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ABSTRACT: Let � = (V , E) be a finite, d-regular bipartite graph. For any λ > 0 let πλ be
the probability measure on the independent sets of � in which the set I is chosen with probability
proportional to λ|I|(πλ is the hard-core measure with activity λ on �). We study the Glauber dynamics,
or single-site update Markov chain, whose stationary distribution is πλ. We show that when λ is large
enough (as a function of d and the expansion of subsets of single-parity of V ) then the convergence to
stationarity is exponentially slow in |V(�)|. In particular, if � is the d-dimensional hypercube {0, 1}d

we show that for values of λ tending to 0 as d grows, the convergence to stationarity is exponentially
slow in the volume of the cube. The proof combines a conductance argument with combinatorial
enumeration methods. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 28, 427–443, 2006
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1. INTRODUCTION AND STATEMENT OF THE RESULT

Let � = (V , E) be a simple, loopless, finite graph on vertex set V and edge set E. (For
graph theory basics, see, e.g., [3], [7].) Write I(�) for the set of independent sets (sets of
vertices spanning no edges) in V . For λ > 0 we define the hard-core measure with activity
λ on I(�) by

πλ({I}) = λ|I|

Zλ(�)
for I ∈ I, (1)

where Zλ(�) = ∑
I∈I λ|I| is the appropriate normalizing constant. We will often write wλ(I)

for λ|I| and, for J ⊆ I, wλ(J ) for
∑

J∈J wλ(J).
The hard-core measure originally arose in statistical physics (see, e.g., [8, 1]), where

it serves as a simple mathematical model of a gas with particles of nonnegligible size.
The vertices of � we think of as sites that may or may not be occupied by particles; the
rule of occupation is that adjacent sites may not be simultaneously occupied. The activity
parameter λ measures the likelihood of a site being occupied.

The measure also has a natural interpretation in the context of communications networks
(see, e.g., [14]). Here the vertices of � are thought of as locations from which “calls” can be
made; when a call is made, the call location is connected to all its neighbors, and, throughout
its duration, no call may be placed from any of the neighbors. Thus, at any given time, the
collection of locations from which calls are being made is exactly an independent set in the
graph. If calls are attempted independently at each vertex as a Poisson process of rate λ and
have independent exponential mean 1 lengths, it can be shown that the long-run stationary
distribution of this process is the hard-core measure on �.

Our particular focus in this paper is the mixing time of the Glauber dynamics, or single-
site update Markov chain, for this model. The measure πλ can be realized as the stationary
distribution of a certain Markov chain. Specifically, consider the chain Mλ = Mλ(�) on
state space I(�) with transition probabilities Pλ(I , J), I , J ∈ I(�), given by

Pλ(I , J) =




0 if |I � J| > 1,

1

|V |
λ

1 + λ
if |I � J| = 1, I ⊆ J ,

1

|V |
1

1 + λ
if |I � J| = 1, J ⊆ I ,

1 − ∑
I �=J ′∈I(�) Pλ(I , J ′) if I = J .

Underpinning the definition of Mλ is the following dynamical process, known as the
Glauber dynamics on I(�). From an independent set I , the process follows three steps.
The first step is to choose a vertex v uniformly from V . The second step is to “add” v to I
with probability λ/(1 + λ), and “remove” it with probability 1/(1 + λ); that is, to set

I ′ =




I ∪ {v} with probability
λ

1 + λ
,

I\{v} with probability
1

1 + λ
.

The third step is to move to I ′ if it is a valid independent set, and stay at I otherwise.
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It is readily checked that Mλ is an ergodic, aperiodic, time reversible Markov chain
with (unique) stationary distribution πλ. A natural question to ask about Mλ is how quickly
it converges to its stationary distribution. To make this question precise, we need a few
definitions.

Let M be an ergodic Markov chain on state space �, with transition probabilities P :
�2 → [0, 1]. For a state ω0 ∈ �, denote by Pt(ω0, ·) the distribution of the state at time t,
given that the initial state is ω0, and denote by π the stationary distribution. Define the
mixing time of M by

τM = max
ω0∈�

min

{
t0 :

1

2

∑
ω∈�

|Pt(ω0, ω) − π(ω)| ≤ 1

e
∀t > t0

}
.

The mixing time of M captures the speed at which the chain converges to its stationary
distribution: For every ε > 0, in order to get a sample from � which is within ε of π

(in variation distance), it is necessary and sufficient to run the chain from some arbitrarily
chosen distribution for some multiple (depending on ε) of the mixing time.

