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Abstract: We revisit the static coverage control problem for placement of vehicles with simple
motion on the real line, under the assumption that the cost is a polynomial function of the
locations of the vehicles. The main contribution of this paper is to demonstrate the use of tools
from numerical algebraic geometry, in particular, a numerical polynomial homotopy continuation
method that guarantees to find all solutions of polynomial equations, in order to characterize
the global minima for the coverage control problem. The results are then compared against a
classic distributed approach involving the use of Lloyd descent, which is known to converge only
to a local minimum under certain technical conditions.
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1. INTRODUCTION

Vehicle placement to provide optimal coverage has received
lot of attention, especially in the past two decades. The
goal is to determine where to place vehicles in order to
optimize a specified cost that is a function of the locations
of the vehicles. This paper addresses the characterization
of the global minima for a vehicle placement problem
under the assumption that this cost function is polynomial
in the locations of the vehicles. It is well known that
polynomials can be used as building blocks to describe
several realistic functions. Applications of this work are
envisioned in border patrol wherein unmanned vehicles
are placed to optimally intercept moving targets that
cross a region under surveillance (cf. Girard et al. [2004],
Szechtman et al. [2008]).

Vehicle placement problems are analogous to geometric
location problems, wherein given a set of static points,
the goal is to find supply locations that minimize a cost
function of the distance from each point to its nearest
supply location (cf. Zemel [1985]). For a single vehicle,
the expected distance to a point that is randomly gen-
erated via a probability density function, is given by the
continuous 1–median function. The 1–median function is
minimized by a point termed as the median (cf. Fekete
et al. [2005]). For multiple distinct vehicle locations, the
expected distance between a randomly generated point
and one of the locations is known as the continuous multi-
median function (cf. Drezner and Hamacher [2001]). For
more than one location, the multi-median function is non-
convex and thus determining locations that minimize the
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multi-median function is hard in the general case. Cortes
et al. [2004] addressed a distributed version of a parti-
tion and gradient based procedure, known as the Lloyd
algorithm, for deploying multiple robots in a region to
optimize a multi-median cost function. Schwager et al.
[2009] provided an adaptive control law to enable robots
to approximate the density function from sensor measure-
ments. Mart́ınez and Bullo [2006] presented motion coor-
dination algorithms to steer a mobile sensor network to an
optimal placement. Kwok and Mart́ınez [2010] presented
a coverage algorithm for vehicles in a river environment.
Related forms of the cost function have also appeared in
disciplines such as vector quantization, signal processing
and numerical integration (cf. Gray and Neuhoff [1998],
Du et al. [1999]).

In this paper, we consider the static coverage control
problem for placement of vehicles with simple motion on
the real line. We assume that the cost is a polynomial
function of the locations of the vehicles. This structure
implies that the set of all candidate optima is finite. The
main contribution of this paper is to demonstrate the use
of tools from numerical algebraic geometry, in particular,
a numerical polynomial homotopy continuation method
that guarantees to find all solutions of the polynomial
equations (cf. Sommese and Wampler [2005] and Bates
et al. [2013]). Such methods have been used in a variety of
problems, e.g., computing all finite and infinite equilibria
for constructing one-dimensional slow invariant manifolds
of dynamical systems (cf. Al-Khateeb et al. [2009]) and
finding all equilibria of the Kuramoto model (cf. Mehta
et al. [2015]). Upon computing the finite set of candidate
optima, we can evaluate the cost function at these points
to obtain the global minimum for the coverage control
problem. The results are then compared numerically using



two examples with a classic distributed approach involving
the use of Lloyd descent, which is known to converge only
to a local minimum under certain technical conditions. We
observe that in one of the examples, both methods lead to
the same global minimizer, while in the second example,
the Lloyd descent converges to only a local minimum if
initialized from particular configurations.

This paper is organized as follows. The problem is for-
mulated in Section 2. The multiple vehicle scenario is
addressed in Section 3. The polynomial homotopy method
is reviewed and its application to the coverage problem is
presented in Section 4. Numerical simulation results are
presented in Section 5.

2. PROBLEM STATEMENT

We consider vehicles modeled with single integrator dy-
namics having unit speed. A static target is gener-
ated at a random position x ∈ [A,B] on the segment
G := [A,B], via a specified probability density func-
tion φ : [A,B]→ R≥0. We assume that the density φ is
bounded, and therefore integrable over a compact domain.
The goal is to determine vehicle placements that minimize
the expected time for the nearest vehicle to reach a target.
We consider the both the single and multiple vehicle cases.

