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Abstract

Numerical algebraic geometry is the area devoted to the solution and
manipulation of polynomial systems by numerical methods, which are
mainly based on continuation. Due to the extreme intrinsic parallelism
of continuation, polynomial systems may be successfully dealt with
that are much larger than is possible with other methods. Singular
solutions require special numerical methods called endgames, and the
endgames currently used do not take advantage of parallelism. This
article gives an overview of continuation and endgames in the context
of parallel computation. We also introduce a novel parallel algorithm
for performing endgames at the end of homotopy paths, based on the
Cauchy endgame, along with some heuristics useful in its implementa-
tion. This method, which has been implemented in the Bertini software
package, leads to a significant gain in efficiency.
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1 Introduction

Numerical algebraic geometry is the area devoted to the solution and ma-
nipulation of polynomial systems by numerical methods, which are mainly
based on continuation. The methods of this field have been used to address
numerous problems in many areas of science and engineering, as well as
algebraic geometry.

Almost all of the computational effort of the algorithms of numerical
algebraic geometry [16] reduce to the following core computation:

Given a system f(x) = 0 of N polynomials in N unknowns, con-
tinuation computes a finite (multi)set S of solutions such that:

• any isolated root of f(x) = 0 is contained in S; and

• any isolated root appears a number of times equal to its
multiplicity as a solution of f(x) = 0.

The set S is called a superset of the isolated solutions as it may
contain solutions which are not isolated.

This computation comes down to the construction of a homotopy H(z, t)
and tracking paths constructed from this homotopy. This tracking is carried
out with standard numerical predictor/corrector methods. Each path may
be tracked completely independently.

Continuation comes with the extreme parallelism of splitting the paths
to be followed between different processors [13]. Because of this natural
intrinsic parallelism, polynomial systems may be successfully handled that
are much larger than is possible with other methods.

There is some redundant work in this computation, parallel or not:

Singular isolated solutions are approached by multiple paths.

Even worse, tracking a path leading to a singular solution is computation-
ally much more expensive than the cost of tracking a path leading to a
nonsingular isolated solution. The extra cost for computing a path lead-
ing to a singular solution is due to the necessity of using special numerical
methods called endgames [10, 11, 12, 17, 6] needed to deal with then, and
the endgames currently used do not take advantage of parallelism. For an
extended discussion of the classical endgames, see [16, Chapter 10].

This article surveys endgames in the presence of parallelism. We in-
troduce a novel parallel algorithm for performing endgames at the end of
homotopy paths, based on the Cauchy endgame, along with some heuristics
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useful in its implementation. This method, which has been implemented in
the Bertini software package, leads to a significant gain in efficiency. A brief
description of how this is done follows.

The system we want to solve f(z) = 0 is embedded in a system H(z, t)
of N polynomials with (z, t) ∈ CN × C, such that

1. H(z, 0) = f(z);

2. the set of nonsingular isolated solutions F is given for the polynomial
system H(z, 1) = 0;

3. given any element x∗ of the finite set F of nonsingular isolated solu-
tions of H(z, 1) = 0, the connected component C of the set{

(z, t) ∈ CN × (0, 1] |H(z, t) = 0
}

(1)

that contains x∗ is the graph of a differentiable map t → x(t) with
x(1) = x∗; and

4. given any isolated solution x̂ of f(z) = 0 of multiplicity µ, there are
exactly µ points in F with associated paths having the limit x̂ as t
goes to 0.

Most of the effort in the numerical computation of the solution sets of
systems of polynomials comes down to computing the limits as t goes to 0
for solution paths x(t) starting at the solution x∗ ∈ F .

For example, if

f(z) =

 f1(z1, . . . , zN )
...

fN (z1, . . . , zN )

 (2)

is a system of polynomials on CN , there are numerous ways to set up ho-
motopies H(z, t) with H(z, 0) = f(z) [16]. For such homotopies, the set
of startpoints F consists of all isolated nonsingular solutions of the start
system H(z, 1) = 0. The set of endpoints, i.e., limits of the solution paths
starting at points of F , contains all isolated solutions of f(z) = 0, the target
system. The special variable t is called the path variable or parameter for
the homotopy. Although it is sometimes useful to allow for multiple pa-
rameters, we restrict to the case of a single parameter in this article. For
more background, [1, 7, 8, 16] are good references for numerical homotopy
methods.

