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in a d-regular graph on N vertices. For 4 bounded away from 0
and 1, the logarithm of the bound we obtain agrees in its leading

gﬁ{x‘;ﬁs' term with the {og.arithm l(\)lf tl?e. qumber.of matchings qf size E in
Stable sets the graph consisting of 5; disjoint copies of Kqg4. This provides
Matching polynomial asymptotic evidence for a conjecture of S. Friedland et al. We also
Monomer-dimer model obtain an analogous result for independent sets of a fixed size
Hard-core model in regular graphs, giving asymptotic evidence for a conjecture of
Graph homomorphisms J. Kahn. Our bounds on the number of matchings and independent

sets of a fixed size are derived from bounds on the partition
function (or generating polynomial) for matchings and independent
sets.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Given a d-regular graph G on N vertices and a particular type of subgraph, a natural class of prob-
lems arises: “How many subgraphs of this type can G contain?” In this paper we give upper bounds
on the number of partial matchings of a fixed fractional size, and on the number of independent sets
of a fixed size, in a general d-regular graph, and we show that our bounds are asymptotically matched
at the logarithmic level by the graph consisting of % disjoint copies of Ky 4. (See [2] and [4] for graph
theory basics.)
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Let G be a bipartite graph on N vertices with partition classes A and B and with |A| = |B|. Suppose

that the degree sequence of A is given by {ri}!i‘]. A result of Brégman concerning the permanent of
0-1 matrices [3] (see also [1]) gives a bound on the number of perfect matchings in G:

Theorem 1.1 (Brégman). Let M pertect(G) be the set of perfect matchings in G. Then

|A|

1
| Mpertect (G)| < [ [ -

i=1

When r; =d for all i and |A| is divisible by d, equality in the above theorem is achieved by the
graph consisting of % disjoint copies of the complete bipartite graph Ky 4, so we know that among d-
regular bipartite graphs on N vertices, with 2d|N, this graph contains the greatest number of perfect
matchings. (Wanless [12] has considered the case when 2d is not a multiple of N, obtaining lower
bounds on | Mperfect (G)| and some structural results on the maximizing graphs in this case.)

Friedland et al. [6] propose an extension of this observation, which they call the Upper Matching
Conjecture. Write m,(G) for the number of matchings in G of size ¢, and write DKy 4 for the graph
consisting of % disjoint copies of Ky 4.

Conjecture 1.2. For any N-vertex, d-regular graph G with 2d|N and any 0 < £ < N/2,

mg(G) <mg(DKy q).

In this note we upper bound the logarithm of the number of ¢-matchings of a regular graph
and show that, at the level of the leading term, this upper bound is achieved by the disjoint union
of the appropriate number of copies of K;4. We will use the parameterization o = % and refer
interchangeably to a matching of size ¢ or a matching whose size is an «-fraction of the maximum
possible matching size. In what follows, H(x) = —xlogx — (1 —x) log(1 —x) is the usual binary entropy

function. (All logarithms in this note are base 2.)

Theorem 1.3. Let G be a d-regular graph on N vertices and £ an integer satisfying 0 < £ < % Seta = %V—Z. The
number of matchings in G of size £ satisfies

N
log(me(G)) < 5[0{ logd + H(e)].
This bound is tight up to the first order term: for fixed o € (0, 1),

logd

N o
log(me(DKn @) > 5[“ logd + 2H (@) +alog<;> + Q(Tﬂ

with the constant in the $2 term depending on .

In [7] an asymptotic variant of Conjecture 1.2 is presented. Let {Gy} be a sequence of d-regular
bipartite graphs with |Vy|, the number of vertices of G, growing to infinity, and fix « € [0, 1]. Set

hiG,) (@) =limsup(logmg, (Gy))/IVil,
where the limit is over all sequences {¢;} with 2¢;/|Vy| — «. The Asymptotic Upper Matching Con-
jecture asserts that

hiGy (@) < hkiy g3 (00,

where kKg 4 is the graph consisting of k disjoint copies of Ky 4. Theorem 1.3 shows that for each
fixed «, there is a constant ¢, (independent of d) with hc,)(@) < hyk, 4 (@) + Ca.

We show similar results for the number of independent sets in d-regular graphs. A point of de-
parture for our consideration of independent sets is the following result of Kahn [10]. For any graph
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G write Z(G) for the set of independent sets in G and write i;(G) for the set of independent sets of
size t (i.e., with t vertices).