2.1 Single Vehicle Case

We determine a vehicle location p ∈ [A,B] that minimizes
Cexp : [A,B]→ R given by

Cexp(p) :=

∫ B

A

C(p, x)φ(x)dx, (1)

where C : [A,B] × [A,B] → R≥0 is an appropriately
defined cost of the vehicle position p and the target
location x. In what follows, we consider costs with the
following properties.

(i) Polynomial dependence on p: We assume that for any
p ∈ [A,B], the cost function C is polynomial in p.

(ii) Homogeneity: We assume that the function C satisfies

C(p, x) =
1

2
f((p− x)2),

where f(·) ≥ 0 is a polynomial and is monotonic with
respect to its argument.

2.2 Multiple Vehicles Case

Given m ≥ 2 vehicles, the goal is to determine a set
of vehicle locations pi, for every i ∈ {1, . . . ,m}, that
minimizes the expected cost given by

Cexp(p1, . . . , pm) :=

∫ B

A

min
i∈{1,...,m}

C(pi, x)φ(x)dx, (2)

where C(pi, x) satisfies the same properties that are as-
sumed in Section 2.1. The single vehicle case shall then
follow as a special case of multiple vehicles.

3. THE CASE OF MULTIPLE VEHICLES

Consider the multiple vehicle case from Section 2.2 with
assumptions (i) and (ii) from Section 2.1. We will require

the concept of dominance regions. For the i-th vehicle, the
dominance region Vi is defined as

Vi := {x ∈ [A,B] : C(pi, x) ≤ C(pj , x),∀j 6= i}.
In other words, Vi is the set of all points x for which an
assignment of any point in that set to vehicle i provides
the least cost over assignment to any other vehicle. The
following proposition provides a simple approach to com-
puting the dominance regions.

Proposition 3.1. Under Assumption (ii), the dominance
region of the i-th vehicle is the Euclidean Voronoi partition
corresponding to the i-th vehicle, i.e.,

Vi = {x ∈ [A,B] : |pi − x| ≤ |pj − x|,∀j 6= i}.

Proof: From the definition of Vi, we have

C(pi, x) ≤ C(pj , x)

⇒ (pi − x)2 ≤ (pj − x)2 ⇒ |pi − x| ≤ |pj − x|,
from the monotonicity in Assumption (ii).

Without any loss of generality, let the vehicles be placed
with their indices in ascending order on [A,B]. Then,

Vi =


[A, (p1 + p2)/2], i = 1,

[(pi−1 + pi)/2, (pi + pi+1)/2], i ∈ {2, . . . ,m− 1},
[(pm−1 + pm)/2, B], i = m.

3.1 Minimizing the Expected Constrained Travel Time

For distinct vehicle locations, (2) can be written as

Cexp(p1, . . . , pm) =

m∑
i=1

∫
Vi
C(pi, x)φ(x)dx, (3)

where Vi is the dominance region of the i-th vehicle. The
gradient of Cexp is computed using the following formula,
which allows each vehicle to compute the gradient of Cexp

by integrating the gradient of C over Vi.
Proposition 3.2. (Gradient computation). For all vehicle
configurations such that no two vehicles are at coincident
locations, the gradient of the expected time with respect
to vehicle location pi is

∂Cexp

∂pi
=

∫
Vi

∂C

∂pi
(pi, x)φ(x)dx.

Proof: Akin to similar results in Bullo et al. [2009],
the following involves writing the gradient of Cexp as a sum
of two contributing terms. The first is the final expression,
while the second is a number of terms which cancel out due
to continuity of C at the boundaries of dominance regions.