If an isolated solution x̂ of H(z, 0) = 0 is the limit of some number d ≥ 1
solution paths x(t) as t→ 0, then d is the multiplicity µ of x̂ as a solution of
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H(z, 0) = 0. Singular isolated solutions of f(z) = 0, i.e., isolated solutions
with multiplicity µ ≥ 2, are typically much more expensive to compute than
nonsingular solutions. This is because the linear algebra connected with
path-tracking is ill-conditioned near such singular limit points, requiring
the use of costly higher precision and shorter steplengths. Additionally, all
of the paths leading to the same limit point will be followed since, a priori,
there is no way to decide which paths will lead to the same solution.

To help mitigate the numerical difficulties encountered when trying to
compute singular endpoints, a variety of techniques more sophisticated than
standard path tracking have been developed [6, 10, 11, 12, 16]. One of these
is the Cauchy endgame [10]. As described in §3, this endgame employs a
numerical version of Cauchy’s integral formula on loops in the parameter
space around t = 0 to produce approximations of the endpoint at t = 0.

This article starts with a brief overview of endgames in §2. In §3, we
discuss the classical Cauchy endgame in detail. In §4, we present our new
parallel endgame which is based on the fact that using the classical Cauchy
endgame, we can identify those paths which lead to the same limit point
without tracking every path all the way to convergence at t = 0. Besides
reducing the work in computing the same endpoint, this significantly de-
creases the amount of post processing needed to decide which endpoints are
the same. Not only does the Cauchy endgame have the above compelling
properties, but, unlike other endgames, it parallelizes well, as demonstrated
by examples in §5.

We also present a pair of heuristics §4.2 for deciding whether a given
value of t is less than the modulus of all nonzero singular points in the
parameter space (i.e., the nonzero ramification points). This is valuable
information since Cauchy loops with images containing nonzero singular
points are useless in computing approximations at t = 0. Skipping useless
Cauchy loops (i.e, not beginning the endgame until all Cauchy loops are
worth computing) clearly saves computation time.

2 Overview of endgames

Endgames are based on the uniformization theorem for germs of one-dimen-
sional analytic sets, i.e., given a point x∗ on a complex analytic curve C,
there are sufficiently small open connected neighborhoods U such that U−x∗
is a union of punctured disks. In the situation of a homotopy H(z, t) = 0
on CN × ∆ that is polynomial in z and t, we have a point x∗ such that
H(x∗, 0) = 0 and at least one path leads to x∗. Let X be the union of the
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one-dimensional irreducible components of the solution set of H(z, t) = 0
that the projection map π(z, t) = t is generically finite-to-one. Given a
sufficiently small ε > 0 and letting ∆(ε) := {t ∈ C | |t| < ε}, the analytic set
X ∩ π−1(∆(ε)) is a union on analytic sets Ci for i = 1, . . . , k such that

1. there is a one-to-one holomorphic map φ : s ∈ ∆
(
ε

1
wi

)
→ Ci with

φ(0) = x∗;

2. π : Ci → ∆(ε) is proper and the composition π ◦ φ maps s to twi .

The number wi is called the winding number of Ci. If x∗ is an isolated
solution of f(z) = H(z, 0) of multiplicity µ, then µ = w1 + · · ·+ wk.

In the classical special case when N = 1, the fractional power series
expansions of projections of function σ : Ci → C under the map (z, t)→ z,
are called Puiseux expansions and were classically used to investigate the
local structure of curves and compute local invariants such as the multiplicity
of a singularity, e.g., [14, Chapter V].

Let σ denote the projection (z, t)→ z.
The idea of the first endgame [12] to be developed was to send t ∈ ∆(ε)

to the sum of the points σ
(
X ∩ π−1(∆(ε))

)
counted with multiplicity. This

function, called the trace of H(z, t) = 0 at x∗, is holomorphic and has a limit
as t→ 0 equal to the point x∗. It has the added advantage that if in fact the

curves Ci have different limits x∗i , then the the trace converges to
k∑
i=1

wi
µ
x∗i .