Much work has been done on the question of bounding τMλ
. The strongest general result

available to date is due to Vigoda [21], who showed that if � is any n-vertex graph with
maximum degree �, then τMλ

(�) = O(n log n) whenever λ < 2/(� − 2). In the other
direction, Dyer, Frieze, and Jerrum [9] considered the case λ = 1 and showed that for each
� ≥ 6 a random (uniform) �-regular, n-vertex bipartite � almost surely (with probability
tending to 1 as n tends to infinity) satisfies τM1(�) ≥ 2γ n for some absolute constant γ > 0.

Here, we continue in the spirit of [9] and construct explicit families of graphs for which
Glauber dynamics mixes slowly. Specifically, we establish a certain expansion condition
in a regular bipartite graph � that forces τMλ(�) to be (almost) exponential in |V | provided
λ is suitably large (as a function of the expansion). The d-dimensional hypercube {0, 1}d

satisfies this condition for λ ≥ ω(d−1/4 log3/2 d).
Our work is partly motivated by [5] where a study was made of Glauber dynamics for

the hard-core measure on the even discrete torus TL,d . This is the graph on {0, . . . , L − 1}d

(with L even) in which two strings are adjacent if they differ on only one coordinate, and
differ by 1 (mod L) on that coordinate. It was shown in [5] that for λ growing exponentially
in d (with a suitably large base), τMλ(TL,d ) is exponential in cLd−1/ log2 L for some c that
depends on d but not on L.

In light of a recent result of Galvin and Kahn [12], we found it tempting to believe that
slow mixing on TL,d should hold for much smaller values of λ; even for some values of λ

tending to 0 as d grows. The main result of [12] is that the hard-core model on Z
d exhibits

multiple Gibbs phases for λ ≥ Cd−1/4 log3/4 d for some large constant C. Specifically,
write E and O for the sets of even and odd vertices of Z

d (defined in the obvious way:
A vertex of Z

d is even if the sum of its coordinates is even). Set


M = 
d
M = [−L, L]d , ∂
M = [−L, L]d\[−(L − 1), L − 1]d .

For λ > 0, choose I from I(
M) with Pr(I = I) ∝ λ|I|. The main result of [12] is that there
is a constant C such that if λ ≥ Cd−1/4 log3/4 d, then

lim
M→∞

Pr(0 ∈ I|I ⊇ ∂
M ∩ E) > lim
M→∞

Pr(0 ∈ I|I ⊇ ∂
M ∩ O).

Thus, roughly speaking, the influence of the boundary on behavior at the origin persists
as the boundary recedes. Informally, this suggests that for λ in this range, the typical
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independent set chosen according to the hard-core measure is either predominantly odd or
predominantly even. Thus there is a highly unlikely “bottleneck” set of balanced indepen-
dent sets separating the predominantly odd sets from the predominantly even ones. It is
the existence of this bottleneck that should cause the conductance of the Glauber dynamics
chain to be small (see Section 2), and thus cause its mixing time to be large.

Our main result (Theorem 1.1) provides some support for this belief, verifying it in the
case L = 2; unfortunately, because of the weak isoperimetry of the torus we cannot hope
to use Theorem 1.1 to deal with general L. (See Remark 1.6 for further discussion of these
issues.)

Before stating Theorem 1.1, we establish some notation. From now on, � = (V , E)

will be a d-regular, bipartite graph with partition classes E and O. Set N = |V | and
M = |E | = |O| (= N/2).

For u, v ∈ V we write u ∼ v if there is an edge in � joining u and v. Set N(u) = {w ∈
V : w ∼ u} (N(u) is the neighborhood of u) and N(A) = ∪w∈AN(w). For A ⊆ E (or O) set

[A] = {x ∈ V(�) : N(x) ⊆ N(A)};

we think of [A] as an “external closure” of A. Note that while A determines N(A), N(A)

determines only [A]. For this reason, we find it more convenient at some points in the sequel
to deal with [A] rather than with A itself. Say that A is small if |[A]| ≤ M/2. Define the
bipartite expansion constant of � by

δ(�) = min

{ |N(A)| − |[A]|
|N(A)| : A ⊆ E small or A ⊆ O small, A �= ∅

}
.

Note that 0 ≤ δ < 1. [The second inequality is obvious. The first follows from regularity,
which implies that � has a perfect matching, which in turn implies that for all A ⊆ E
(or O), |A| ≤ |N(A)|.]

All implied constants in O and � notation are independent of d. We use “log” throughout
for log2 and “ln” for loge. We write exp2 x for 2x. We always assume that d is sufficiently
large to support our assertions.

Set

α(λ) = log(1 + λ)

44 (1 + log(1 + λ)) log

(
2 + 1

log(1 + λ)

) (2)

and

β(λ) = log2(1 + λ)

log(1 + λ) + log

(
d5

δ

) .

