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It is shown that the hard-core model on Z
d exhibits a phase transition at activities above

some function λ(d) which tends to zero as d→∞. More precisely, consider the usual nearest

neighbour graph on Z
d, and write E and O for the sets of even and odd vertices (defined

in the obvious way). Set

ΛM = Λd
M = {z ∈ Z

d : ‖z‖∞ �M}, ∂�ΛM = {z ∈ Z
d : ‖z‖∞ = M},

and write I(ΛM ) for the collection of independent sets (sets of vertices spanning no edges)

in ΛM . For λ > 0 let I be chosen from I(ΛM ) with Pr(I = I) ∝ λ|I |.

Theorem. There is a constant C such that if λ > Cd−1/4 log3/4 d, then

lim
M→∞

Pr(0 ∈ I|I ⊇ ∂�ΛM ∩ E) > lim
M→∞

Pr(0 ∈ I|I ⊇ ∂�ΛM ∩ O).

Thus, roughly speaking, the influence of the boundary on behaviour at the origin persists

as the boundary recedes.

1. Introduction

The ‘hard-core model’ is a simple mathematical model of a gas with particles of non-

negligible size. The vertices (‘sites’) of a graph are regarded as positions, each of which

can be occupied by a particle, subject to the rule that two neighbouring sites cannot both

be occupied (particles cannot overlap).

We need a few definitions, but aim to be brief. For good introductions to the hard-core

model see [1], [10]. See also [8] for more general background, and, e.g., [2] or [5] for

graph theory basics. A few conventions are mentioned at the end of this section.

† Currently at Microsoft Research, One Microsoft Way, Redmond, WA 98052.
‡ Research supported in part by NSF grant DMS-9970433.
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Write I(Σ) for the collection of independent sets (sets of vertices spanning no edges)

of graph Σ.

For Σ finite and λ > 0, the hard-core measure with activity (or fugacity) λ on I = I(Σ)

(or ‘on Σ’) is given by

µ(I) = λ|I |/Z for I ∈ I,

where Z is the appropriate normalizing constant (partition function), Z =
∑
{λ|I ′ | : I ′ ∈ I}.

(The more usual etiquette here considers probability measures on {0, 1}V (Σ) supported on

indicators of independent sets; but the present usage is convenient for us, and we adhere

to it throughout.)

In particular λ = 1 gives uniform distribution. One may also assign different activities

λv to the different vertices v and take µ(I) proportional to
∏

v∈I λv , but we will not do so

here; again see [1], [10], and also, e.g., [14], [11], [13] for some combinatorial applications.

For infinite Σ a measure µ on I(Σ) is hard-core with activity λ if, for I chosen according

to µ and for each finite W ⊂ V = V (Σ), the conditional distribution of I ∩W given

I ∩ (V\W ) is µ-almost surely the hard-core measure with activity λ on the independent

sets of {w ∈W : w �∼ I ∩ (V\W )} (the vertices that can still be in I given I ∩ (V\W )).

General considerations (see [8]) imply that there is always at least one such µ; if there is

more than one, the model is said to have a phase transition.

The canonical (and by far most studied) case of the hard-core model is that of (the

usual nearest neighbour graph on) Z
d. Here the seminal result is due to Dobrushin [6],

who proved that there is a phase transition for sufficiently large λ, depending on d.

(Dobrushin’s result was rediscovered by Louth [18] in the context of communications

networks.)

The λ required in [6] is larger than one would expect,1 and attempted improvements

have been the subject of considerable effort – if not publication – in both the statistical

mechanics and discrete mathematics communities in recent years.

Even the fact that the required λ increases with d is a little strange, since one expects

that as d grows phase transition should get ‘easier’, in the sense that for a given λ, phase

transition in dimension d should imply phase transition in all higher dimensions; but this

remains open.

Also open is the existence of a ‘critical’ activity, λc(d), such that one has phase transition

for λ > λc(d) but not for λ < λc(d). While this seems certain to be true for Z
d, a cautionary

note is sounded in [4], where it is shown that there are graphs (even trees) for which there

is no such critical activity.

As a temporary substitute we may define λ(d) to be the supremum of those λ for which

the hard-core model with activity λ on Z
d does not have a phase transition.

So Dobrushin at least tells us that λ(d) < ∞, while ‘easier as dimension grows’ would

imply λ(d) < O(1). A particular question that has received much of the attention devoted

to this problem is whether λ(d) � 1 for large d. But in fact it has been generally believed

1 No explicit bound is given in [6], but several colleagues report that Dobrushin’s argument works for λ > Cd

for a suitable constant C .
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(despite some early guesses to the contrary) that λ(d) tends to zero as d grows, as we now

prove.

Theorem 1.1. λ(d) = O(d−1/4 log3/4 d).

The bound here is undoubtedly not best possible; O(log d/d) and O(1/d) are natural

guesses at the true value of λ(d).

We assume henceforth that d is large enough to support our various assertions.

The problem of showing existence of a phase transition may be finitized as follows.

Let Λ = ΛM = Z
d ∩ [−M,M]d = O ∪ E with O and E the sets of odd and even vertices

(defined in the following way: x ∈ Z
d is odd if

∑
xi is odd); let µM be the hard-core

measure with activity λ on Λ (meaning, of course, on the subgraph of Z
d induced by Λ);

and (with I chosen according to µM) let µeM be µM conditioned on the event {I ⊇ ∂�Λ ∩ E},
where ∂�Λ := [−M,M]d\[−(M − 1),M − 1]d, and define µoM similarly.

In [1] it is shown (inter alia) that the sequences {µeM} and {µoM} converge to weak

limits, called µe and µo, and that there is a phase transition if and only if these limits are

different. (This is mainly based on the FKG Inequality, and applies to general bipartite

graphs Σ, provided we allow {ΛM} to be an arbitrary nested sequence with ∪ΛM = V (Σ).)

Thus it is natural to try to prove phase transition by exhibiting some statistic

distinguishing µe from µo. We will show µe(0 ∈ I) �= µo(0 ∈ I), i.e.,

lim
M→∞

µeM(0 ∈ I) �= lim
M→∞

µoM(0 ∈ I). (1.1)

(Of course we are only using the trivial direction of ‘phase transition if and only if

µe �= µo’. It is not hard to show that (1.1), too, is equivalent to phase transition.)

To establish (1.1) (assuming at least λ = Ω(1/d), which is easily seen to be necessary for

phase transition) it is in turn enough to show that for v0 ∈ Λ,

µeM(v0) < o(1/d) if v0 is odd,

µoM(v0) < o(1/d) if v0 is even.

For then (writing N for neighbourhood),

µeM(0 ∈ I) = µeM(N(0) ∩ I = ∅)µeM(0 ∈ I|N(0) ∩ I = ∅)
= (1− o(1))λ/(1 + λ),

so that µe(0 ∈ I) = (1− o(1))λ/(1 + λ), whereas µo(0 ∈ I) = o(1/d).

So, in particular, the next theorem, whose proof is the main business of this paper,

contains Theorem 1.1.

Theorem 1.2. For

λ = ω
(
d−1/4 log3/4 d

)
, (1.2)

M arbitrary, and v0 an odd vertex of ΛM ,

µeM(v0 ∈ I) < (1 + λ)−(2−o(1))d. (1.3)

The same result holds if we reverse the roles of even and odd.
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Remark. It is easy to see that

µeM(v0 ∈ I) = µeM(N(v0) ∩ I = ∅)µeM(v0 ∈ I|N(v0) ∩ I = ∅)

> (1 + λ)−2d λ

1 + λ
,

so that (1.3) actually gives the asymptotics of log µeM(v0 ∈ I).

Set

J = {I ∈ I(Λ) : ∂�Λ ∩ E ⊆ I}.

The proof of Theorem 1.2 is a sort of ‘Peierls argument’ (see, e.g., [9]): we try to associate

with each I ∈ J containing v0 a ‘contour’ – some kind of membrane separating the outer

even region from an inner odd region containing v0 – and then use this to map I to a large

set of J s also from J but not containing v0, each obtained from I by some modification

of the inner region.

This is no surprise: almost every attempt at settling this problem that we are aware of

has attacked it more or less along these lines. (The one exception is the entropy approach

of [12], which for now seems unlikely to get us to anything like what is proved here.)

The main difficulty in all these attempts has been getting some kind of control over

the set of possible ‘contours’. Much of the inspiration for our approach to this problem

was provided by the beautiful ideas of A. Sapozhenko [20], which he used to give, for

example, relatively simple derivations of Korshunov’s [16] description of the asymptotics

for Dedekind’s Problem (in [22]), and, in [21], of the asymptotics for the number of

independent sets (‘codes of distance 2’) in the Hamming cube {0, 1}n originally established

in [17].