This robustness is balanced against the fact that we need to decide which
points are going to a given x∗ and then synchronize the paths going to the
solution x∗ so we can track the trace as t→ 0.

The second endgame [10] is the Cauchy test. This test uses the fact that
zj ◦φi : s→ C is holomorphic and the jth coordinate of the solution x∗ may
be computed using Cauchy’s formula for zj ◦ φi(x∗) in terms of the integral
of zj ◦φi over the circle s = c for sufficiently small constants c. All quantities
in question may be computed in terms of continuation paths in the t-plane.
This is discussed more thoroughly below.

The third endgame [11] is the power-series endgame, which uses inter-
polation theory to build up the power series expansions of the zj ◦ φ(s) and
then evaluate them at s = 0 to find an estimate of x∗. The key point is
to decide the winding number wi. This may be done by using the same
tracking as in the case of the Cauchy endgame, but this would require most
of the work of the Cauchy endgame with no real improvement in the quality
of the estimate for x∗. The main advantage of the power series endgame is
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that if wi is not too large, the values of the coordinates of the points on the
continuation paths with t real may be used to estimate the winding number.

The Cauchy and the power-series endgames require only that H(z, t) is
polynomial in the z variables and complex analytic in the t variable.

It is appropriate here to mention that with only double precision, solu-
tions with winding numbers beyond 3 or 4 are hard to compute. A rough
rule-of-thumb in practice is that using arithmetic with K digits and with
a winding number of wi, we can only compute the solution to K/wi digits
of accuracy. So to compute a solution x∗ to four digits of accuracy with
16 digits of precision, its winding number cannot be much beyond 4. Solu-
tions at infinity often have large winding numbers. The article [6] considers
polyhedral methods for dealing with infinite solutions.

3 The Cauchy endgame

3.1 Background

The Cauchy endgame was first reported in [10] as one of several potential
endgames for use with homotopy continuation (see also [16]). The idea
is to use the Cauchy integral formula to approximate x(0) using loops in
the parameter space about 0 of radius t, for varying values of t. In this
section, we describe the theory behind this numerical method; the next
section contains a few implementation notes. Since most homotopies have
C as the parameter space, we will assume that our parameter space is C.

Each isolated solution x∗ of H(z, 0) is the endpoint of at least one so-
lution path of the homotopy. In fact, there is some number of paths, d,
with endpoint x∗. For a small value of t, say t′, near enough 0, the path
values of these d paths will be permuted by moving around the loop t′eiθ

for θ ∈ [0, 2π]. In fact, the corresponding permutation can be broken up
into some number of cycles, say k. These are the winding numbers wi of the
previous section.

Given a point a in an open subset U ⊂ C and a disk D with a ∈ D ⊂ U ,
the Cauchy integral formula computes the function value f(a) as

f(a) =
1

2πi

∫
C

f(z)
z − a

dz, (3)

where C is the boundary of disk D and the integral is taken to be a contour
integral. A numerical integration method, e.g., the trapezoid method, may
be used to approximate the integral using just a sampling of points on D.
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In the homotopy setting, we compute approximations to a solution curve
x(t) of H(z, t) for values of t from 1 to 0. As t approaches 0, starting at
t = 0.1, for example, we may begin computing approximations of x(0), using
loops in the parameter space of the form teiθ and a numerical method for
evaluating the integral above. As t marches to 0, these approximations
will converge, so we may terminate this endgame (and the path) once two
consecutive approximations are within a prescribed tolerance.

3.2 Implementation

The Cauchy endgame has been implemented in Bertini [2]. This section
describes the original implementation of this endgame in Bertini, though it
has recently been improved using the ideas from §4.

Given a solution path x(t), Bertini will first track the path to the endgame
boundary, t′, set to 0.1 by default. At that point, Bertini sends the path
variable t around the circle t′eiθ for θ ∈ [0, 2π]. Since it is simpler to fol-
low lines than curves in t, Bertini discretizes this circle into a polygon (an
octagon by default) and tracks around this polygonal path repeatedly until
the path value of x(t) at the end of a loop is very near the starting path
value x(t′) (within a prescribed tolerance), i.e., until the Cauchy loop closes.