We note for future reference that

λ ≥ 1√
d

implies
1

44
> α(λ) = �

(
1√

d log d

)
. (3)
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Our main result is

Theorem 1.1. Let � be a d-regular, bipartite graph with N ≥ d2 vertices and bipartite
expansion constant δ. There is a constant c > 0 such that whenever λ and δ satisfy

β(λ) ≥ c max




log

(
d5

δ

)
√

d
,

log2 d

δd


 , (4)

we have

τMλ(�) ≥ exp2{�(Nα(λ)β(λ)δ)}.

Remark 1.2. If we add as an additional hypothesis to Theorem 1.1 that � has bounded
codegree (that is, there is a constant κ independent of d such that each pair of vertices in �

has at most κ common neighbours), then we can slightly improve our bound on λ to

β(λ) ≥ c max




log

(
d5

δ

)
√

d
,

log d

δd2


 . (5)

We do not present the more complicated argument here.

Note that since δ < 1, we cannot possibly satisfy (4) for λ ≤ 1/
√

d, so we may (and
will) assume from here on that λ ≥ 1/

√
d.

A slightly stronger condition that implies (4) is

log(1 + λ) ≥ c′ max




log

(
d5

δ

)
d1/4

,

log d

√
log

(
d5

δ

)
√

δd




, (6)

where the constant c′ depends on c, from which we can more clearly see the tradeoff between
λ and δ. From (6) we may also read off the following corollary of Theorem 1.1 addressing
Glauber dynamics for sampling a uniform independent set (λ = 1).

Corollary 1.3. Let � satisfy the conditions of Theorem 1.1. There is a constant c > 0
such that whenever δ ≥ c log3 d/d, we have

τM1(�) ≥ exp2

{
�

(
Nδ

log d

)}
.

As an application of Theorem 1.1, we consider the case � = Qd , the d-dimensional
hypercube. This is the d-regular bipartite graph on vertex set {0, 1}d in which two vertices are
adjacent if they differ on exactly one coordinate. The hypercube satisfies δ(Qd) ≥ �(1/

√
d)
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(see, e.g. [16, Lemma 1.3]; this bound can also be derived from isoperimetric inequalities
of Bezrukov [2] and Körner and Wei [15]), and so if c′ > 0 is a suitably large constant
(depending on the constant c provided by Theorem 1.1), then (4) is satisfied as long as
λ ≥ c′d−1/4 log3/2 d. So the following is a corollary of Theorem 1.1.

Corollary 1.4. There are constants c, c′ > 0 such that whenever λ ≥ cd−1/4 log3/2 d, we
have

τMλ(Qd ) ≥ exp2




c′2d log3(1 + λ)

√
d (1 + log(1 + λ)) (c3 log d + log(1 + λ)) log

(
2 + 1

log(1 + λ)

)

 .

In particular,

τMλ(Qd ) ≥




exp2

{
2d log3(1 + λ)√

d log2 d

}
if cd−1/4 log3/2 d ≤ λ ≤ O(1),

exp2

{
2d log2(1 + λ)√

d log d

}
if �(1) ≤ λ ≤ O(d),

exp2

{
2d log(1 + λ)√

d

}
if �(d) ≤ λ.

Remark 1.5. Using (5) in place of (4) (which we may do, since Qd has bounded codegree),
we may improve the bound on λ in Corollary 1.4 to λ ≥ cd−1/4 log d.

Remark 1.6. Let us return to TL,d , the even discrete torus. Since Qd is easily seen to
be isomorphic to T2,d , Corollary 1.4 gives an exponential lower bound on τMλ(T2,d ) for
sufficiently large d whenever λ ≥ ω(d−1/4 log3/2 d). Unfortunately, the best bound we can
obtain on the bipartite expansion constant of TL,d is δ(TL,d) ≥ �(1/Ld) (see, e.g., [12]),
so we cannot use Theorem 1.1 to obtain any lower bound on λ independent of L beyond
which τMλ(TL,d ) is large for all even L ≥ 4 and sufficiently large d. However, subsequent to
the completion of this paper, a strategy specific to the torus has been employed in [11] to
show that for all even L ≥ 4, λ ≥ ω(d−1/4 log3/4 d) and d sufficiently large,

τMλ(TL,d ) ≥ exp2

{
Ld−1

d3 log2 L

}
.

2. PROOF OF THEOREM 1.1

The notion of conductance, introduced in [13], can be used to analyze the behavior of
τMλ

. Let M be a Markov chain on state space � with transition matrix P and stationary
distribution π . For ω1, ω2 ∈ � and A, B ⊆ �, set

Q(ω1, ω2) = π(ω1)P(ω1, ω2) and Q(A, B) =
∑

ω1∈A, ω2∈B

Q(ω1, ω2).
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For ∅ �= S ⊆ �, define the conductance of S as

�(S) = Q(S, �\S)

π(S)
.

We may interpret �(S) as the probability under π that the chain escapes from S in one step,
given that it is in S. Define the conductance of M as

�M = min
0<π(S)≤ 1

2

�(S).

