39rms+ c29s
2 + c6t+ c36rmt+ c23st+ c12t

2 + 2c3u+ 2c19su+ 2c31s
2u

+2c8tu+ 2c25stu+ 2c14t
2u+ c2v + c18sv + c30s

2v + c7tv + c24stv + c13t
2v = 0;

c32rm + c15s+ c38rms+ c27s
2 + c4t+ c35rmt+ c21st+ c10t

2 + c2u+ c18su+ c30s
2u+ c7tu

+c24stu+ c13t
2u+ 2c1v + 2c16sv + 2c28s

2v + 2c5tv + 2c22stv + 2c11t
2v = 0,

where the coefficients are c1, c2, ..., c40 are functions of the design specifications (µj , ψj) for j = 1, 2, ..., N .

For example, c1 = 1
2

∑N
j=1 sin2 µj , c2 = −

∑N
j=1 sinµj cosµj . Due to the algebraic relations among the410

coefficients, the root count of the system (25) is less than the BKK bound (33 which includes the trivial
solution at the origin) which would be the case were the coefficients algebraically independent.
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