Some of our tools also come from [20]: Lemma 2.16 is an improved version of one of

Sapozhenko’s arguments, and our uses of Lemmas 2.1–2.3 are similar to his.

The rest of the paper is devoted to the proof of Theorem 1.2. Unfortunately, saying

anything even mildly intelligible about the argument turns out to be awkward without

some preliminaries, so we will wait: see the end of Section 2.2 and most of Section 2.6.

(Section 2.2 reformulates slightly and says what we will actually prove.)

Usage

We use ‘bigraph’ for ‘bipartite graph’.

For a graph on vertex set V , we use ∇(W ) for the set of edges having exactly one end

in W ⊆ V and ∇(U,W ) for the set of edges having one end in U and the other in W .

The neighbourhood of (i.e., set of vertices adjacent to) v is N(v); N(W ) = ∪{N(v) :

v ∈W }; and ∂W = N(W )\W . We use d(·) for degree, i.e., d(v) = |N(v)| and dW (v) =

|N(v) ∩W |, and dist(·, ·) for distance.

One common abuse: we often fail to distinguish between a graph and its set of vertices,

so for instance might use ‘component’ where we should really say ‘set of vertices of a

component’.
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When the difference makes no difference, we pretend that all large numbers are integers.

All constants implied by the notations O(·), Ω(·) are absolute; that is, they do not depend

on d.

2. Proof of Theorem 1.2

2.1. Preliminaries

Here we collect what we will need in the way of known results.

Lemma 2.1. In any graph with all degrees at most D, the number of connected, induced

subgraphs of order n containing a fixed vertex x0 is at most (eD)n.

This follows from the well-known fact (e.g., [15, p. 396, Ex. 11]) that the infinite D-

branching rooted tree contains precisely 1
(D− 1)n+ 1

(Dn
n

) rooted subtrees of size n.

The next lemma is a special case of a fundamental result due to Lovász [19] and Stein

[23] (see also [7]). For a bigraph Σ with bipartition X ∪ Y , say Y ′ ⊆ Y covers X if each

x ∈ X has a neighbour in Y ′.

Lemma 2.2. If Σ as above satisfies d(x) � a ∀x ∈ X and d(y) � b ∀y ∈ Y , then X is

covered by some Y ′ ⊆ Y of size at most (|Y |/a)(1 + ln b).

Call a set T of vertices of a graph c-clustered if, for any x, y ∈ T , there are vertices

x = x0, x1, . . . , xk = y with dist(xi−1, xi) � c for all i. The next lemma is from [20] (see

Lemma 2.1); the interested reader should have no difficulty supplying a proof.

Lemma 2.3. If Σ is a graph on V and S, T ⊆ V satisfy

(i) S is a-clustered,

(ii) dist(x, T ) � b ∀x ∈ S and dist(y, S) � b ∀y ∈ T ,

then T is (a+ 2b)-clustered.

Finally, we need to know something about isoperimetry in Z
d. Write |x| for the �1-

norm of x, and set B(r) = {x ∈ Z
d : |x| � r}, S(r) = {x ∈ Z

d : |x| = r}, b(r) = |B(r)| and

s(r) = |S(r)|.

Lemma 2.4. Let C be a subset of Z
d with

|C| = b(r) + αs(r + 1),

where 0 � α < 1. Then

|∂C| � (1− α)s(r + 1) + αs(r + 2).

This is an immediate consequence of a corresponding inequality for the torus (Z/kZ)d,

given by Bollobás and Leader in [3, Corollary 5]. The case α = 0 was proved by Wang

and Wang [24].
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2.2. To prove

We assume henceforth that λ satisfies (1.2). We prove only the first part of Theorem 1.2

((1.3) for odd v0); switching ‘even’ and ‘odd’ throughout the argument gives the proof of

the second part.

It will be convenient to replace the box ΛM by the discrete torus Γ = ΓM obtained from

ΛM by setting M = −M and identifying vertices accordingly. Following our favourite

abuse, we regard Γ as either a graph or a set of vertices as convenient.

We then use ∆ for the image of ∂�ΛM under the natural projection ΛM �→ Γ, and

continue to write 0 for the image of 0 in Γ, and to use O and E for the sets of odd and

even vertices of Γ.

Having done this, we replace ∂�ΛM by ∆ in the definition of J (J = {I ⊆ Γ :

I independent, ∆ ∩ E ⊆ I}), define µeM , µoM as before, and simply regard Theorem 1.2

as referring to Γ, a change which clearly does not affect its meaning.

We will show a bit more than (1.3): for I ∈ J, let Z = Z(I) be the component of

Γ− (I ∩ O) containing ∆; then

µeM(v0 �∈ Z(I)) < (1 + λ)−(2−o(1))d. (2.1)

Let J0 = {I ∈ J : v0 �∈ Z(I)}, and write w(I) for λ|I |. We prove (2.1) by producing a

‘flow’ ν : J0 ×J → [0, 1] satisfying

∑
J

ν(I, J) = 1 ∀I ∈ J0 (2.2)

and

∑
I

w(I)

w(J)
ν(I, J) < (1 + λ)−(2−o(1))d ∀J ∈ J. (2.3)

This gives (2.1):

∑
I∈J0

w(I) =
∑
I∈J0

w(I)
∑
J∈J

ν(I, J)

=
∑
J∈J

w(J)
∑
I∈J0

w(I)

w(J)
ν(I, J)

< (1 + λ)−(2−o(1))d
∑
J∈J

w(J).

Throughout our discussion we fix v0 and use I for members of J0 and J for general

members of J.

The definition of ν(I, ·) will depend on a pair (G,A) = (G(I), A(I)) ∈ 2E × 2O associated

with I . The construction and salient properties of the pair are given in Sections 2.3 and

2.4, but it will not be until Section 2.11 that we are able to specify ν. First steps toward this

specification are taken in Section 2.5, which finally puts us in a position – in Section 2.6 –

to give some clue as to how the main part of the argument will proceed.
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2.3. ‘Contours’

For a set P of vertices (in any graph) we use ∂�P for the internal boundary of P :

∂�P = {v ∈ P |N(v) �⊆ P }.
The following observation is used several times, so we record it as a lemma; its easy

proof is left to the reader.

Lemma 2.5. Let Σ be a graph, S ⊆ V (Σ), and T (the vertex set of ) some component of

Σ− (S\∂�S). Then ∂�T ⊆ ∂�S .

Let I ∈ J0, Z = Z(I) be as in Section 2.2, and set Z0 = ∂�Z . By the definition of Z ,

it is clear that Z0 ⊂ E and Z0 ∩ I = ∅. Let W ′ be the component of v0 in the graph

Γ− (Z\Z0). By Lemma 2.5, ∂�W ′ ⊆W ′ ∩ Z0 ⊆ E.

Let W ′′ = W ′ ∪ {x ∈ O|N(x) ⊆W ′}. This is clearly connected, with ∂�W ′′ ⊆ ∂�W ′.

Now consider Γ− (W ′′\∂�W ′′). This breaks into a number of components, one of

which, C say, contains ∆. Again using Lemma 2.5, we have ∂�C ⊆ C ∩ ∂�W ′′. Finally, set

W = Γ\(C\∂�C), G = W ∩ E, A = W ∩ O, and G0 = ∂�W .

The next proposition collects relevant properties of these objects. Once we have these

properties, we will not be concerned with how G,A, etc., were derived from I .

Proposition 2.6.

v0 ∈ A; W ∩ ∆ = ∅, (2.4)

both C and W are connected, (2.5)

G0 = ∂�C, (2.6)

G = N(A) and A = {x ∈ O|N(x) ⊆ G}, (2.7)

G0 ∩ I = ∅, (2.8)

N(G0) ∩ I ⊂ A, (2.9)

G0 ⊆ N(A ∩ I). (2.10)

Proof. Both (2.4) and the connectivity of C are immediate. To see that W is connected,

notice that each component of Γ− (W ′′\∂�W ′′) must meet ∂�W ′′ (or it would be a

component of the connected graph Γ). Thus W is the union of the connected set W ′′ and

a number of other connected sets each of which meets W ′′, so is itself connected. So we

have (2.5).

For (2.6), ∂�C ⊆W ∩ E and the connectivity of C give

x ∈ ∂�C ⇒ ∅ �= N(x) ∩ C ⊆ C ∩ O ⊆ C\W ⇒ x ∈ ∂�W ,

so ∂�C ⊆ ∂�W ; and Lemma 2.5 and the connectivity of W give the reverse containment.