We may then bound the mixing time of M by

τM ≥
(

1

2
− 1

e

)
1

�M
(7)

(see, e.g., [9], where the above bound is derived without assuming time-reversibility of the
chain M). Thus to show that the mixing time is large, it is enough to exhibit a single S with
small conductance.

Throughout this section we fix � satisfying the conditions of Theorem 1.1. Set

IE = {I ∈ I(�) : |I ∩ E | > |I ∩ O|},
define IO analogously, and set Ib = I(�)\(IE ∪IO) (Ib is the set of balanced independent
sets). Without loss of generality, assume πλ(IE) ≤ 1/2. Because Glauber dynamics changes
the size of an independent set by at most one at each step, we have that if I ∈ IE , J �∈ IE
satisfy Pλ(I , J) �= 0, then J ∈ Ib. It follows that

Q(IE , �\IE) =
∑

I∈IE ,J �∈IE

πλ(I)Pλ(I , J)

=
∑

I∈IE ,J �∈IE

πλ(J)Pλ(J , I) (8)

=
∑

I∈IE ,J∈Ib

πλ(J)Pλ(J , I)

≤ πλ(Ib).

The simplest way to see (8) is to use the fact that Mλ is time-reversible (that is, that
πλ(I)Pλ(I , J) = πλ(J)Pλ(J , I) for all I , J ∈ I); but note that more generally if M is
a (not necessarily time-reversible) Markov chain on finite state space � with transition
matrix P and stationary distribution π then∑

ω1∈S,ω2 �∈S

π(ω1)P(ω1, ω2) =
∑

ω1∈S,ω2 �∈S

π(ω2)P(ω2, ω1)

for all S ⊆ �. Now, using the trivial lower bound wλ(IE) ≥ (1 + λ)M (recall that for
J ⊆ I, ωλ(J ) = ∑

J∈J λ|J|), we obtain

�Mλ
≤ �(IE) ≤ πλ(Ib)

πλ(IE)
= wλ(Ib)

wλ(IE)
≤ wλ(Ib)

(1 + λ)M
. (9)
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Thus [recalling (7)] to show that τMλ
is large, it is enough to show that wλ(Ib) is small. We

may think of Ib as a “bottleneck” set through which any run of the chain must pass in order
to mix; if the bottleneck has low measure, the mixing time is high.

We will actually consider a larger “bottleneck” set. Set

I triv = {I ∈ I : |I ∩ E |, |I ∩ O| ≤ α(λ)M}
and

Int = {I ∈ I : min{|I ∩ E |, |I ∩ O|} ≥ α(λ)M},
where α(λ) is as defined in (2). Note that Ib ⊆ I triv ∪ Int . We will show that as long as λ

satisfies (4),

wλ(I triv ∪ Int) ≤ (1 + λ)M exp2{−� (Mα(λ)β(λ)δ)} , (10)

from which Theorem 1.1 follows via (7) and (9).
Dealing with wλ(I triv) is relatively straightforward. We begin by observing that

4α(λ) log
1

α(λ)
≤ log(1 + λ)

2 (1 + log(1 + λ))
. (11)

To see this, first set

γ (λ) = log(1 + λ)

1 + log(1 + λ)
.

Note that for all λ > 0, 0 < γ (λ) < 1. We have α(λ) = γ (λ)/(44 log(1 + 1/γ (λ))) and so
(11) is equivalent to

γ (λ)

11 log

(
1 + 1

γ (λ)

) log




44 log

(
1 + 1

γ (λ)

)
γ (λ)


 ≤ γ (λ)

2
,

which is in turn equivalent to

44 log

(
1 + 1

γ (λ)

)
≤ γ (λ)

(
1 + 1

γ (λ)

)11/2

.

That this inequality holds for all 0 < γ (λ) < 1 is a routine calculus exercise. Note also that
for 0 < x < 1/e,

x ≤ H(x) ≤ 2x log
1

x
(12)

(where recall H(x) = −x log x − (1 − x) log(1 − x) is the usual binary entropy function).
Finally, we use a result concerning the sums of binomial coefficients which follows from
the Chernoff bounds [6] (see also [4], p.11):

[cN]∑
i=0

(
N

i

)
≤ 2H(c)N for c ≤ 1

2
, (13)

where [x] denotes the integer part of x.
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Now with the inequalities justified below, we have

wλ(I triv) ≤
(

M

≤ α(λ)M

)2

(1 + λ)2α(λ)M

≤ exp2{2H(α(λ))M + 2α(λ)M log(1 + λ)} (14)

≤ exp2{2MH(α(λ))(1 + log(1 + λ))} (15)

≤ exp2

{
4Mα(λ) log

1

α(λ)
(1 + log(1 + λ))

}
(16)

≤ exp2

{
M

log(1 + λ)

2

}
(17)

≤ (1 + λ)
M
2 . (18)

Here (and throughout) we use
( n
≤k

)
for

∑
i≤k

(n
i

)
. In (14), we are using (13), which is

applicable by (3). In (15) we are using the first inequality in (12) and in (16) we are using
the second (again, both of these are applicable by (3).) Finally in (17) we are using (11).