Theorem 1.4 (Kahn). For any N-vertex, d-regular bipartite graph G,
N/2d
76| < |Zkan|"*.

Note that when 2d|N, we have |Z(Kq4)|N/? = |Z(DKy 4)|. Kahn [10] proposes the following nat-
ural conjecture.

Conjecture 1.5. For any N-vertex, d-regular graph G with 2d|N and any 0 <t < N/2,
it(G) < ir(DKN q)-
We provide asymptotic evidence for this conjecture.

Theorem 1.6. For N-vertex, d-regular G,and 0 <t < N/2,

25 HE+D in general,
ir(G) < { 25 HGH+E-5F =3 i G is bipartite, (1)
N
ot (?) if G has a perfect matching.

On the other hand,

N N1 _¢ 2t\d
1=1(2)22G=30-%9 foranyc> 1,
TP it @)

N
t{> t—1 2kd N
2PN a=5H fort < 5.

If N, d and ¢t are sequences satisfying t = ag for some fixed « € (0,1) and G is a sequence of
N-vertex, d-regular graphs, then from (1)

N 27
S[H(x) + %] in general,

logi(G) < { + ‘ o
7[H(a) + 41 if G is bipartite,

whereas if N =w(dlogd) and d = w(1) then taking ¢ =2 in the first bound of (2) and using Stirling’s
formula to analyze the behavior of (a[\zlv//zz) we obtain the near matching lower bound

. N 1
logir(DKn.0) > 5 [H(a) + (1 +o(1))].

If N=o0(d/(1 —)?) and G is bipartite, then the gap between our bounds on i;(G) and ir(DKN.q)

is just a multiplicative factor of O(+~/N); indeed, in this case (taking any ¢ = w(1)) we obtain from
the first bound of (2) that

N
it(DKyn,q) = (1— o(1))<§)2%<H<a>+%)_

For smaller sets, whose sizes scale with N/d rather than N, the final bounds in (1) and (2) come
into play. Specifically, for any N, t and d

N
2

([)2t(1+0(l)) lft:o(%),

it(DK.q) >
o a+omy(H2t ife=o( /Y.
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Note that in the latter case, for G with a perfect matching we have i;(G) < (1 4 0(1))i;(DKy 4). To
obtain (3) from (2) we use

t—1

2kd ad =2 2dt(t — 1)
-\ > . > - -
| |(1 N ) /exp{ N kg_]k} /exp! N }

k=1
2. Counting matchings

Given a graph G and a nonnegative real number A, we can form weighted matchings of G by
assigning each matching containing ¢ edges weight A¢. The weighted partition function, Z)'\“a“h(G),
gives the total weight of matchings. Formally,

N
2
Z;natCh(G) = Z }le‘ = ka(G)kk
meM(G) k=0

(This is often referred to as the generating function for matchings or the matching polynomial.)
We will prove Theorem 1.3 by showing a bound on the partition function, and then using that bound
to limit the number of matchings of a particular weight (size).

Lemma 2.1. For all d-regular graphs G, Z;“a“h(G) < (1+d)r) 5

This lemma is easily proven in the bipartite case; the difficulty arises when we want to prove the
same bound for general graphs. Indeed, if G is a bipartite graph with bipartition classes A and B, we
can easily see that the right-hand side above counts a superset of weighted matchings. Elements in
this superset are sets of edges no two of which are adjacent to the same element of A (but with no
restriction on incidences with B).

Proof of Lemma 2.1. To prove this lemma, we will use the following result of Friedgut [5], which
describes a weighted version of the information theoretic Shearer’s Lemma.

Theorem 2.2 (Friedgut). Let H = (V, E) be a hypergraph, and F1, F,, ..., F; subsets of V such that every
v € V belongs to at least t of the sets F;. Let H; be the projection hypergraphs: H; = (V, E;), where E; =
{e N Fie € E}. For each edge e € E, define e; = e N Fj, and assign each e; a nonnegative real weight wi(e;).
Then

<ZIL[Wf(€f)>t <[T 2 witen'.

ecE i=1 i ejeE;

The first step in applying this theorem is to define appropriate variables. Let G = (V, E) be a d-
regular graph, with its vertex set {vy,va,...,vy}. We will use G to form an associated matching
hypergraph, H = (E, M), where the vertex set of the hypergraph is the edge set of G, and M is the
sets of matchings in G. Let F; be the set of edges incident to a vertex v; € V. Note that each edge in E
is covered twice by U,N:1 Fi, so we may take t = 2. We define the trace sets, E; = {FiNm: m € M}, as
the set of possible intersections of a matching with the set of edges incident with v;. Let mj =mNF;.
Then for all i, assign

1 if mj =90,
VA else.