Connectivity ofW and the fact that G0 ⊆ E give G = N(A). That A ⊆ {x ∈ O|N(x) ⊆ G}
follows from G = N(A) (or just ∂�W ⊆ E). For the reverse containment, notice that

x �∈W ⇒ N(x) ∩W ⊆ G0 ⊆W ′, whereas N(x) ⊆W ′ would imply x ∈W ′′ ⊆W ; so x �∈
W ⇒ N(x) �⊆W .

For (2.8) recall that G0 = ∂�C ⊆ ∂�W ′′ ⊆ ∂�W ′ ⊆ Z0 and Z0 ∩ I = ∅.
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That N(G0) ∩ I ⊆ A follows from G0 ⊆ ∂�W ′, since N(∂�W ′) ∩ I is clearly contained

in A.

Finally, v ∈ G0 ⇒ v ∈ Z0 ⇒ v ∼ I , so (2.10) follows from (2.9).

2.4. Topology

The purpose of this section is to prove, for any I ∈ J0 and W , G, etc., produced from I

as in Section 2.3,

G0 is 2-clustered. (2.11)

Our proof of this, which is considerably longer than we would wish and unrelated to the

methods in the rest of the paper, might profitably be skipped on a first reading.

Though (2.11) turns out to follow from the connectivity of W and C (see (2.5)), we

could not see a simple combinatorial proof of the implication, and our argument requires

a little topological detour, based on the following lemma.

Lemma 2.7. If U,V are connected subsets of X = R
n or Sn, n > 1, with U ∪ V = X, U

closed and V compact, then U ∩ V is connected.

(As usual, Sn is the unit sphere {x ∈ R
n+1 :

∑
x2
i = 1}. We also write Bn+1 for the

corresponding unit ball.)

The (presumably well-known) proof of Lemma 2.7 is given at the end of this section.

It will be convenient here to write Ω for the nearest neighbour graph on Z
d. As usual,

Ω[S] is the subgraph induced by S . We will prove (2.11) in the following more general

form.

Proposition 2.8. Let R ∪ B be a decomposition of V (Ω) (= Z
d), with both Ω[R] and Ω[B]

connected and R finite. Suppose G := R ∩ B is contained in E and is the internal boundary

of each of R,B. Then G is 2-clustered.

Remark. We will actually show that G is 2-clustered in each of R and B.

Proof. With Ω embedded in R
d in the natural way, we extend R and B to closed connected

subsets R∗ and B∗ of R
d so that R∗ ∪ B∗ = R

d and G∗ := R∗ ∩ B∗ is path-connected. We

then derive the 2-clusteredness of G from the path-connectedness of G∗.

We view R
d as the union of Z

d-translates of [0, 1]d (the cells of R
d), and define R∗

and B∗ cell by cell. Within a cell we proceed by dimension, first defining the extensions

for 0-dimensional faces (the vertices of Ω), 1-dimensional faces (the edges of Ω), and

2-dimensional faces, and then continuing inductively. (As usual a face of a cell is the

intersection of the cell with some supporting hyperplane. Henceforth we use ‘k-face’ for

‘k-dimensional face’.) For the inductive step, we need a topological lemma (Lemma 2.10),

for the statement of which it is convenient to introduce two local definitions. Let us say

that a subset of a topological space is civilized if it is closed, has only finitely many

components, and each of its components is path-connected.
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Definition 1. A decomposition X = R ∪ B of a topological space X, with R ∩ B = G, is

nice if it satisfies:

(i) G = ∂R = ∂B;

(ii) each of R, B, G is civilized; and

(iii) each of R, B – and so each component of R and B – is the closure of the union of

finitely many open, path-connected sets.

If X = R ∪ B is a nice decomposition, and R′, B′ are obtained from R, B by adding

finitely many points, then we also call the decomposition X = R′ ∪ B′ nice.

(Of course there is some redundancy in conditions (i)–(iii).)

We say that two nice decompositions X1 = R1 ∪ B1 and X2 = R2 ∪ B2 are compatible if

R1 ∩X1 ∩X2 = R2 ∩X1 ∩X2 and B1 ∩X1 ∩X2 = B2 ∩X1 ∩X2. It is straightforward to

check that nice decompositions of different spaces can be combined if they are compatible,

as follows.

Lemma 2.9. Suppose X = X1 ∪ · · · ∪Xm with each Xi closed. If Xi = Ri ∪ Bi are pairwise

compatible, nice decompositions, then (∪Ri) ∪ (∪Bi) is a nice decomposition of X.

We now state the topological lemma alluded to above, deferring its proof until after the

derivation of Proposition 2.8. (Recall Bn+1 and Sn are the unit ball and sphere in R
n+1.)

Lemma 2.10. Assume n > 1. If R ∪ B is a nice decomposition of Sn, then there is a nice

decomposition R∗ ∪ B∗ of Bn+1, with R∗ ∩ Sn = R, B∗ ∩ Sn = B, and such that if C is any

component of R∗ (resp. B∗, G∗), then C ∩ Sn is a component of R (resp. B, G).

(This is easily seen to fail for n = 1. It may be worth pointing out that for R and B,

condition (iii) of Definition 1 refers to sets that are open in Sn; similarly ∂R and ∂B are

boundaries relative to Sn, while ∂R∗ and ∂B∗ are boundaries relative to Bn+1.)

Of course Lemma 2.10 still applies if we replace the Bn+1 by any of its homeomorphic

images (and Sn by the corresponding homeomorphic copy); in our case the relevant image

will be [0, 1]d.

We now fix a cell, and begin defining our extensions. For vertices and edges we do the

natural things, R∗ ∩ V (Ω) = R, B∗ ∩ V (Ω) = B; and we put (the interior of) an edge in

R∗ (resp. B∗) if and only if both its ends are in R∗ (resp. B∗), noting that exactly one of

these possibilities occurs, since ∇(G,G) = ∅.
Next, we deal with 2-dimensional faces. If the vertices of such a face are all in R (resp.

B), then put the interior of the face in R∗ (resp. B∗). Otherwise, the face has two opposite

corner vertices (v1, v3, say) in G, with one of its remaining two vertices (v2) in R\B and

the other (v4) in B\R. Put the interior of the convex hull of v1, v2, v3 in R∗, the interior

of the convex hull of v1, v3, v4 in B∗, and the interior of the diagonal joining v1 and v3 in



146 D. Galvin and J. Kahn

R∗ ∩ B∗. It is easy to check that these (R∗, B∗)-decompositions of the 2-dimensional faces

are nice. (It may be worth observing that a 2-dimensional face contained in R∗ may still

have one or two of its vertices in B∗, and vice versa.)

We now proceed by induction, assuming the decomposition has been defined on faces of

dimension less than k ∈ {3, . . . , d}. Each k-face F is homeomorphic to Bk , and is bounded

by the union of finitely many (k − 1)-dimensional faces. The decomposition of each of

these bounding faces is nice, and the decompositions on any two faces are compatible

(since we are defining the decomposition from lower dimensions up). So, by Lemma 2.9,

we have a nice decomposition of the boundary of F . We now apply Lemma 2.10 to extend

to a nice decomposition of the entire face. Once we have a nice decomposition of each

cell, we get the full decomposition R
d = R∗ ∪ B∗ by combining the decompositions of the

cells, again appealing to Lemma 2.9 for ‘nice’. (For formal applicability of the lemma, we

can use a single Xi = Bi for the union of all cells not meeting R.)

It is clear from the construction that R∗ and B∗ are closed, R∗ is bounded, and R∗ ∪ B∗ =

R
d. To see that R∗ is connected, notice that by construction, any component of R∗

contains an edge of Ω[R], and that every edge of Ω[R] is contained in a component of R∗;

connectivity of R∗ then follows from connectivity of Ω[R]. The same argument shows that

B∗ is connected.

Lemma 2.7 now shows that G∗ is connected, which, since G∗ is also civilized (since

R∗ ∪ B∗ is nice), implies that it is actually path-connected.

It remains to show that path-connectedness of G∗ implies 2-clusteredness of G. It is

enough to show that for each pair of vertices u, v ∈ G, there is a path connecting them in

G∗ which is supported entirely on the 2-dimensional faces of R
d; for, by the construction

of R∗ and B∗, such a path is supported on diagonals (of 2-dimensional faces) connecting

pairs of vertices from G, and such diagonals correspond to steps of length 2 in Ω. (This

also justifies the remark following Proposition 2.8.)

So, consider a (u, v)-path P in G∗ given by the continuous function f : [0, 1]→ R
d. If

P is supported on 2-dimensional faces of R
d, then we are done. Otherwise, let k > 2 be

the maximum dimension of a face whose interior meets P . It is enough to show that we

can replace P by a path meeting the interiors of fewer k-faces than P and no faces of

dimension more than k.