Bounding wλ(Int) requires much more work. We begin by enlarging Int slightly. Say that
I ∈ I(�) is small on E if |[I∩E]| ≤ M/2 (recall that for A ⊆ E , [A] = {v ∈ O : N(v) ⊆ A}),
and set

Int
E = {I ∈ Int : I is small on E}.

Define small on O and Int
O similarly. A simple argument, based on the fact that � has a

perfect matching, shows that any I ∈ I(�) must be small on at least one of E , O, and so
we have

wλ(Int) ≤ 2 max
{
wλ

(Int
E
)
, wλ

(Int
O
)}

.

We may assume without loss of generality that

wλ

(Int
E
) = max

{
wλ

(Int
E
)
, wλ

(Int
O
)}

so that it is enough to show that

wλ

(Int
E
) ≤ (1 + λ)M exp2{−�(Mα(λ)β(λ)δ)} .

For each a ≥ α(λ)M and g ≥ a set

A(a, g) = {A ⊆ E : |[A]| = a, |N(A)| = g}

and set

I(a, g) = {
I ∈ Int

E : I ∩ E ∈ A(a, g)
}
.
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We have

wλ

(Int
E
) ≤

∑
a≥α(λ)M, g≥a

wλ(I(a, g))

≤
∑

a≥α(λ)M, g≥a

wλ(A(a, g))(1 + λ)M−g

≤ (1 + λ)M
∑

a≥α(λ)M, g≥a

wλ(A(a, g))(1 + λ)−g

≤ (1 + λ)MM2 max
a≥α(λ)M, g≥a

wλ(A(a, g))(1 + λ)−g.

The key now is to upper bound wλ(A(a, g)). The following theorem (whose proof is
given in Section 3) is based on ideas of A. Sapozhenko [18, 19].

Theorem 2.1. Let � be any graph satisfying the assumptions of Theorem 1.1. We have

wλ(A(a, g)) ≤ (1 + λ)g exp2{−� ((g − a)β(λ))} .

for any a ≥ α(λ)M and any λ satisfying (4).

For a ≥ α(λ)M and g ≥ a we have g − a ≥ δg ≥ Mα(λ)δ and so

wλ

(Int
E
) ≤ (1 + λ)MM2 exp2{−�(Mα(λ)β(λ)δ)}

≤ (1 + λ)M exp2{−�(Mα(λ)β(λ)δ)} . (19)

To see that the factor of M2 may be absorbed into the exponent, note that, by hypothesis,
2M ≥ d2 and so M2 ≤ exp2{O(M log d/d2)}, and that combining (3) and (4) we have
α(λ)β(λ)δ ≥ �(d−3/2 log d).

Combining (19) and (18), we get (10) and hence Theorem 1.1.

3. PROOF OF THEOREM 2.1

For u, v ∈ V and A, B ⊆ V , we write ∇(A) for the set of edges having one end in A and (if
A ∩ B = ∅) ∇(A, B) for the set of edges having one end in each of A, B. We also write dA(v)
for |N(v) ∩ A|.

Throughout this section, we fix � satisfying the assumptions of Theorem 1.1. We also
fix a and g, but we do not assume a ≥ α(λ)M. We write A for A(a, g). Given A ∈ A we
always write G for N(A) and set t = g − a. Note that for A ∈ A,

|∇(G, E\[A])| = dg − da = td. (20)

The proof of Theorem 2.1 involves the idea of “approximation.” We begin with an
informal outline. To bound wλ(A), we produce a small set U with the properties that each
A ∈ A is “approximated” (in an appropriate sense) by some U ∈ U , and for each U ∈ U ,
the total weight of those A ∈ A that could possibly be “approximated” by U is small.
(Each U ∈ U will consist of two parts; one each approximating G and A.) The product of
the bound on |U | and the bound on the weight of those A ∈ A that may be approximated
by any U is then a bound on wλ(A). The set U is itself produced by an approximation
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process — we first produce a small set V with the property that each A ∈ A is “weakly
approximated” (in an appropriate sense) by some V ∈ V , and then show that for each V there
is a small set W(V) with the property that, for each A ∈ A that is “weakly approximated”
by V , there is a W ∈ W(V) which approximates A; we then take U = ∪V∈VW(V). (Each
V ∈ V will consist of a single part.)