. s 2
With these definitions we have >, wi(m;)? =1+dx, and for a fixed m, []; wi(m) = JRemb,
Putting these expressions into Theorem 2.2, we have that

wi(m;) = {



T. Carroll et al. / Journal of Combinatorial Theory, Series A 116 (2009) 1219-1227 1223

2 N

meM i=1
Therefore,

Zmh Gy < (14d)2. O

Remark 2.1. After the submission of this paper, L. Gurvits pointed out an alternative proof of
Lemma 2.1, which applies to graphs with average degree d and actually gives a slight improve-
ment when G does not have a perfect matching. By a result of Heilmann and Lieb [9], the roots
of ZmatCh(G) =0 are all real and negative, and so we can write Zm“Ch(G) ]_[“(G)(l + ajA) for some
positive o;’s with ) o = (ZmatCh(G)) lreo = |[E(G)| = & where v(G) is the size of the largest match-
ing of G. Applying the arithmetic mean—geometric mean inequality to this expression we obtain

V(G) v(G)
match ZO{ _ Nd N
2 (G><( (G)) _<1+AT(G)> <+dnt.

Proof of Theorem 1.3. We begin with the upper bound. We may assume 0 < £ < N/2, since the
extreme cases £ =0, N/2 are obvious. For fixed ¢, a single term of the partition function Z,‘\“atCh(G) is

bounded by the whole sum, and so by Lemma 2.1 we have m;(G)A¢ < Zj\“mh(G) <@ +dk)% and

4
me(G) < (1 +dk)%(%> . (4)

We take

S d -0

to minimize the right-hand side of (4) and obtain the upper bound in Theorem 1.3 (in the case

(= OtZN )

NONE zah ¢
log(mg(G)) < 10g< < 2 e) 2 (d(ze e))
35—

= g(— logd + H(2€/N)>
= g(a logd + H(w)).
We now turn to the lower bound. We begin by observing
N/2d
m(Dkna)= > ] ( ) (5)
at,...,aN/2d: i=1

0<a;<d, ) a;=¢
Here the a;’s are the sizes of the intersections of the matching with each of the components of DK} 4,

and the term (C‘i)zai! counts the number of matchings of size g; in a single copy of Ky 4. (The binomial
term represents the choice of a; endvertices for the matching from each partition class, and the
factorial term tells us how many ways there are to pair the endvertices from the top and bottom to
form a matching.)

From Stirling’s formula we have that there is an absolute constant ¢ > 1 such that for any d >
and 0 <a <d,

d 2
log((a) a!) >alogd+alogg —aloge +2H(a/d)d — logcd, ®)
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and we may verify by hand that (6) holds also for a = 0,d. Combining (5) and (6) we see that
log(m¢(DKy ¢)) is bounded below by

N/2d

N [2¢ 2¢ logcd 2
£} (W logd — N loge — 1 — Z <a1 log i —|— 2H(a1/d)d)> (7)

for any valid sequence of a;'s. To get our lower bound in the case £ = a%, we consider (7) for that
sequence of a;’s in which each g; is either |ad] or [ad]. Note that by the mean value theorem, there
is a constant ¢, > 0 such that both

lad] Ca

md]l ogu
g le—g zlea—

[ad] loed | (0%
”(T)”(T) > H) =

(Here we use

log

and

[ad]
d d ~d
and o # 0, 1.) Putting these bounds into (7) we obtain

log(m¢(DKy q4)) > I;I(alogd+21-1(a)+alog( )+Q(10§d>>’

)

o

with the constant in the £2 term depending on . O
3. Counting independent sets

In this section we prove the various assertions of Theorem 1.6. We begin with the second bound
in (1). We use a result from [8], which states that for any A > 0 and any d-regular N-vertex bipartite
graph G, the weighted independent set partition function satisfies

) N
ZMG) = Y A< a+n—1)%
1€Z(G)

(8)

AN .
Choose A so that 2(1+)~) =t. Noting that i;(G)A20+% is the contribution to Z;“d(G) from independent
sets of size t we have

Zmd (G)

ir(G) <

A20E
Lea +A)d L

N/2
:2%(ltk> (1_;)
AT 21+ 0)7 -1

N N
L\ N, N ————
=2HG) 3+ aaand

Bz

:2H(%)%+ N]oge(] 2[)d

(9)

We use (8) to make the critical substitution in (9).
To obtain the first bound in (1) we need the following analog of (8) for G not necessarily bipartite:

7y <281 42)% (10)
s < .
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From (10) we easily obtain the claimed bound, following the steps of the derivation of the second
bound in (1) from (8). We prove (10) by using a more general result on graph homomorphisms. For
graphs G = (V1,Eq) and H = (V, E3) set

Hom(G,H)={f:Vi— Va: {u,v} € E1= {f(u), f(v)} € E2}.