To do this, choose a k-face F and component C of G∗ ∩ F with C ∩ F0 ∩ P �= ∅ (where

F0 is the interior of F). Let p = inf{x ∈ [0, 1] : f(x) ∈ C ∩ F0} and q = sup{x ∈ [0, 1] :

f(x) ∈ C ∩ F0}. Then f(p), f(q) ∈ C ∩ ∂F , which, by construction, is path-connected. So

we may replace f([p, q]) in P by a path contained in ∂F .

Proof of Lemma 2.10. To avoid confusion, we now write ∂X, ∂ ′X and ∂ ′′X for the

boundaries of X relative to, respectively, R
n+1, Bn+1 and Sn.

We may assume neither R nor B contains isolated points: otherwise we can simply

delete such points, produce R∗ and B∗ for the resulting ‘reduced’ R and B, and then add

the deleted points of R (B) to R∗ (B∗).

We use (R,B)-component to mean a component of either R or B, and proceed by

induction on the number of (R, B)-components in the decomposition of Sn.
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If there is exactly one such component (a component of R, say), then R = Sn, and

B = ∅. Setting R∗ = Bn+1 and B∗ = ∅, we get a nice decomposition of Bn+1 which satisfies

the conditions of the lemma.

Otherwise, there must be at least one (R, B)-component T for which Sn\T 0 is connected.

For suppose Sn\T 0 is disconnected for every (R, B)-component T . Choose an (R, B)-

component T0 (⊆ R, say) such that one of the components of Sn\T 0
0 , C say, contains as

few (R,B)-components as possible, and let T1 be an (R,B)-component of C (i.e., contained

in C , noting that each (R,B)-component other than T0 is either contained in or disjoint

from C). Now Sn\C0 is connected in Sn\T 0
1 , so Sn\T 0

1 (which by assumption is not

connected) contains a component whose (R, B)-components form a proper subset of the

(R, B)-components of C , contradicting the choice of T0.

Let T , then, be an (R, B)-component with Sn\T 0 connected. We may assume that T is a

component of R. Applying Lemma 2.7 with X = Sn, U = T and V = Sn\T 0, we find that

∂ ′′T is connected, so that T meets exactly one component, say C , of B (and C ⊇ ∂ ′′T ).

Set T ∗ = {λx : x ∈ T , λ ∈ [1/2, 1]}. This will be one component of R∗. It is easy to see

that T ∗ is closed and path-connected (so civilized), as is ∂′T ∗, and that T ∗ ∩ Sn = T , a

component of R.

Now let (T ∗)0 be the relative interior of T ∗ with respect to Bn+1 (namely, (T ∗)0 = {λx :

x ∈ T 0, λ ∈ (1/2, 1]}), P = ∂(Bn+1\(T ∗)0) (= (Sn\T 0) ∪ ∂ ′T ∗), and Q = Bn+1\(T ∗)0. Then

(Q, P ) is (easily seen to be) homeomorphic to (Bn+1, Sn).

Let, further, R1 = R\T , B1 = B ∪ ∂ ′T ∗, and C1 = C ∪ ∂ ′T ∗. Then

(i) the components of R1 are precisely the components of R other than T ,

(ii) the components of B1 are C1 and the components of B other than C ,

and it is easy (if tedious) to deduce that R1 ∪ B1 is a nice decomposition of P .

Our inductive hypothesis thus gives a nice decomposition R∗1 ∪ B∗1 of Q, and we obtain

the desired decomposition, R∗ ∪ B∗, of Bn+1 by setting B∗ = B1 and R∗ = R1 ∪ T ∗ (again

an easy verification using (i) and (ii)).

Proof of Lemma 2.7. We first establish a corresponding statement for open sets: if

U,V are connected, open subsets of X = R
n or Sn, n > 1, with U ∪ V = X, then U ∩ V is

connected.

Proof. We use the Mayer–Vietoris sequence. If X is a topological space, and U and V

are open subsets of X whose union is X, then this is a long exact sequence of group

homomorphisms ending with

· · · → H1(X)→ H0(U ∩ V )→ H0(U)⊕H0(V )→ H0(X)→ 0,

where Hm is the mth homology group. We apply this with X = R
n or Sn. Using the facts

that Hm(Rn) = 0 whenever m � 1 and that if O is an open subset of R
n or Sn, then

H0(O) ∼= Z if and only if O is connected, this long exact sequence becomes

0→ H0(U ∩ V )→ Z⊕ Z→ Z→ 0.

From the exactness of this sequence, it follows that H0(U ∩ V ) ∼= Z, so U ∩ V is

connected.
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Now let U,V be as in the lemma, and for each ε > 0, set Uε = {x ∈ X : d(x,U) < ε}
and Vε = {x ∈ X : d(x, V ) < ε}. These are open, connected sets whose union is X, so by

the preceding result, Uε ∩ Vε is connected. Thus Uε ∩ Vε is connected; it is also closed and

bounded, so compact. So U ∩ V = ∩ε>0Uε ∩ Vε is the intersection of a nested sequence of

compact, connected sets, so is itself connected.

2.5. Shifts and ϕj

We again fix I ∈ J0 and take W,G,A, etc., to be as in Section 2.3.

For j ∈ {±1, . . . ,±d}, define σj , the shift in direction j, by

σj(v) = v + ej ,

where ej is the jth standard basis vector if j > 0 and ej = −e−j if j < 0, and set

G
j
0 =

{
v ∈ G0 : σ−1

j (v) �∈ A
}

= G0 ∩ σj(O\A).

Proposition 2.11. For each j, the sets I\W , σj(I ∩W ) and G
j
0 are pairwise disjoint, and

their union is an independent set.

Proof. Trivially, σj(I) ∩ I = ∅, so in particular (I\W ) ∩ σj(I ∩W ) = ∅; (I\W ) ∩ Gj0 = ∅
is trivial (because Gj0 ⊆W ); and σj(I ∩W ) ∩ Gj0 = ∅ follows from the definition of Gj0. So

the union is disjoint.

Clearly (I\W ), σj(I ∩W ) and Gj0 are all independent sets. To show independence of the

union, we must show that there are no edges between any two of them. Since ∇(I\W,W ) =

∅ (by (2.9)) and σj(I ∩W ) ⊆W (by (2.8)), we have ∇((I\W ), (σj(I ∩W ) ∪ Gj0)) = ∅.
This leaves ∇(σj(I ∩W ), Gj0). Suppose, for a contradiction, that y ∈ Gj0 and σk(y) ∈

σj(I ∩W ) for some k. Then z := σ−1
j (σk(y)) ∈ I ∩W ∩ E ⊂ G\G0 (by (2.8)), implying

σ−1
j (y) = σ−1

k (z) ∈ A, contrary to the assumption y ∈ Gj0. So ∇(σj(I ∩W ), Gj0) = ∅.

Define σ∗j (I) = (I\W ) ∪ σj(I ∩W ) and

ϕj(I) =
{
J : σ∗j (I) ⊆ J ⊆ σ∗j (I) ∪ G

j
0

}
.

Then Proposition 2.11 implies

ϕj(I) ⊆ J.

Notice also that we recover I from j, J (∈ ϕj(I)) and (G,A); namely, if we are given

(G,A), j, and J ∈ ϕj(I), then

I = (J\W ) ∪ σ−1
j

(
J ∩

(
W\Gj0

))
. (2.12)

2.6. Conventions and preview

Conventions. In much of what remains we can ignore I and concentrate on pairs from

G := {(G,A) ∈ 2E × 2O : (G,A) satisfies (2.7)}.

Notice that under (2.7) each of G, A determines the other.



On Phase Transition in the Hard-Core Model on Z
d 149

If (G,A) is produced from I as in Section 2.3 then we write (G(I), A(I)), noting that a

given (G,A) may correspond to more than one I .

We will always take W = G ∪ A and G0 = ∂�W (a subset of E because of (2.7)).

Set � = 2d; so Γ is an �-regular bigraph. (We tend to think in terms of d and use �

sparingly, for instance usually preferring O(d) to the equivalent O(�).) Though we usually

work in Γ, we sometimes – especially in Section 2.9 – consider more general graphs Σ,

always assumed to satisfy

Σ is an �-regular bigraph with bipartition V = O ∪ E. (2.13)

We always take |G| = g and |A| = a = (1− δ)g, and for given g, δ set

G(g, δ) = {(G,A) ∈ G : |G| = g, |A| = (1− δ)g},
J(g, δ) = {I ∈ J0 : (G(I), A(I)) ∈ G(g, δ)}.

(It is generally best to think of δ as small, though it will not always be so.)

As will appear, the quantity that really matters is almost always δg (= |G| − |A|), and

it will be convenient to take, for any t,

G(t) = {(G,A) ∈ G : |G| − |A| = t}.