The main inspiration for the proof of Theorem 2.1 is the work of A. Sapozhenko, who,
in [19], gave a relatively simple derivation for the asymptotics of the number of independent
sets in Qd [in the notation of (1), this is the asymptotics of Zλ(Qd) with λ = 1], earlier derived
in a more involved way in [16]. Our Lemma 3.3 is a modification of a lemma in [18],
and our overall approach is similar to [19]. See, e.g., [10] for another recent application
of these ideas.

We now begin the formal discussion of Theorem 2.1 by introducing the two notions
of approximation that we will use, beginning with the weaker notion. A covering
approximation for A ⊆ E is a set F0 ∈ 2O satisfying

F0 ⊆ G, N(F0) ⊇ [A].
The second notion of approximation depends on a parameter ψ , 1 ≤ ψ ≤ d/2.

A ψ-approximation for A ⊆ E is a pair (F, S) ∈ 2O × 2E satisfying

F ⊆ G, S ⊇ [A], (21)

dF(u) ≥ d − ψ ∀u ∈ S (22)

and

dE\S(v) ≥ d − ψ ∀v ∈ O\F. (23)

Note that if x ∈ [A], then N(x) ⊆ G, and if y ∈ O\G, then N(y) ⊆ E\[A]. If we think of S
as “approximate [A]” and F as “approximate G”, (22) says that if x ∈ E is in “approximate
[A]” then almost all of its neighbors are in “approximate G”, while (23) says that if y ∈ O
is not in “approximate G” then almost all of its neighbors are not in “approximate [A].”

Before continuing, we note a property of ψ-approximations that will be of use later.

Lemma 3.1. If (F, S) is a ψ-approximation for A ∈ A, then

|S| ≤ |F| + 2tψ

d − ψ
. (24)

Proof. Observe that |∇(S, G)| is bounded above by d|F|+ψ |G\F| and below by d|[A]|+
(d − ψ)|S\[A]| = d|S| − ψ |S\[A]|, giving

|S| ≤ |F| + ψ |(G\F) ∪ (S\[A])|
d

,

and that each u ∈ (G\F) ∪ (S\[A]) contributes at least d − ψ edges to ∇(G, E\[A]), a set
of size td, giving

|(G\F) ∪ (S\[A])| ≤ 2td

d − ψ
.

These two observations together give (24).
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There are three parts to the proof of Theorem 2.1. Lemma 3.2 is the first “approximation”
step, producing a small family V of covering approximations for A. Lemma 3.3 is the second
“approximation” step, refining the covering approximations to produce a family W of ψ-
approximations for A. Finally, Lemma 3.4 is the “reconstruction” step, bounding the weight
of the set of A’s that could possibly be ψ-approximated by a member of W . We now state
the three relevant lemmas. We will then derive Theorem 2.1 before turning to the proofs of
the approximation and reconstruction lemmas.

Lemma 3.2. There is a V = V(a, g) ⊆ 2O with

|V| ≤

 M

≤ 2g log d

d




such that each A ∈ A has a covering approximation in V .

Lemma 3.3. For any F0 ∈ V and 1 ≤ ψ ≤ d/2 there is a W = W(F0, ψ , a, g) ⊆ 2O ×2E

with

|W| ≤

2g log d

≤ 2g

d





2d3g log d

≤ 2t

ψ





 2g log d

≤ td

(d − ψ)ψ




such that any A ∈ A for which F0 is a covering approximation has a ψ-approximation
in W .

Lemma 3.4. Given 1 ≤ ψ ≤ d/2 and 1 ≥ γ > −2ψ/(d − ψ), for each (F, S) ∈ 2O×2E

that satisfies (24) we have

∑
wλ(A) ≤ max


(1 + λ)g−γ t ,


 3dg

≤ 2tψ

d − ψ
+ γ t


(1 + λ)g−t


 , (25)

where the sum is over all those A’s in A satisfying F ⊆ G and S ⊇ [A].

Before turning to the proofs of Lemmas 3.2, 3.3, and 3.4, we use them to obtain
Theorem 2.1. Throughout, we will use (usually without comment) a simple observation
about sums of binomial coefficients: If k = o(n), we have

∑
i≤k

(
n

i

)
≤

(
1 + O

(
k

n

)) (
n

k

)

≤
(

1 + O

(
k

n

)) (en

k

)k

≤ exp2

{
(1 + o(1))k log

(n

k

)}
. (26)
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Take ψ = √
d and

γ =
log(1 + λ) −

√
d

d − √
d

log

(
d5

δ

)

log(1 + λ) + log

(
d5

δ

) .

Note that for this choice of ψ and γ we have γ > −ψ/(d − ψ), and so

log
3d

δ

(
2ψ

d − ψ
+ γ

) ≤ 1

2
log

(
d5

δ

)
.