That is, Hom(G, H) is the set of graph homomorphisms from G to H. Fix a total order < on V(G).
For each v € V(G), write P (v) for {w € V(G): {w,v} € E(G), w < v} and p-(v) for |[PL(v)|. The
following natural generalization of a theorem of J. Kahn is due to D. Galvin (see [11] for a proof).

Theorem 3.1. For any d-regular and N-vertex graph G (not necessarily bipartite) and any total order <
on V(G),

1
[Hom(G, H)| < ] [Hom(Kp_qv).p.v)» H)|?.
veV(G)

If G is bipartite with bipartition classes £ and O and < satisfies u < v for all u € £, v € O then
Theorem 3.1 reduces to the main result of [8].

To prove (10), we first note that (by continuity) it is enough to prove the result for A rational.
Let C be an integer such that CA is also an integer, and let Hc be the graph which consists of an
independent set of size CA and a complete looped graph on C vertices, with a complete bipartite
graph joining the two. As described in [8] we have, for any graph G on N vertices,

|[Hom(G, Ho)| = cNZIM(G).

For G d-regular and N-vertex, we apply Theorem 3.1 twice to obtain

ind |[Hom(G, Hc)|
O =
1
< [Tvev(c) IHOM(Kp_ (v).p~(v)» HO)Id
i 1
 Tlvevie) @<V ZM Kp_),p-1))?
= o
2Y vev(G) P<() 1
3 d HveV(G)(Z(l +)\)P<(V))d
2 vev(G) P<) Yvev(G) P<(V)
L S (S B
= N
Now noting that
Nd
> r-W=[EG)|=~
veV(G)
we obtain

N N
Z(6)<24(1+1)2,

as claimed.

We now turn to the third bound in (1). Fix a perfect matching of G joining a set of vertices
A C V(G) of size N/2 to the set B:=V(G) \ A. Let f be the bijection from subsets of A to subsets of
B that moves the set along the chosen matching. Every independent set in G of size t is of the form
IaUlIp where I4 C A, Ig B, f(A)NB =0 and |A| + |B| =t. We therefore count all the independent
sets of size t (and more) by choosing a subset of A of size t ((Nt/z) choices) and a subset of this set
to send to B via f (2! choices).
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To obtain the first bound in (2), we introduce a probabilistic framework and use Markov’s inequal-
ity. If we divide a set of size N/2 into N/2d blocks of size d and choose a uniform subset of size t,
then the probability that this set misses a particular block is (N/ f‘d) / (Nt/z). Let X be a random vari-
able representing the number of blocks that the t-set misses. Let by equal the number of t-sets which
miss exactly k blocks. Then P(X =k) = by/ (N/ 2). Let x4 be the indicator variable for the event A.

t
Then

N
2d

X= Z X{block i empty}
i=0

and by linearity of expectation the expected number of blocks missed satisfies

NG N 2y
t

From Markov’s inequality we have

cu 1
Y PX=k=P(X<cu)> (1 - 7>.

c
k=0

We substitute the previously discussed value for P(X = k), yielding the inequality

cu 1 %
%b@(lc)(t) (12)

How many independent sets of size t does DKy 4 have? To choose an independent set from DKy 4
of size t, we first create a bipartition £ U O of DKy 4 by choosing (arbitrarily) one of the bipartition
classes of each of the N/2d Ky g4's of DKy 4 to be in £. We then choose a subset of £ of size t.
The number of subsets of £ which have empty intersection with exactly k of the Ky 4's that make

up DKy g is precisely bg. Each of these subsets corresponds to 22 independent sets in DKy 4.

Combining this observation with (11) and (12) we obtain the first bound in (2):

it(DKy.a) =2% 3 2 ¥y
k>0

Finally we turn to the second bound in (2). We obtain the claimed bound by considering all of the
independent sets whose intersection with each component of DKy 4 has size either 0 or 1:

N
it(DKN.g) > <2d)f(2td )

After a little algebra, the right-hand side above is seen to be exactly the right-hand side of the second
bound in (2).
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