Notice that for (G,A) ∈ G(t),

|∇(W,V\W )| (= |∇(G0,O\A)|) = t�. (2.14)

Though we do not really need t, we use it to emphasize a certain duality: if (G,A) ∈ G(t)

in some graph Σ satisfying (2.13), then (O\A,E\G) belongs to the analogue of G(t)

obtained by reversing the roles of O and E in Σ – but of course g and δ, unlike t, are not

usually preserved by this switch.

Preview. Our tasks are to define ν, for which (2.2) will turn out to be obvious, and

establish (2.3).

We will eventually associate with each (G,A) a particular index j = j(G,A), and set

j(I) = j(G(I), A(I)). (This is basically a j for which |Gj0| = log2 |ϕj(I)| is large, though

there are some additional considerations.) We then define ϕ(I) = ϕ
j(I)

(I) and require

J �∈ ϕ(I)⇒ ν(I, J) = 0. (2.15)

Let us call I small if |G(I)| � d3 (we could get by with d9/4; see (2.65)), and large

otherwise.

For small I – an easy case, as we will see in Section 2.13 – we simply choose j = j(I)

to maximize |Gj0| (where G = G(I)), so that, since

∑
j

∣∣Gj0∣∣ = |∇(G,O\A)| = δg�, (2.16)

we have

∣∣Gj0∣∣ � δg. (2.17)
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We then set

ν(I, J) = λ|J|−|I |(1 + λ)−|G
j
0| ∀J ∈ ϕ(I). (2.18)

(Note this satisfies (2.2). The separate treatment of small I is unnecessary if we only want

the phase transition, but is needed for the ‘correct’ bound in (1.3).)

Most of our work (including everything in Sections 2.4 and 2.8–2.12) is geared to large

I (though often valid in general). For most of our discussion we fix (g, δ), and aim to

bound the contribution of J(g, δ) to (2.3). Of course these contributions must eventually

be summed, but this turns out not to add anything significant.

Before beginning in earnest, we pause in Section 2.7 to adapt the isoperimetric

Lemma 2.4 to our situation (Lemma 2.12). This is needed especially in Section 2.13,

but will also make an appearance in Section 2.8.

In Sections 2.8–2.10 we associate with each relevant (G,A) some (F, S) ∈ 2E × 2O which

‘approximates’ (G,A) in an appropriate sense. The definitions of j(I) and ν(I, ·) (in

Section 2.11) are then based on our approximation to (G(I), A(I)). The main points are:

(i) the set of possible approximations is small (Lemma 2.17); and (ii) for a given J , I for

which (G(I), A(I)) is approximated by a particular (F, S) do not contribute too much in

(2.3) (see (2.50)), construction of a ν achieving this being made possible by the accuracy

of our approximations.

The proof that ν behaves as desired (i.e., of (2.50)) is given in Section 2.12, and

Section 2.13 is a mopping up operation, combining what we already know for large I s

with the easy analysis for small I s and the isoperimetric information from Lemma 2.12,

to finally establish (2.3).

More conventions. For whatever G,A, F, S we have under discussion, we set H = E\G,

B = O\A, E = E\F , T = O\S , B0 = B ∩N(G), S0 = S ∩N(E), and E0 = E ∩N(S).

From now until Section 2.13 we fix g, δ and always take I ∈ J(g, δ) and (G,A) ∈ G(g, δ).

(We will not see I again until Section 2.11.)

2.7. Isoperimetry

Before continuing, we need to work out what Lemma 2.4 implies in the way of a lower

bound on δ for given g.

Lemma 2.12. Suppose (G,A) ∈ G(g, δ) satisfies

(G ∪ A) ∩ ∆ = ∅. (2.19)

Then

δ =

{
Ω

(
g−1/d/d

)
for all g,

1− O(1/d) if g < dO(1).

(For the (G,A)s of interest to us, (2.19) is given by (2.4).)
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Proof. In view of (2.19), the lemma does not change if we replace the torus Γ by the

box Λ.

For the first part of the lemma, the main thing we must show is as follows.

Proposition 2.13. We have s(r) = Ω(b(r)1−1/d), where B(r), S(r), b(r), s(r) are as defined

before Lemma 2.4.

Notice that this, combined with Lemma 2.4, implies that for any C ⊂ Z
d,

|∂C| = Ω
(
|C|(d−1)/d

)
. (2.20)

Proposition 2.13 is again something for which one would hope to just give a reference;

but we could not find one, or even give the short proof that seems called for.

For the proof, we will be interested in the average number of nonzero entries in an

element of S(q),

t(q) := s(q)−1
∑
x∈S (q)

|supp(x)|.

This is useful because, setting

N(q) = |{(x, y) ∈ S(q)× S(q + 1) : x ∼ y}|,

we have

s(q)(2d− t(q)) = N(q) � s(q + 1) min{q + 1, d},

implying

s(q)

s(q + 1)
� min{q + 1, d}

2d− t(q) . (2.21)

This already implies Proposition 2.13 for, say, r � 0.9d, since in this case we have

b(r) � s(r)

r∑
i=0

(r)i
(2d− r + i)i

� s(r)
∑
i�0

(
r

2d− r

)i

= O(s(r)).

For larger r we will have to work harder. Here we first show, for q = βd with β > 0.9,

t(q) < (1− 1/(20β))d. (2.22)

Let

S(q, t) = {x ∈ S(q) : |supp(x)| = t},

s(q, t) = |S(q, t)|, and define B(q, t) and b(q, t) similarly. Then

f(q, t) :=
s(q, t+ 1)

s(q, t)
= 2

(d− t)(q − t)
(t+ 1)t

.
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Set t0 = t0(q) = �(1− 1/(4β))d�. Then t � t0 implies

f(q, t) � 2
(1/(4β))(β − 1 + 1/(4β))

(1− 1/(4β))2

= 2

(
2β − 1

4β − 1

)2

<
1

2
.

Thus

t(q) = s(q)−1
∑
t�q

ts(q, t)

< t0 +
∑
i�1

i2−i = t0 + 2.

This gives (2.22) provided β � d/15. For larger β we just use

s(q, d− 1)

s(q, d)
=

d(d− 1)

2(βd− d+ 1)
>
d− 1

2β
,

whence

d− t(q) = s(q)−1
∑

(d− i)s(q, i) �
∑
i<d

s(q, i)/


∑

i�d
s(q, i)




� s(q, d− 1)/(s(q, d− 1) + s(q, d)) � (d− 1)/(2β + d− 1),

which again gives (2.22).

Now let r = γd � 0.9d. By (2.22) and (2.21) we have, for r − i � 0.9d,

s(r − i) � s(r)

i∏
j=1

d

d+ d2/(20(r − j)) < s(r)(1− Ω(1/γ))i,

so

b(r) � s(r)

r−0.9d∑
i=0

(1− Ω(1/γ))i + b(0.9d) = O(γs(r)) (2.23)

(since we know b(0.9d) = O(s(0.9d)) = O(s(r))).

On the other hand, with t0 = t0(r), we have

b(r) > b(r, t0) = 2t0
(
d

t0

)(
r

t0

)
> exp[t0 log(r/t0)],

and b(r)1/d > exp[(1− 1/(4γ)) log(r/t0)] = Ω(γ); and this with (2.23) gives Proposi-

tion 2.13.

Now for the first part of Lemma 2.12, we consider the possibilities |G0| > |A| and |G0| �
|A| separately, in both cases using the fact that |G0| � δgd (since |G0| � |∇(G,O\A)| = δgd).

If |G0| > |A|, then δ > 1/(d+ 1), so certainly δ = Ω(g−1/d/d). If, on the other hand,
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|G0| � |A|, then we have (using (2.20) and the fact that ∂((G\G0) ∪ A) = G0)

δ � |G0|/(dg)
= Ω

(
|(G\G0) ∪ A|(d−1)/d/(dg)

)
= Ω

(
|G|(d−1)/d/(dg)

)
= Ω

(
g−1/d/d

)
.

For small g notice that for r < O(1),

s(r) = 2rdr/r! + O(dr−1),

which in view of Lemma 2.4 implies that for C ⊆ Z
d with |C| < dO(1),

|∂C| = Ω(|C|d).

Applying this with C = W\G0 gives |G0| = (1− O(1/d))g. But then |∇(G0, A)| � �|A| =
O(|G0|) implies

δg� = |∇(G0,O\A)| � (�− O(1))|G0| = �(1− O(1/d))g.

2.8. First approximation: covering the boundary

Say a set C ⊆ Γ separates P ,Q ⊆ Γ if any path meeting both P and Q also meets C .