The bound in (25) is therefore at most

(1 + λ)g exp2

{
max

{
−γ t log(1 + λ), t

(
2ψ

d − ψ
+ γ

)
log

(
d5

δ

)}}
.

[Here we have used (26)]. For our choice of ψ and γ this is at most

(1 + λ)g exp2




t
log(1 + λ)

√
d

d − √
d

log

(
d5

δ

)
− log2(1 + λ)

log(1 + λ) + log

(
d5

δ

) + t

√
d log

(
d5

δ

)
d − √

d




,

which in turn is at most

(1 + λ)g exp2


O


t

log

(
d5

δ

)
√

d


 − t

log2(1 + λ)

log(1 + λ) + log

(
d5

δ

)

 . (27)

The bounds in Lemmas 3.3 and 3.2 are at most

exp2


O


g

log d

d
+ t

log

(
d5

δ

)
√

d





 and exp2

{
O

(
g

log2 d

d

)}
, (28)

respectively. For the latter bound, we are using the assumption a ≥ α(M) of Theorem 2.1
and the fact that λ ≥ 1/

√
d, which together imply (via (3)) that

Md

g log d
≤ d3/2.

Combining (28) with (27), we get

wλ(A) ≤ (1 + λ)g exp2


O


g

log2 d

d
+ t

log

(
d5

δ

)
√

d


 − t

log2(1 + λ)

log(1 + λ) + log

(
d5

δ

)

 .
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Noting that t ≥ δg always, we find that if λ satisfies (4) with a suitably large constant c,
then

wλ(A) ≤ (1 + λ)g exp2


−�


t

log2(1 + λ)

log(1 + λ) + log

(
d5

δ

)




 .

and so we get Theorem 2.1.
We now turn to the proofs of Lemmas 3.2, 3.3, and 3.4.

Proof of Lemma 3.2. We appeal to a special case of a fundamental result due to Lovász
[17] and Stein [20]. For a bipartite graph � with bipartition P ∪ Q, we say that Q′ ⊆ Q
covers P if each p ∈ P has a neighbor in Q′.

Lemma 3.5. If � as above satisfies |N(x)| ≥ p for each x ∈ P and |N(y)| ≤ q for each
y ∈ Q, then P is covered by some Q′ ⊆ Q with

|Q′| ≤ (|Q|/p)(1 + ln q).

Applying the lemma with � the subgraph of � induced by [A] ∪ G, P = [A], Q = G,
and p = q = d, we find that each A ∈ A has a covering approximation of size at most
2g log d/d. Taking V to be the set of all subsets of O of size at most 2g log d/d, the lemma
follows.

Proof of Lemma 3.3. We describe an algorithm, which we refer to as the degree algorithm,
which produces for input (F0, A) ∈ 2O × 2E for which F0 is a covering approximation of A
(i.e., with N(F0) ⊇ [A]), an output (F, S) ∈ 2O × 2E which is a ψ-approximation for A
[i.e., which satisfies (21), (22), and (23)]. The idea for the algorithm is from [18]. To begin,
fix a linear ordering � of V .

Step 1: If {u ∈ [A] : dG\F0(u) > d/2} �= ∅, pick the smallest (with respect to �) u
in this set and update F0 by F0 ←− F0 ∪ N(u). Repeat this until {u ∈ [A] :
dG\F0(u) > d/2} = ∅. Then set F1 = F0 and S1 = {u ∈ E : dF1(u) ≥ d − d/2}
and go to Step 2.

Step 2: If {v ∈ O\G : dS1(v) > ψ} �= ∅, pick the smallest (with respect to �) v
in this set and update S1 by S1 ←− S1\N(v). Repeat this until {v ∈ O\G :
dS1(v) > ψ} = ∅. Then set S2 = S1 and F2 = {v ∈ O : dS2(v) > ψ} and go to
Step 3.

Step 3: If {w ∈ [A] : dG\F2(w) > ψ} �= ∅, pick the smallest (with respect to �) w
in this set and update F2 by F2 ←− F2 ∪ N(w). Repeat this until {w ∈ [A] :
dG\F2(w) > ψ} = ∅. Then set F = F2 and S = S2 ∩ {w ∈ E : dF(w) ≥ d − ψ}
and stop.

Claim 3.6. The output of the degree algorithm is a ψ-approximation for A.

Proof. To see that F ⊆ G and S ⊇ [A], first observe that S1 ⊇ [A] (or Step 1 would not
have terminated). We then have S2 ⊇ [A] (since Step 2 deletes from S1 only neighbors of
O\G), and F2 ⊆ G (or Step 2 would not have terminated). Finally, F ⊆ G (since the vertices
added to F2 in Step 3 are all in G) and S ⊇ [A] (or Step 3 would not have terminated).
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By the definition of S, (22) is satisfied. To verify (23), note that by definition of F2, if
y ∈ O\F2, then dE\S2(y) ≥ d − ψ . That y ∈ O\F implies dE\S(y) ≥ d − ψ now follows
from the fact that F2 ⊆ F and S2 ⊇ S.