Once the Cauchy loop closes, it is straightforward to use numerical in-
tegration techniques, e.g., the trapezoid method, with the Cauchy integral
formula to compute an approximation at t = 0. After this first approxima-
tion of x(0) has been computed, t′ is reduced by some factor (typically 1

2),
and the procedure is repeated. The endgame terminates once two consecu-
tive approximations of x(0) agree to the desired tolerance.

4 A new Cauchy endgame

4.1 Overview

The motivation for the revised Cauchy endgame is to recognize those paths
which coalesce to some solution x∗ of H(z, t) = 0 at t = 0 without wasting
the time needed to follow all paths to t = 0 and determine which endpoints
are the same. Let t = t∗ be the value of the path variable from which the
approximation to t = 0 finally converges for some given path. Let w be the
winding number of x∗ for the given path.

At t = t∗, we will have tracked around t = 0 w times, thereby collecting
all w solutions of H(z, t∗) = 0 which lead to x∗ for this cycle. Call this set of
points G. We may then follow the paths beginning at points of G backwards
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to discover which of the solutions of H(z, 1) = 0, i.e., which starting points,
lead to x∗.

At first glance, it may seem that there is little savings in this method over
the original Cauchy endgame. However, endgames are the expensive part of
path tracking. Thus, being able to avoid running the endgame for w − 1 of
the w paths in the same cycle leading to the same endpoint, for example,
saves a significant amount of computational time, particular if w � 1. Of
course, this back-tracking is unnecessary if w = 1.

4.2 Heuristics about when to start the endgame

The Cauchy endgame can be very inefficient when extraneous Cauchy loops
are computed where convergence probably will not occur. In this section, we
present a pair of heuristics that help to eliminate this wasted computational
effort. After passing both heuristic tests, the standard Cauchy endgame is
utilized with the goal of being in a region where convergence can be attained
quickly.

Endgames are known to converge within an annulus around t = 0 [16].
The Cauchy endgame requires that no singular point other than (possibly)
t = 0 falls in the interior of the image of the Cauchy loop. Thus, the
outer loop of the annulus is determined by the (unknown) set of singular
(ramification) points in the parameter space. The inner loop is determined
by the preponderance of numerical error very near t = 0 when using fixed
precision. This annulus is called the endgame operating zone. Since only the
outer loop matters when using adaptive precision [3, 4], the radius of that
loop is given a name, the endgame convergence radius. Note that the actual
region from which the endgame may converge is a superset of the endgame
operating zone, but, in practice, it is reasonable to think of this region as
an annulus.

Let w ≥ 1 be the winding number for the endpoint of the path x(t) :
C → Cn at t = 0. In the endgame operating zone, it is known that x(t)
has a Puiseux series expansion, namely x(t) = x(0)+

∑∞
j=1 ajt

j/w. To avoid
trivialities in this section, we shall assume that x(t) is nonconstant. Let
c = min{j|aj 6= 0} and let v ∈ Cn be a random vector. Then,

v · x(t) = v · x(0) + v · actc/w +
∞∑

j=c+1

v · ajtj/w (4)

with v · ac 6= 0.
The first heuristic method approximates the value of c

w and tests for
agreement between two such approximations. To approximate this value,
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three points along the path x(t) are collected in a geometric sequence, say
x(R), x(λR), and x(λ2R), for some 0 < λ < 1 and R > 0. Using Eq. 4,

g(R) :=
log
∣∣∣v·x(λR)−v·x(λ2R)
v·x(R)−v·x(λR)

∣∣∣
log λ

≈ c

w
. (5)

To pass the heuristic test, g(R) must be positive, and g(R) and g(λR) must
“agree.” For some 0 < L < 1, agreement is defined as

L <
g(R)
g(λR)

<
1
L
. (6)

Bertini uses L = 3
4 , and, as a fail-safe mechanism to avoid the possibility of

never passing the test due to numerical error, Bertini automatically moves
on to the next heuristic test if it tracks to a value of t which is smaller than
10−8.