Let pj be termed as a neighbor of pi, i.e., j ∈ neigh(i), if
Vi ∩ Vj is non-empty. Then,

∂Cexp

∂pi
=

∂

∂pi

∫
Vi
C(pi, x)φ(x)dx

+
∑

j neigh (i)

∂

∂pi

∫
Vj
C(pj , x)φ(x)dx, (4)

Now, from the expression of Vi, there arise three cases:

1. i ∈ {2, . . . ,m − 1}: In this case, all boundary points
(pi−1 + pi)/2 and (pi + pi+1)/2 are differentiable with
respect to pi. Therefore, by Leibnitz’s Rule 1 ,

1 ∂
∂z

∫ b(z)

a(z)
f(z, x)dx =

∫ b(z)

a(z)

∂f(z,x)
∂z

dx+ f(z, b)
∂b(z)
∂z

− f(z, a)
∂a(z)
∂z



∂

∂pi

∫
Vi
C(pi, x)φ(x)dx−

∫
Vi

∂C

∂pi
φ(x)dx

=
1

2

(
C

(
pi,

pi + pi+1

2

)
− C

(
pi,

pi + pi−1
2

))
=

1

2

(
f

((
pi+1 − pi

2

)2
)
− f

((
pi − pi−1

2

)2
))

,

where the second step follows from Assumption (ii).

Using the same steps by applying the Leibnitz rule, we
conclude that

∂

∂pi

∫
Vi−1

C(pi−1, x)φ(x)dx =
1

2
f

((
pi − pi−1

2

)2
)

∂

∂pi

∫
Vi+1

C(pi+1, x)φ(x)dx = −1

2
f

((
pi+1 − pi

2

)2
)
.

Therefore, combining these three expressions into (4), we
conclude that for this case,

∂Cexp

∂pi
=

∫
Vi

∂C

∂pi
(pi, x)φ(x)dx.

2. i = 1: In this case, the lower limit of the integral below
is A and is a constant. Therefore, applying the Leibnitz
rule, we obtain

∂

∂p1

∫
V1

C(p1, x)φ(x)dx =

∫
V1

∂C

∂p1
φ(x)dx+

1

2
f

((
p2 − p1

2

)2
)
.

Applying the Leibnitz rule for the corresponding term
involving the neighbor p2, we obtain

∂

∂p1

∫
V2
C(p2, x)φ(x)dx = −1

2
f

((
p2 − p1

2

)2
)

Therefore, combining these two expressions into (4), we
conclude that for this case,

∂Cexp

∂p1
=

∫
V1

∂C

∂p1
(p1, x)φ(x)dx.

The third case of i = m is very similar to the case of
i = 1 and the conclusion analogous to that of i = 1 can be
verified. Therefore, the claim is verified for each case.

Remark 3.3. (Infinite interval). The formulation can eas-
ily be extended to the case when the domain for the
vehicles is unbounded, i.e., R. In that case, we will require
an extra assumption on the weight function φ which would
be that as x → ±∞, φ(x) → 0+ while C(x) remains
bounded.

The expressions for the gradient can then be used within
the Lloyd descent algorithm (see for example Bullo et al.
[2009]) to derive a control scheme for each vehicle to
move, beginning with an initial arbitrary, non-degenerate
configuration using the following steps iteratively: while a
given number of iterations are not reached,

(i) Each vehicle computes its Voronoi partition Vi,
(ii) Each vehicle computes the gradient of the cost func-

tion using Proposition 3.2,
(iii) Each vehicle computes its step size using backtracking

line search, and
(iv) Each vehicle uses gradient descent to compute its new

position.

In the following subsection, we will address computing the
global optima by posing the set of equations that need to
be solved in order to compute the candidate points.

3.2 Optimal Placement

The optimal vehicle placement problem is cast as

min
{p1,...,pn}∈[A,B]m

Cexp(p1, . . . , pm)

subject to pi ∈ [A,B],∀i ∈ {1, . . . ,m}.

Without loss of generality, we assume that the vehicles are
located such that pi−1 < pi < pi+1. Then, the candidate
global minima are:

(i) p∗1 = A and the set of all points p∗i , i = 2, . . . ,m, for
which

∂Cexp

∂pi
(p∗1, . . . , p

∗
m) = 0,

(ii) p∗m = B and the set of all points p∗i , i = 1, . . . ,m− 1,
for which

∂Cexp

∂pi
(p∗1, . . . , p

∗
m) = 0,

or,
(iii) the set of all points p∗i , i = 1, . . . ,m, for which

∂Cexp

∂pi
(p∗1, . . . , p

∗
m) = 0,

along with the additional condition on the Hessian

∂2Cexp

∂p2
(p∗1, . . . , p

∗
m) � 0,

where p := [p1, . . . , pm]. Proposition 3.2 provides a simple
expression for the computation of the partial derivatives
of Cexp. The set of all candidate can be characterized by∫ p1+p2