Remark 3.7. The alert reader may have noticed that if we replace d/2 by ψ in Step 1, then
the output of Step 2 is already a ψ-approximation for A. The three-step algorithm, however,
is needed to obtain the right bound on β(λ) in Theorem 1.1; see Remark 3.9 following the
proof of Claim 3.8.

Claim 3.8. Fix F0 ∈ V . The degree algorithm has at most
2g log d

≤ 2g

d





2d3g log d

≤ 2t

ψ





 2g log d

≤ td

(d − ψ)ψ




outputs as the input runs over those (F0, A) for which A ∈ A and F0 is a covering
approximation for A.

Taking W to be the set of all possible outputs of the algorithm, the lemma follows.

Proof of Claim 3.8. The output of the algorithm is determined by the set of u’s whose
neighborhoods are added to F0 in Step 1, the set of v’s whose neighborhoods are removed
from S1 in Step 2, and the set of w’s whose neighborhoods are added to F2 in Step 3.

Each iteration in Step 1 removes at least d/2 vertices from G\F, a set of size at most
g, so there are at most 2g/d iterations. The u’s in Step 1 are all drawn from [A] and hence
N(F0), a set of size at most d|F0| ≤ 2g log d. So the total number of outputs for Step 1 is
at most 

2g log d

≤ 2g

d


 . (29)

At the start of Step 2, each x ∈ S1\[A] contributes at least d/2 edges to ∇(G, E\[A]), by
(20) a set of size dt, so |S1\[A]| ≤ 2t. Each v used in Step 2 reduces this by at least ψ , so
there are at most 2t/ψ iterations. Each v is drawn from N(S1), a set which is contained in the
fourth neighborhood of F0 (S1 ⊆ N(G) by construction of S1, G = N(A) and A ⊆ N(F0))
and so has size at most d4|F0| ≤ 2d3g log d. So the total number of outputs for Step 2 is

2d3g log d

≤ 2t

ψ


 . (30)

At the start of Step 3, each y ∈ G\F2 contributes at least d − ψ edges to ∇(G, E\[A]),
so |G\F2| ≤ dt/(d − ψ). Each w used in step 3 reduces this by at least ψ , so there are at
most dt/((d −ψ)ψ) iterations. As in Step 1, the w’s are all drawn from a set of size at most
2g log d, so the total number of outputs for Step 1 is at most

 2g log d

≤ td

(d − ψ)ψ


 . (31)

Combining (29), (30), and (31), the claim follows.



442 GALVIN AND TETALI

Remark 3.9. The bound in Claim 3.8 is at most exp2{O(g log d/d + t log(d5/δ)/ψ)}. If
we replace d/2 by ψ in Step 1 of the degree algorithm and take the output of Step 2 to be
the final output, then the bound in the claim becomes weaker:


2g log d

≤ g

ψ





 2gd3 log d

≤ td

(d − ψ)ψ


 = exp2


O




g log
d

ψ
+ t log

(
d5

δ

)
ψ





 .

(Each iteration of Step 1 now reduces G\F by at least ψ). Using this bound in the proof of
Theorem 1.1 instead of the stronger bound given by the three-step degree algorithm would
ultimately lead to a weaker bound on β(λ) in (4). Step 1 of the degree algorithm may be
though of as an “initialization” which reduces |G\F| from O(g) to O(t) without adding
much to the “cost” of the algorithm.

Proof of Lemma 3.4. Say that S is small if |S| < g − γ t and large otherwise. We can
obtain all A ∈ A for which F ⊆ G and S ⊇ [A] as follows.

If S is small, we specify of A by picking a subset of S. If S is large, we first specify G.
Note that by (24) and the definition of large we have in this case that

|G\F| <
2tψ

d − ψ
+ γ t and G\F ⊆ N(S)\F,

so we specify G by picking a subset of N(S)\F of size at most 2tψ/(d − ψ) + γ t (this is
our choice of G\F). Then, noting that [A] is determined by G, we specify A by picking a
subset of [A].

This procedure produces all possible A’s (and more). We now bound the sum of the
weights of the outputs.

If S is small then the total weight of outputs is at most

(1 + λ)g−γ t . (32)

We have

|N(S)\F| ≤ d|S| ≤ dg + 2tdψ

d − ψ
≤ 3dg

so that if S is large, the total number of possibilities for |G\F| is at most


 3dg

≤ 2tψ

d − ψ
+ γ t




and the total weight of outputs is at most


 3dg

≤ 2tψ

d − ψ
+ γ t


 (1 + λ)g−t . (33)

Combining (32) and (33), the lemma follows.
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