The second heuristic method compares values around the Cauchy loops.
When a loop contains an erroneous branch point or the radius is too large for
convergence, the values around the loop generally differ by large amounts.
One way of enforcing that the values do not differ radically without running
the whole Cauchy endgame is to collect sample points on x(Reiθ), θ ∈ [0, 2π]
and determine if the minimum and maximum norms of these sample points,
say m and M , respectively, are “well-behaved.” For β > 0 and 0 < K < 1,
m and M are well-behaved if either M −m < β or m

M > K. Bertini takes β
to be the requested final tolerance of the endpoint and K = 1

2 . As in the first
heuristic test, Bertini employs a fail-safe mechanism to automatically start
the standard Cauchy endgame if it tracks to a value of t which is smaller
than 10−14.

4.3 Parallel version

In the standard single-processor version of homotopy continuation, paths are
tracked sequentially, i.e., one after another. One way to parallelize homotopy
continuation is to send a packet of paths to each processor. Though this way
of parallelizing homotopy continuation is straightforward, there is value in
considering how to distribute the work among the available processors to
minimize total running time.

In Bertini, the paths are dynamically distributed in packets with the size
of the packets in successive rounds of distribution decreasing exponentially.
That is, the size of the first packet is substantially larger than the size of the
last packet. This provides for a more uniform load balance for the processors
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since not all paths take the same amount of time. Indeed, those ending at
singular endpoints or passing near a singularity take considerably longer
than those which stay well-conditioned throughout the entire path.

In the Bertini implementation of the new endgame described above, the
manager maintains a list of startpoints for which the endpoint is unknown.
When a worker process is available, the manager sends it a packet of start-
points, with the sizes of the packet decreasing exponentially, as before. The
worker process sequentially computes the endpoint of the path for each of
the start points it received and back-tracks when necessary. Before tracking
each path, the startpoint is compared with the track-back points computed
for this packet. After each endpoint is known for the startpoints in the
packet, the data is sent back to the manager who updates the list of start-
points and sends another packet.

This parallelization can result in running the endgame more than using
a sequential processing if the paths on the same cycle are simultaneously
sent to different workers. The additional communication costs to avoid this
would, in general, be more expensive than the cost of the extra computa-
tions. By reducing the maximum size of the packets, the likelihood of such
an event occurring decreases, but this creates more communication between
the manager and the workers. To maintain a good balance, we found that
a maximum of 20 paths per packet works well.

5 Implementation details and computational re-
sults

The track-back Cauchy endgame is implemented in the software package
Bertini [2]. All the examples discussed below were run on a 2.4 GHz Opteron
250 processor with 64-bit Linux. The parallel examples were run on a clus-
ter consisting of a manager that uses one core of a Xeon 5410 processor
and 8 computing nodes each containing two 2.33 GHz quad-core Xeon 5410
processors running 64-bit Linux, i.e., one manager and 64 workers.

In the examples presented, the paths were tracked using adaptive pre-
cision [3, 4]. The power series endgame collected sample points along the
path at t = 4−k, k = 1, 2, . . . , and used four successive sample points to
approximate the endpoint. Similarly, the Cauchy endgame computed ap-
proximations of the endpoint at t = 4−k, k = 1, 2, . . . using four sample
points per loop. For both endgames, the stopping criterion was having two
successive approximations agree to a tolerance of 10−10.
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Endgame
winding number number of paths Cauchy Power Series

1 41 0.010 0.007
2 4 0.092 0.084
4 72 0.023 0.156
8 8 0.734 2.641

Table 1: Distribution of the winding number for solving Eq. 7 and average
time, in seconds, for running the endgame

5.1 Solutions at infinity

Solutions at infinity tend to have large winding numbers, which leads to
computational difficulty when trying to compute the endpoints accurately.
Solving the first stage of the cascade algorithm [15, 16] is one place where
solutions at infinity waste computational resources.