2

A

f ′
(
(p1 − x)2

)
(p1 − x)φ(x)dx = 0,∫ B

pm−1+pm
2

f ′
(
(pm − x)2

)
(pm − x)φ(x)dx = 0,

and, for 2 ≤ i ≤ m− 1,∫ pi+pi+1
2

pi−1+pi
2

f ′
(
(pi − x)2

)
(pi − x)φ(x)dx = 0

Now let us call the integral

F (p, b, a) :=

∫ b

a

f ′
(
(p− x)2

)
(p− x)φ(x)dx

Notice that under Assumption (ii), F (p, b, a) is also a
polynomial in p. Then, the candidates for global minima
are given by the set of polynomial equations:

F

(
p1,

p1 + p2
2

, A

)
= 0

F

(
pi,

pi+1 + pi
2

,
pi + pi−1

2

)
= 0 ∀i ∈ {2, . . . ,m− 1},

F

(
pm, B,

pm−1 + pm
2

)
= 0, (5)

with the additional possibility that p1 = A or pm = B. In
the next section, we will review techniques from numerical
algebraic geometry to explore the full spectrum of solu-
tions for (5) and therefore compute the global optimum.



4. POLYNOMIAL SYSTEM OF EQUATIONS
THROUGH ALGEBRAIC GEOMETRY

Typically, performing an exhaustive search of solutions
of systems of nonlinear equations such as (5) is a proho-
bitively difficult task. However, in this paper, by restricting
ourselves to polynomial conditions, this becomes feasible.
Furthermore, though in the original formulation only re-
quires computing real solutions of the system, we expand
our search space to complex space, i.e., instead of p ∈ Rn
we take p ∈ Cn. The purpose of the complexification of
the variables is to enable us to use some of the powerful
mathematical and computational tools from algebraic ge-
ometry, i.e., in mathematical terms, Cn is the algebraic
closure of Rn. In particular, we utilize the numerical alge-
braic geometric computational technique called the numer-
ical polynomial homotopy continuation (NPHC) method
which guarantees (in the probability 1 sense) to compute
all complex isolated solutions of a well-constrained system
of multivariate polynomial equations. More details are
provided in the books by Sommese and Wampler [2005]
and Bates et al. [2013].

For a well-constrained system of polynomial equations
(also called a square system which has the same number
of equations and variables) F(p) = 0, classical NPHC
method uses a single homotopy that starts with an upper
bound on the number of isolated complex solutions. One
standard upper bound is the classical Bézout bound (CBB)
which is simply the product of the degrees of the polyno-
mials, namely

∏n
i=1 di where di = degFi and n is the

number of polynomials in F. Although the CBB is trivial
to compute, it does not take structure (such as sparsity
or sparsity) of the system into account. There are tighter
bounds such as the multihomogeneous Bézout bound and
the polyhedral, also called the Bernshtein-Kushnirenko-
Khovanskii (BKK), bound can exploit some structure in
the system to provide a tighter upper bound using possibly
significant additional computations.

Each such upper bound yields a corresponding system
G(p) = 0, called a start system, where the bound is sharp.
For example, the CBB yields

G(p) = [pd11 − 1, . . . , pdnn − 1] = 0

which clearly has
∏n
i=1 di isolated solutions. For other

upper bounds, the procedure of constructing a start system
may be more involved. Once a start system is constructed,
a homotopy between F(p) and G(p) is constructed as

H(p, t) = (1− t)F(p) + eθ
√
−1 tG(p) = 0

where θ ∈ [0, 2π). One tracks the solution path defined by
H = 0 from a known solution of G = 0 at t = 1 to t = 0.
For all but finitely many θ ∈ [0, 2π), all solution paths
are smooth for t ∈ (0, 1] and the set of isolated solutions
of F = 0 is contained in the set of limit points of the
paths that converge at t → 0+. Since each path can be
tracked independent of each other, the NPHC method is
embarrassingly parallelizeable.