In this section we begin the process of approximation by showing that there is a ‘small’

collection of subsets of Γ, at least one of which separates W (= G ∪ A) and Γ\W for each

relevant (G,A). We then use these separations to show that there is a small S ⊆ 2E × 2O

such that each of our (G,A)s is approximated by some (F, S) ∈ S in the sense that

S ⊇ A, F ⊆ G (2.24)

and

|S\A|, |G\F | < O(δg
√
d log d). (2.25)

This is stated formally in Lemma 2.15 at the end of the section.

Our argument applies to pairs from

G� := {(G,A) ∈ G(g, δ) : (G,A) satisfies (2.4) and (2.11)},

though the main point, Lemma 2.14, is valid for all of G(t).

In this section (unlike in the next) we make substantial use of properties particular to

Γ, specifically the isoperimetric properties given by Lemma 2.4 and

∀ w ∼ v and L ⊆ N(v), |N(w) ∩N(L)| � |L| (2.26)

(which follows from the fact that for vertices v ∼ w, Γ[(N(v) ∪N(w))\{v, w}] is a matching

of all but one vertex of N(v) and all but one vertex of N(w)).

Let

G′0 = {v ∈ G : dA(v) � �/2} (⊆ G0),

B′0 = {v ∈ B : dH (v) � �/2} (⊆ B0),
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G′′0 = G0\G′0 and B′′0 = B0\B′0. Then

∇(G′′0 , B
′′
0 ) = ∅. (2.27)

(The more general statement here is: if v ∈ G0, w ∈ B0 and v ∼ w, then (by (2.26) with

L = N(v) ∩ A) dG(w) � dA(v) (= �− dB(v)), implying dB(v) + dG(w) � �.)

Notice that (2.27) implies

G′0 ∪ B′0 separates W and Γ\W (2.28)

(equivalently, ∇(W,Γ\W ) ⊆ ∇(G′0) ∪ ∇(B′0)).

Lemma 2.14. In any graph satisfying (2.13) and (2.26), for any (G,A) ∈ G(t), there exists

U ⊆ N(G′0 ∪ B′0) satisfying

N(U) ⊇ G′0 ∪ B′0 (2.29)

and

|U| < O(t
√

log �/�). (2.30)

Before proving this, we observe that it does accomplish the first goal stated at the

beginning of this section (existence of a small set of separations). For (G,A) and U as in

Lemma 2.14, we have

N(U) separates W and Γ\W (2.31)

(by (2.28) and (2.29)). So we just need to limit the number of possibilities for U when

(G,A) ∈ G�.
To do so, notice that

U is 6-clustered. (2.32)

This follows from Lemma 2.3 and (2.11), once we observe that dist(u, G0) � 2 ∀u ∈ U
(since U ⊆ N(G′0 ∪ B′0)), and that (2.29) and (2.27) imply dist(v, U) � 2 ∀v ∈ G0.

In view of (2.30) (with t = δg), Lemma 2.1 then gives, for example, a bound

O(gd2)(Cd6)O(δg
√

log d/d) = exp
[
O

(
δgd−1/2 log3/2 d

)]
(2.33)

on the number of possibilities for U. Here we used Lemma 2.12 for the equality in (2.33).

The initial O(gd2) corresponds to a choice of x0 in Lemma 2.1: in view of (2.4), there

must be some j ∈ [−d, d] \ {0} and k � g/(2d) for which y0 := v0 + (2k − 1)ej ∈ G0; there

are at most g possibilities for this y0, so at most O(gd2) possibilities for a vertex x0 with

d(x0, y0) � 2; and by (2.29) and (2.27) U must contain such an x0.

Proof of Lemma 2.14. By ‘duality’ (see Section 2.6) it is enough to show the existence of

S ⊆ N(G′0) with

N(S) ⊇ G′0 (2.34)
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and

|S | < O(t
√

log �/�). (2.35)

Define Q = {v ∈ G0 : dA(v) �
√
� log �}, K = G0\Q, and P = N(Q) ∩ A. By (2.26),

dG0
(v) � �−

√
� log � ∀v ∈ P . (2.36)

Let P ′ = {v ∈ P : dK (v) � �/2}, P ′′ = P\P ′, Q′ = Q ∩N(P ′), Q′′ = Q\Q′ and R = {v ∈
B0 ∩N(G′0) : dG0

(v) >
√
� log �}.

Now P ′′ is a cover of Q′′ of size O(t
√

log �/�), the size bound following from |Q| �
t�/(�−

√
� log �) = O(t) (using (2.14)), dP ′′ (v) � dA(v) �

√
� log � ∀v ∈ Q, and dQ(v) >

�/2−
√
� log � ∀v ∈ P ′′ (using (2.36) and the definition of P ′′).

On the other hand, we can cover G′0\Q′′ by a similarly small subset of R, as follows.

From (2.26) we have N(K) ∩N(G′0) ∩ B0 ⊆ R. This gives dR(v) > �/2 for v ∈ G′0\Q, while

for v ∈ Q′,

dR(v) � |N(v) ∩N(K)| − |N(v) ∩ A| � �/2−
√
� log �

(the second inequality following from (2.26) and the definitions of Q′ and Q). So,

noting that |R| < t
√
�/ log � (again using (2.14)), Lemma 2.2 says that we can cover

G′0\Q′′ by some T ⊆ R of size at most |R|(1 + log �)/(�/2−
√
� log �) < O(t

√
log �/�).

(And note P ⊆ N(G′0) since Q ⊆ G′0, and R ⊆ N(G′0) by definition, so S := P ′′ ∪ T ⊆
N(G′0).)

We now return to Γ. Given U as above, let us temporarily set L = N(U). Then

|L| = O(δg
√
d log d).

Say a component C of Γ− L is large if |C| > d and small otherwise. Lemma 2.4 implies

|∇(C,L)| = |∇(C)| � |∂C| = Ω(|C|d)

for small C (actually also for considerably larger C), and

|∇(C,L)| = Ω(d2)

for large C . But |∇(L)| � 2d|L| = O(δgd3/2
√

log d), so

the number of large components is O(δgd−1/2
√

log d), (2.37)

and the number of vertices in small components is O(δg
√
d log d).

It follows that if (G,A) is any pair satisfying (2.7) for which L separates W and Γ\W ,

then we satisfy (2.24) and (2.25) with

F = P ∩ E and S = (P ∪ Q ∪ L) ∩ O, (2.38)

where P is the union of those large components of Γ− L that meet (equivalently, are

contained in) W , and Q is the union of (all) the small components. In particular, this is

true if (G,A) is any pair from G� for which Lemma 2.14 applied to (G,A) produces U.

By (2.37) the number of possibilities (given L) for (F, S) as in (2.38) is at most

exp[O(δgd−1/2
√

log d )], and combining this with the bound (2.33) on the number of U s

we have the following lemma.
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Lemma 2.15. There exist S ⊆ 2E × 2O with

|S| < exp
[
O

(
δgd−1/2 log3/2 d

)]
(2.39)

and a map π1 : G� →S such that (2.24) and (2.25) hold for each (G,A) ∈ G� and (F, S) =

π1(G,A).

2.9. Second approximation

The discussion in this section is valid for any graph Σ satisfying (2.13). It may be worth

reiterating that we follow the conventions given at the end of Section 2.6.

Given (F∗, S∗) ∈ 2E × 2O and a positive x, write G′ = G′(F∗, S∗, x) for the set of (G,A)s

in G(t) satisfying (2.24) (with (F∗, S∗) in place of (F, S)) and

|S∗\A|, |G\F∗| < x. (2.40)

Lemma 2.16. With notation as above, for any 0 < ψ < �, there exist T ⊆ 2E × 2O,

|T| < exp[O(((x/�) + (t/ψ)) log �)], (2.41)

and a map π2 : G′ → T such that, for each (G,A) ∈ G′ and (F, S) = π2(G,A), we have (2.24)

and

v ∈ S ⇒ dF (v) > �− ψ, v ∈ E ⇒ dT (v) > �− ψ (2.42)

(where as usual E = E\F and T = O\S).

Remarks. We only need Lemma 2.16 when (F∗, S∗) ∈ S (with S as in Lemma 2.15),

in which case we take t = δg and x = O(δg
√
d log d) (with an appropriate constant), so

that G′ ⊇ π−1
1 (F∗, S∗); but the extra generality costs us nothing. The pairs we produce will

satisfy S ⊆ S∗ and F ⊇ F∗, but we do not need this in what follows.

Proof of Lemma 2.16. We would like to exhibit a procedure which, for a given

(G,A) ∈ G′, outputs a pair (F, S) satisfying (2.24) and (2.42), and show that the set T of

pairs produced in this way is small.

We produce (F, S) via a sequence of modifications, initializing at (F, S) = (F∗, S∗). Note

that whenever we update (F, S), we also automatically update E,T , etc.