For example, on C[x, y, z], let B be a random 3× 3 unitary matrix over
C, L1, L2, and L3 be general linear functions,

L =

 L1

L2

L3

 ,
and

g(x, y, z) =

 (y − x2)(x2 + y2 + z2 − 1)(2x− 1)
(xy − z)(x2 + y2 + z2 − 1)(2y − 1)
(xz − y2)(x2 + y2 + z2 − 1)(2z − 1)

 .
The first stage of the cascade algorithm solves the polynomial system

f = g +BL. (7)

Bertini’s theorem [16] provides that f has only nonsingular isolated solu-
tions on C[x, y, z]. Using a total degree homotopy, 36 paths lead to the
nonsingular isolated solutions and 89 diverge to infinity. Table 1 lists the
winding numbers occurring when solving f with a total degree homotopy
and the average time per path for each of the winding numbers which occur.
Table 2 compares the serial version of the track-back Cauchy endgame with
the classical Cauchy endgame and the power series endgame. In particular,
using the track-back Cauchy endgame, the endgame had to be run on only
26 of the 89 paths that diverge, resulting in less total computation time.
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total track-back Endgame
paths paths removed track-back Cauchy Cauchy Power Series
125 63 1.63 8.31 33.89

Table 2: Time, in seconds, for solving Eq. 7 using various endgames

Endgame
winding number number of paths Cauchy Power Series

4 4 0.015 0.004
5 1250 0.020 0.037
10 500 0.038 0.512
15 75 0.055 0.698

Table 3: Distribution of the winding number for solving Eq. 8 with n = 5
for the paths leading to the origin and average time, in seconds, for running
the endgame

5.2 A family of examples

Due to the nature of the track-back Cauchy endgame, it is more advanta-
geous over the traditional endgame when there are many paths with large
winding numbers. To illustrate this, consider a family of examples generated
from [5, 18]. For n ≥ 3, define

fi(x1, . . . , xn) = xni −
∏
j 6=i

xj (8)

for i = 1, . . . , n. It can be shown that there are (n + 1)n−1 nonsingular
solutions and that the origin has multiplicity nn− (n+ 1)n−1, which decom-
poses into various cycles. Table 3 lists the winding numbers occurring for
the paths that lead to the origin for n = 5 and the average time per path
for each of the winding numbers which occur.

Table 4 compares the other endgames with the serial version of the track-
back Cauchy endgame. As n increases, there is a clear increase in the per-
centage of the paths that are discarded by the track-back method.

Table 5 compares the parallel version of the track-back Cauchy endgame
with the classical Cauchy endgame and power series endgame. As discussed
in §4.3, fewer paths were removed using the parallel version of the track-back
endgame than with the serial version.
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total track-back Endgamen
paths paths removed track-back Cauchy Cauchy Power Series

3 27 7 0.11 0.13 0.06
4 256 102 1.46 2.77 5.70
5 3125 1523 32.66 57.86 373.29
6 46,656 25,792 760.08 1662.85 10,536.13

Table 4: Time, in seconds, for solving Eq. 8 using various endgames

total track-back Endgamen
paths paths removed track-back Cauchy Cauchy Power Series

5 3125 870 4.87 5.17 9.75
6 46,656 24,745 30.58 40.19 166.10

Table 5: Time, in seconds, for solving Eq. 8 in parallel using various
endgames

6 Conclusions

This article provides a short survey of continuation, particularly endgames,
in the context of parallel computation. Little thought was previously put
into the parallelization of endgames, so an efficient version of one particu-
lar parallel endgame was presented. In particular, the track-back Cauchy
endgame reduces the number of times the Cauchy endgame is run. Homo-
topies which have endpoints with large winding numbers will benefit most
from this advance, as seen in the examples above.

Completely open are the actual costs of the different single processor
endgames and the parallel Cauchy endgame. For example, if H(z, t) = 0 is
a homotopy and the average cost of computing a nonsingular solution to A
digits of accuracy using a path going to the nonsingular solution is C, then
what is the cost of computing a singular solution to A digits of accuracy
using a single path with winding number w going to the singular solution?
For various reasons, O(w2 ln(w)C) seems reasonable, though this topic is
outside the scope of this article.
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