To exploit some of the structure in the system (5), we first

factor each polynomial Fi, say Fi = qri1i1 · · · q
riki

iki
where qij

are polynomials and rij are positive integers. Thus, we can
replace each Fi with a square-free factorization qi1 · · · qiki
to remove trivial singularities caused by rij > 1 thereby

improving the numerical conditioning of the homotopy
paths. Thus, the solutions of F = 0 is equal to the union
of the solutions of

Qj1,...,jn = [q1j1 , . . . , qnjn ] = 0

where 1 ≤ ji ≤ ki for i = 1, . . . , n. There are sev-
eral benefits from such an approach. First, we again im-
prove numerical conditioning of the homotopy paths by
solving lower degree systems and with the removal of
trivial singularities that arise from solutions that simul-
taneously solve two or more such systems. Second, this
produces additional parallelization opportunity, e.g., by
solving each subsystem independently. Rather than having
a completely independent solving, we could utilize ideas of
regeneration developed by Hauenstein et al. [2011] based
on bootstrapping from solving subsystems. To highlight
the potential, suppose that one has found that the subsys-
tem Qj1,...,js = [q1j1 , . . . , qsjs ] = 0 has no solutions, then
one immediately knows that Qj1,...,js,js+1,...,jn = 0 has no
solutions for every 1 ≤ ji ≤ ki for i = s+ 1, . . . , n.

For the regeneration approach, fix indices j1, . . . , jn such
that 1 ≤ ji ≤ ki and we aim to solve Qj1,...,jn = 0.
Let `iu be general linear polynomials for i = 1, . . . , n
and u = 1, . . . , Di where Di = deg qiji . Consider the
polynomial systems

Gs
us+1,...,un

= [q1j1 , . . . , qsjs , `s+1,us+1
, . . . , `nun

].

Using linear algebra, we solve G0
1,...,1 = 0. Regeneration

using a two-stage approach to use the solutions, say S1,
of Gs

1,...,1 = 0 to compute the solutions of Gs+1
1,...,1 = 0

as follows. The first stage, for each u = 2, . . . , Ds+1, uses
the homotopy

(1− t)Gs
u,1,...,1 + tGs

1,...,1 = 0

with start points S1 at t = 1 to compute the solutions Su
of Gs

u,1,...,1 = 0 at t = 0. By genericity, every path in this
homotopy is smooth for t ∈ [0, 1] so that #S1 = #Su. Let

S = ∪Ds+1

i=1 Si which are the solutions of

Ks
1,...,1 =

q1j1 , . . . , qsjs ,Ds+1∏
α=1

`s+1,α, `s+2,1, . . . , `n1

 = 0.

Then, the second stage uses the homotopy

(1− t)Gs+1
1,...,1 + tKs

1,...,1 = 0

with start points S at t = 1 to compute the solutions of
Gs+1

1,...,1 = 0 as desired. Iterating this process produces the
solutions to Qj1,...,jn = 0.

A regeneration-based approach can be advantageous over
using a single homotopy when the subsystems have far
fewer solutions than the selected upper bound would pre-
dict. When the upper bound is not sharp, this causes paths
to diverge to infinity resulting in wasted extra compu-
tation. This is reduced in regeneration by performing a
sequence of homotopies. Likewise, if the upper bound is
sharp, then regeneration is not advantageous due to the
extra tracking through this sequence. Nonetheless, we can
produce all isolated complex solutions using either the
classic single homotopy or regeneration which allows us
to always compute the global optimum.

5. SIMULATIONS

In this section, we numerically evaluate the proposed
method and compare it with the classic Lloyd descent



algorithm for two choices of the density functions φ. The
first scenario is selected in such a way that, for almost
all initial configurations, the Lloyd algorithm tends to the
global optimum. The second scenario is one in which, from
some special initial conditions, the Lloyd algorithm tends
to only a particular local optimum.

For the first scenario, we take the interval [A,B] to
be [0,W ] for W > 0, C(p, x) = f

(
(p− x)2

)
= (p − x)2,

and the weight function φ(x) := x(W −x). Then, we have

6F (p, b, a) = 12

∫ b

a

(p− x)x(W − x)dx =(
b2(6pW−4pb−4Wb+3b2)−a2(6pW−4pa−4Wa+3a2)

)
.

Substituting into the system of equations (5), we obtain

( p1 + p2

2

)2(
6p1W − 4p1

( p1 + p2

2

)
− 4W

( p1 + p2

2

)
+ 3
( p1 + p2

2

)2)
= 0,( p3 + p2

2

)2(
6p2W − 4p2

( p3 + p2

2

)
− 4W

( p3 + p2

2

)
+ 3
( p3 + p2

2

)2)
=
( p2 + p1

2

)2(
6p2W − 4p2

( p2 + p1

2

)
− 4W

( p2 + p1

2

)
+ 3
( p2 + p1

2

)2)
,

W
2
(
6p3W − 4p3W − 4W

2
+ 3W

2
)

=
( p2 + p3

2

)2(
6p3W − 4p3

( p2 + p3

2

)
− 4W

( p2 + p3

2

)
+ 3
( p2 + p3

2

)2)
.