One preliminary observation:

|S∗0 |, |E∗0 | < x+ �x (2.43)

(since S∗0 ⊆ (S∗\A) ∪N(G\F∗), and similarly for E∗0 ; recall S∗0 = S∗ ∩N(E∗) and E∗0 =

E∗ ∩N(S∗), where E∗ = E\F∗).
Stage 1A. Set ξ = �/2.

(A.1) Repeat for as long as possible: choose w ∈ H with dS (w) � ξ and do S ← S\N(w).

(A.2) When no longer possible, do F ← F ∪ {w ∈ E : dS (w) � ξ}.
Stage 1B. Do the same thing in the dual; that is,

(B.1) for as long as possible, choose w ∈ A with dE(w) � ξ and do F ← F ∪N(w), and

(B.2) when no longer possible, do S ← S\{w ∈ O : dE(w) � ξ}.
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Notice – a crucial idea – that (F, S) produced by Stage 1 does satisfy (2.24).

Analysis. The output (F, S) of Stage 1 is determined by the sets of w s used in (A.1) and

(B.1).

Since each iteration in (A.1) shrinks |S | by at least ξ while maintaining A ⊆ S , the

number of iterations is less than x/ξ = 2x/�. Moreover, each w used in (A.1) lies in

N(S∗0 ). So the number of possibilities for the set of w s used in (A.1) is less than∑
i�x/ξ(

�|S∗0 |
i

) < exp[O((x/�) log �)] (using (2.43)).

At the end of (A.2) we have w ∈ G\F ⇒ dT (w) > �− ξ = �/2, which, since |∇(G,T )| �
t� (see (2.14)), gives |G\F | < 2t.

Similarly, the number of choices for the set of w s used in Stage 1B is at most

exp[O((x/�) log �)] (note Stage 1A does not increase E∗0 ), and at the end of this stage we

have |S\A| < 2t.

Stage 2 now repeats Stage 1, starting with the revised (F, S), using ψ in place of ξ, and

replacing (2.40) and (2.43) by

|S\A|, |G\F | < 2t

and

|S0|, |E0| < 2t(1 + �).

This clearly produces an (F, S) satisfying (2.24) and (2.42). Moreover, repeating the

analysis above, we find that the number of possible outputs of Stage 2, for a given output of

Stage 1, is at most exp[O((t/ψ) log �)]. So the number of possible outputs of the entire pro-

cedure is no more than exp[O(((x/�) + (t/ψ)) log �)].

2.10. Status

We now specify t = δg and x = O(δg
√
d log d) (the bound in (2.25)), and ψ =

√
d (any

ψ ∈ (Ω(
√
d/ log d), O(

√
d log d)) would do; see the remark following (2.59).) Specializing

to these values and combining Lemmas 2.15 and 2.16, we have the following lemma.

Lemma 2.17. There exist U ⊆ 2E × 2O,

|U| < exp
[
O

(
δgd−1/2 log3/2 d

)]
, (2.44)

and π : G� → U such that (2.24) and (2.42) hold for each (G,A) and (F, S) = π(G,A).

(The expression in the exponent in (2.44) is the maximum of the corresponding

expressions from (2.39) and (2.41).)

Now consider some (F, S) ∈ U. Notice that, for any (G,A) ∈ π−1(F, S), Q := S0 ∪ E0

contains all vertices whose locations in the partition Γ = G ∪H ∪ A ∪ B are as yet

unknown; namely, we have

F ⊆ G, T ⊆ B, S\S0 ⊆ A, E\E0 ⊆ H
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(the first two containments are just (2.24); S\S0 ⊆ A follows from F ⊆ G, (2.7) and the

definition of S0, and E\E0 ⊆ H is similar).

By convention, whenever we are given an (F, S), we take Q to be as defined in the preceding

paragraph, and write ΓQ for the subgraph induced by Q.

2.11. Flow

Here, finally, we define ν (for large I; for small I , see Section 2.6).

Throughout the section we fix (F, S) ∈ U. It is now convenient to write G ∼ (F, S) if

π(G,A) = (F, S) and I ∼ (F, S) if G(I) ∼ (F, S).

To define ν(I, ·) for I ∼ (F, S), we first need to choose a direction j = j(I). Fix such an

I and let G = G(I), A = A(I), etc. The choice of j will depend only on (G,A). Observe

that (using (2.42))∑
j

|σj(S0 ∩ A) ∩ E0| = |∇(S0 ∩ A,G ∩ E0)| < |G ∩ E0|ψ,

∑
j

|σ−1
j (E0) ∩ (S0\A)| = |∇(E0, S0\A)| < |S0\A|ψ.

But (2.42) and (2.14) imply |G ∩ E0|+ |S0\A| < δg�/(�− ψ), so that∑
j

|σj(S0) ∩ E0| =
∑
j

(
|σj(S0 ∩ A) ∩ E0|+ |σ−1

j (E0) ∩ (S0\A)|
)

< δg�ψ/(�− ψ). (2.45)

We assert that we can choose j so that∣∣Gj0∣∣ > 0.8δg (2.46)

and

|σj(S0) ∩ E0| < 10
∣∣Gj0∣∣ψ/�. (2.47)

To see this, let

P =
{
j ∈ [−d, d]\{0} : |σj(S0) ∩ E0| � 10

∣∣Gj0∣∣ψ/�}.
Then (2.45) gives

∑
j∈P

∣∣Gj0∣∣ � �

10ψ

∑
|σj(S0) ∩ E0| < δg

�2

10(�− ψ)
,

so (using (2.16)) ∑
j �∈P

∣∣Gj0∣∣ > (1− �/(10(�− ψ)))δg�.

So there exists j �∈ P with (say) |Gj0| > 0.8δg, which is what we want.

Having chosen j satisfying (2.46) and (2.47), we turn to defining ν(I, ·). Let

C = Cj(I) = G
j
0 ∩ F ∩ σj(S0) (= σj(S0\A) ∩ F),

D = Dj(I) = G
j
0 ∩ (σj(T ) ∪ (σj(S0) ∩ E0)).
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Then

C ∪ D is a partition of Gj0. (2.48)

Setting α = α(λ) = λ/(1 + λ)2 and β = β(λ) = 1− αλ = (1 + 2λ)/(1 + λ)2, define

ν(I, J) =




(αλ)|C∩J|β|C\J|(λ/(1 + λ))|D∩J|(1 + λ)−|D\J|

= w(J)
w(I)

α|C∩J|β|C\J|(1 + λ)−|D| if j ∈ ϕj(I),
0 otherwise.

Then ∑
J

ν(I, J) = 1 ∀I (2.49)

(because of (2.48)). On the other hand we will show, for any J ,

∑
I∼(F,S )

w(I)

w(J)
ν(I, J) � �βδg/2. (2.50)

2.12. Proof of (2.50)

We need one easy lemma. Given a bigraph Σ on P ∪ R and U ⊆ R, say that a (vertex)

cover K ∪ L ∪M of Σ with K ⊆ P , L ⊆ U and M ⊆ R\U is legal (with respect to U) if

it is a minimal cover and
K = N(U\L).

(Note minimality implies K = N(R\(L ∪M)).)

Lemma 2.18. With notation as above, let K ∪ L ∪M be a legal cover with |K ∪ L| as small

as possible. Then

(a) ∀K ′ ⊆ K |N(K ′) ∩ (U\L)| � |K ′|,
(b) ∀L′ ⊆ L |N(L′)\K| � |L′|.

Proof. (a) Given K ′ ⊆ K , let S = N(K ′) ∩ (U\L),

K ′′ = {v ∈ K : N(v) ∩U ⊆ S ∪ L} (⊇ K ′),

and T = N(K ′′) ∩ (R\U). Then

(i) (K\K ′′) ∪ (L ∪ S) ∪ (M ∪ T ) is a minimal cover

(a straightforward verification using the fact that each vertex of K\K ′′ has a neighbour

in U\(L ∪ S)), and

(ii) K\K ′′ = N(U\(L ∪ S)).

Minimality of |K ∪ L| thus implies |K\K ′′|+ |L ∪ S | � |K|+ |L|, so |S | � |K ′′| � |K ′|.
(b) This is similar. Given L′ ⊆ L, let W = N(L′)\K and

L′′ = {u ∈ L ∪M : N(u) ⊆ K ∪W } (⊇ L′).

Then

(i) K ∪W ∪ ((L ∪M)\L′′) is a minimal cover, and

(ii) K ∪W = N(U\(L\L′′)).
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Minimality of |K ∪ L| thus implies |K ∪W |+ |L\L′′| � |K|+ |L|, and |W | � |L′′| � |L′|.

Proof of (2.50). Given (F, S), J and j, set

I� = I�(F, S, J, j) = {I ∼ (F, S) : j(I) = j, J ∈ ϕj(I)}.