(6)

The system (6) consists of three polynomial equations in
three unknowns p1, p2, p3 with the added possibilities of
p1 = 0 or p3 = W . Taking W = 1, solving all three
possibilities following Section 4 yields a total of 44 solu-
tions in C3, of which 32 are in R3. Testing the objective
function yields that the global optimal solution is approx-
imately (0.235, 0.5, 0.765). For randomly generated initial
vehicle locations, we applied the well-known Lloyd descent
algorithm and observe that the vehicle locations converge
to the same configuration as illustrated in Figure 1.

Fig. 1. Final configuration of vehicle locations obtained by
running the Lloyd descent algorithm. The red dashed
line shows the density function φ(x) = x(1−x), while
the blue squares denote the three vehicles.

In the second scenario, we consider the weight function
φ(x) := x2 − x4 in the interval [A,B] = [−W,W ]. Then,
the polynomial F (p, b, a) is given by

F (p, b, a) =

∫ b

a

(p− x)(x2 − x4)dx

=
p

3
(b3 − a3)− 1

4
(b4 − a4)− p

5
(b5 − a5) +

1

6
(b6 − a6).

Substituting into the system of equations (5), for the
interval [−W,W ], we obtain
p1

3

(( p1 + p2

2

)3
+ W

3
)
−

1

4

(( p1 + p2

2

)4
−W

4
)

−
p1

5

(( p1 + p2

2

)5
+ W

5
)

+
1

6

(( p1 + p2

2

)6
−W

6
)

= 0,

p2

3

(( p2 + p3

2

)3
−
( p1 + p2

2

)3)
−

1

4

(( p2 + p3

2

)4
−
( p1 + p2

2

)4)
−

p2

5

(( p2 + p3

2

)5
−
( p1 + p2

2

)5)
+

1

6

(( p2 + p3

2

)6
−
( p1 + p2

2

)6)
= 0,

p3

3

(
W

3 −
( p2 + p3

2

)3)
−

1

4

(
W

4 −
( p2 + p3

2

)4)
−

p3

5

(
W

5 −
( p2 + p3

2

)5)
+

1

6

(
W

6 −
( p2 + p3

2

)6)
= 0. (7)

The system (7) also consists of three polynomial equations
in three unknowns p1, p2, p3. Using the technique from
Section 4, we obtain a total of 122 solutions in C3, of
which 30 are in R3. This computation yields that the global
optimal solution is approximately (−0.626, 0.431, 0.762).
However, for this problem, from a class of initial con-
figurations of the type (−a, 0, a), where a ∈ (0,W ), the
Lloyd descent algorithm leads the vehicles toward a local
minimum approximately at (−0.66, 0, 0.66) as illustrated
in Figure 2.

Fig. 2. Final configuration of vehicle locations obtained by
running the Lloyd descent algorithm. The red dashed
line shows the density function φ(x) = −x4 + x2.
The black circles denote the final output of the Lloyd
algorithm when initialize from (-a, 0, a), while the
blue squares denote the final output when the vehicles
are initialized with a random initial configuration.

6. CONCLUSIONS AND FUTURE DIRECTIONS

This paper considered the static coverage control problem
for placement of vehicles with simple motion on the real
line. We assumed that the cost is a polynomial function
of the locations of the vehicles. Our main contribution
was to demonstrate the use of a numerical polynomial
homotopy continuation method that guarantees to find all
solutions of polynomial equations, in order to characterize



the global minima for the coverage control problem. The
results were compared numerically using two examples
with a classic distributed approach involving the use of
Lloyd descent, known to converge only to a local minimum
under certain technical conditions. We observed that in
one of the examples, both methods lead to the same global
minimizer, while in the second example, the Lloyd descent
converges to only a local minimum when initialized from
a particular class of configurations.

Future work is expected to center around fully distributed
implementations of the polynomial homotopy method
based on exploiting the structure of polynomials. We also
plan to explore the complexity of this polynomial homo-
topy method in higher dimensional spaces.
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