We will show ∑
I∈I�

w(I)

w(J)
ν(I, J) < βδg/2,

which of course gives (2.50).

Set U = σ−1
j (J) ∩ S0. Suppose I ∈ I�, and set G = G(I), A = A(I), and

K = K(I) = G ∩ E0, L = L(I) = U\A, M = M(I) = (S0\U)\A.

Then K ∪ L ∪M (= (G ∪ B) ∩ Q) is a minimal cover of ΓQ. (That it is a cover follows

from (2.7); for minimality, notice (e.g.) that each v ∈ G ∩ E0 has a neighbour in A, which

must be in S0 (using A ⊆ S and the definition of S0).) Moreover, we assert

K = NΓQ(U\L). (2.51)

Proof. We show that each side of (2.51) contains the other. The obvious direction is

NΓQ(U\L) = NΓQ(U ∩ A) ⊆ N(A) ∩ E0 = G ∩ E0 = K.

For the reverse containment, suppose v ∈ K . Since K ⊆ G0, (2.10) says that v has a

neighbour u ∈ A ∩ I . Then u ∈ S0 (because v ∈ E0 �∼ S\S0), implying u ∈ U (since u ∈
A ∩ I ⇒ σj(u) ∈ J). And of course u �∈ L (since u ∈ A).

Thus K ∪ L ∪M is a legal cover of ΓQ with respect to U in the sense of Lemma 2.18.

Now fix K0 ∪ L0 ∪M0, a legal cover of ΓQ with respect to U with |K0 ∪ L0| as small as

possible.

Given I ∈ I�, let K = K(I), etc., be as above and set K ′ = K0\K , L′ = L0\L. Then, by

Lemma 2.18,

|L| � |K ′|+ |L0\L′|, |K| � |L′|+ |K0\K ′|. (2.52)

Furthermore, we assert

K = (K0\K ′) ∪NΓQ(L
′). (2.53)

The point of this is that it says that (K ′, L′) determines G (so also A), and therefore

I ∈ I� (because of (2.12)).

To see (2.53), just observe that the only point requiring proof is K\K0 ⊆ NΓQ(L0\L),

and that this follows from (2.51) once we notice that ∇(K\K0, U\(L0 ∪ L)) = ∅ (since

K0 ∪ L0 covers ∇(E0, U)).

Now with C = Cj(I), D = Dj(I) as in the discussion preceding (2.48), observe that

C ∩ J = σj
(
L\σ−1

j (E0)
)

and C\J = σj
(
M\σ−1

j (E0)
)
,
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and that we may partition D as

D = (σj(T ) ∩ F) ∪ (K\σj(S0\(L ∪M))).

Thus, with inequalities justified below,

w(I)

w(J)
ν(I, J) = α|σj (L\σ

−1
j (E0))|β|σj (M\σ

−1
j (E0))|(1 + λ)−(|σj (T )∩F |+|K\σj (S0\(L∪M))|)

� α|L|β|M|(1 + λ)−(|K|+|σj (T )∩F |)α−(|σj (S0∩A)∩K|+|σ−1
j (E0)∩(S0\A)|) (2.54)

� α|L|(1 + λ)−|K|β|G
j
0|−(|K|+|L|)α−O(|Gj0|ψ/�) (2.55)

� βδg/2α|L|(1 + λ)−|K|β−(|K|+|L|) (2.56)

= βδg/2
(

1 + λ

1 + 2λ

)|K|(
λ

1 + 2λ

)|L|

� βδg/2
(

1 + λ

1 + 2λ

)|L′ |+|K0\K ′ |( λ

1 + 2λ

)|K ′ |+|L0\L′ |
(2.57)

= βδg/2
(

1 + λ

1 + 2λ

)|K0|( λ

1 + 2λ

)|L0|( λ

1 + λ

)|K ′ |−|L′ |
.

(In (2.54) we used α−1 = max{α−1, β−1, 1 + λ}; in (2.55) we used G
j
0 ⊆ σj(L ∪M) ∪

K ∪ (σj(T ) ∩ F), (1 + λ)−1 < β and (2.47); (2.56) is from (2.46), using (ψ/�) log(1/α) =

o(log(1/β)), which is a consequence of

λ2 = ω((ψ/�) log(1/λ)) (2.58)

for small λ, and easily verified when λ is larger; and (2.57) comes from (2.52).)

Thus, recalling – see the remark following (2.53) – that each (K ′, L′) corresponds to at

most one I ∈ I�,

∑
I∈I�

w(I)

w(J)
ν(I, J) � βδg/2

(
1 + λ

1 + 2λ

)|K0|( λ

1 + 2λ

)|L0| ∑
K ′⊆K0

∑
L′⊆L0

(
λ

1 + λ

)|K ′ |−|L′ |

= βδg/2.

As noted earlier this gives (2.50).

2.13. Finally

Now fixing J ∈ J, we are ready to verify (2.3) (thus completing the proofs of Theorems 1.2

and 1.1).

Note first of all (referring to (2.44)) that for λ � 2 (say) (2.50) implies

∑
I∈J(g,δ)

w(I)

w(J)
ν(I, J) =

∑
(F,S )∈U

∑
I∼(F,S )

w(I)

w(J)
ν(I, J)

� |U|�βδg/2

< � exp
[{
O(d−1/2 log3/2 d)− Ω(λ2)

}
δg

]
< exp[−Ω(λ2δg)], (2.59)
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while for larger λ,

∑
I∈J(g,δ)

w(I)

w(J)
ν(I, J) < λ−Ω(δg). (2.60)

Remark. Our choice of ψ was constrained by the demands of (2.58) and (2.59) (the latter

since ψ = o(
√
d/ log d) would give – via (2.41) – a larger bound in (2.44)).

We first deal with large I s (recall I is large if |G(I)| > d3). Here we have already done

the work. Assuming first that λ � 2, and with justifications to follow, we have

∑
I large

w(I)

w(J)
ν(I, J) =

∑
g>d3

∑
δ

∑
I∈I(g,δ)

w(I)

w(J)
ν(I, J)

=
∑
g>d3

∑
δ

exp[−Ω(λ2δg)] (2.61)

�
∑
g>d3

∑ {
exp[−Ω(λ2i)] : i � Ω

(
d−1g1−1/d

)}
(2.62)

�
∑
g>d3

exp
[
− Ω

(
λ2

(
d−1g1−1/d

))]
(2.63)

< exp
[
− Ω

(
λ2d3(1−1/d)−1

)]
(2.64)

< exp[−ω(λd)]. (2.65)

Of course, sums involving δ are restricted to δ for which δg is an integer. The main

inequality (2.61) is just (2.59), and (2.62) comes from Lemma 2.12. In (2.63) we have

absorbed a factor λ−2 in the exponent. One way (probably not the most natural) to see

the inequality in (2.64) is to use

(1− ε)g1−δ
< (1− ε)iK1−δ

for i1/(1−δ)K < g � (i+ 1)1/(1−δ)K

with K = d3, δ = 1/d and 1− ε = exp[−Ω(λ2d−1)].

For λ > 2 a similar analysis (using (2.60)) gives

∑
I large

w(I)

w(J)
ν(I, J) � λ−Ω(d2). (2.66)

Finally we turn to the easy case of small I . Here we abuse our notation slightly and set

J(g, a) = {I ∈ J0 : |G(I)| = g, |A(I)| = a}.

For a (nonempty) J(g, a) with g < d3, Lemma 2.12 gives a = O(g/d), so that, since each

A(I) is 2-clustered and contains v0, Lemma 2.1 bounds the number of possibilities for

A(I) with I ∈ J(g, a) by exp[O((g/d) log d)].
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But we also know (see (2.12)) that, given J and j, I ∈ ϕ−1
j (J) is determined by G(I) (or

A(I)), and that (by (2.18), (2.17), and again Lemma 2.12)

w(I)

w(J)
ν(I, J) = (1 + λ)−|G

j
0(I)|

� (1 + λ)−δg

= (1 + λ)−(1−O(1/d))g.

So finally, noting that A(I) �= ∅ implies |G(I)| � �, we have

∑
I∈J(g,a)

w(I)

w(J)
ν(I, J) < � exp[O((g/d) log d)](1 + λ)−(1−O(1/d))g

< (1 + λ)−(1−o(1))g

and ∑
I small

w(I)

w(J)
ν(I, J) =

∑
��g�d3

∑
a�g

∑
I∈J(g,a)

w(I)

w(J)
ν(I, J)

<
∑

��g<d3

g(1 + λ)−(1−o(1))g

� (1 + λ)−(1−o(1))�;

and combining this with (2.65) or (2.66) gives (2.3).
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