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We use an entropy based method to study two graph maximization
problems. We upper bound the number of matchings of fixed size �

in a d-regular graph on N vertices. For 2�
N bounded away from 0

and 1, the logarithm of the bound we obtain agrees in its leading
term with the logarithm of the number of matchings of size � in
the graph consisting of N

2d disjoint copies of Kd,d . This provides
asymptotic evidence for a conjecture of S. Friedland et al. We also
obtain an analogous result for independent sets of a fixed size
in regular graphs, giving asymptotic evidence for a conjecture of
J. Kahn. Our bounds on the number of matchings and independent
sets of a fixed size are derived from bounds on the partition
function (or generating polynomial) for matchings and independent
sets.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Given a d-regular graph G on N vertices and a particular type of subgraph, a natural class of prob-
lems arises: “How many subgraphs of this type can G contain?” In this paper we give upper bounds
on the number of partial matchings of a fixed fractional size, and on the number of independent sets
of a fixed size, in a general d-regular graph, and we show that our bounds are asymptotically matched
at the logarithmic level by the graph consisting of N

2d disjoint copies of Kd,d . (See [2] and [4] for graph
theory basics.)
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Let G be a bipartite graph on N vertices with partition classes A and B and with |A| = |B|. Suppose
that the degree sequence of A is given by {ri}|A|

i=1. A result of Brégman concerning the permanent of
0–1 matrices [3] (see also [1]) gives a bound on the number of perfect matchings in G:

Theorem 1.1 (Brégman). Let Mperfect(G) be the set of perfect matchings in G. Then

∣∣Mperfect(G)
∣∣ �

|A|∏
i=1

(ri !)
1
ri .

When ri = d for all i and |A| is divisible by d, equality in the above theorem is achieved by the
graph consisting of N

2d disjoint copies of the complete bipartite graph Kd,d , so we know that among d-
regular bipartite graphs on N vertices, with 2d|N , this graph contains the greatest number of perfect
matchings. (Wanless [12] has considered the case when 2d is not a multiple of N , obtaining lower
bounds on |Mperfect(G)| and some structural results on the maximizing graphs in this case.)

Friedland et al. [6] propose an extension of this observation, which they call the Upper Matching
Conjecture. Write m�(G) for the number of matchings in G of size �, and write D K N,d for the graph
consisting of N

2d disjoint copies of Kd,d .

Conjecture 1.2. For any N-vertex, d-regular graph G with 2d|N and any 0 � � � N/2,

m�(G) � m�(D KN,d).

In this note we upper bound the logarithm of the number of �-matchings of a regular graph
and show that, at the level of the leading term, this upper bound is achieved by the disjoint union
of the appropriate number of copies of Kd,d . We will use the parameterization α = 2�

N , and refer
interchangeably to a matching of size � or a matching whose size is an α-fraction of the maximum
possible matching size. In what follows, H(x) = −x log x− (1− x) log(1− x) is the usual binary entropy
function. (All logarithms in this note are base 2.)

Theorem 1.3. Let G be a d-regular graph on N vertices and � an integer satisfying 0 � � � N
2 . Set α = 2�

N . The
number of matchings in G of size � satisfies

log
(
m�(G)

)
� N

2

[
α log d + H(α)

]
.

This bound is tight up to the first order term: for fixed α ∈ (0,1),

log
(
m�(D KN,d)

)
� N

2

[
α log d + 2H(α) + α log

(
α

e

)
+ Ω

(
log d

d

)]
,

with the constant in the Ω term depending on α.

In [7] an asymptotic variant of Conjecture 1.2 is presented. Let {Gk} be a sequence of d-regular
bipartite graphs with |Vk|, the number of vertices of Gk , growing to infinity, and fix α ∈ [0,1]. Set

h{Gk}(α) = lim sup
(
log m�k (Gk)

)
/|Vk|,

where the limit is over all sequences {�k} with 2�k/|Vk| → α. The Asymptotic Upper Matching Con-
jecture asserts that

h{Gk}(α) � h{kKd,d}(α),

where kKd,d is the graph consisting of k disjoint copies of Kd,d . Theorem 1.3 shows that for each
fixed α, there is a constant cα (independent of d) with h{Gk}(α) � h{kKd,d}(α) + cα .

We show similar results for the number of independent sets in d-regular graphs. A point of de-
parture for our consideration of independent sets is the following result of Kahn [10]. For any graph
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G write I(G) for the set of independent sets in G and write it(G) for the set of independent sets of
size t (i.e., with t vertices).

Theorem 1.4 (Kahn). For any N-vertex, d-regular bipartite graph G,

∣∣I(G)
∣∣ �

∣∣I(Kd,d)
∣∣N/2d

.

Note that when 2d|N , we have |I(Kd,d)|N/2d = |I(D KN,d)|. Kahn [10] proposes the following nat-
ural conjecture.

Conjecture 1.5. For any N-vertex, d-regular graph G with 2d|N and any 0 � t � N/2,

it(G) � it(D KN,d).

We provide asymptotic evidence for this conjecture.

Theorem 1.6. For N-vertex, d-regular G, and 0 � t � N/2,

it(G) �

⎧⎪⎪⎨
⎪⎪⎩

2
N
2 (H( 2t

N )+ 2
d ) in general,

2
N
2 (H( 2t

N )+ 1
d − log e

2d (1− 2t
N )d) if G is bipartite,

2t
( N

2
t

)
if G has a perfect matching.

(1)

On the other hand,

it(D KN,d) �

⎧⎨
⎩

(1 − 1
c )

( N
2
t

)
2

N
2 ( 1

d − c
d (1− 2t

N )d) for any c > 1,

2t
( N

2
t

)∏t−1
k=1(1 − 2kd

N ) for t � N
2d .

(2)

If N , d and t are sequences satisfying t = α N
2 for some fixed α ∈ (0,1) and G is a sequence of

N-vertex, d-regular graphs, then from (1)

log it(G) �
{

N
2 [H(α) + 2

d ] in general,
N
2 [H(α) + 1

d ] if G is bipartite,

whereas if N = ω(d log d) and d = ω(1) then taking c = 2 in the first bound of (2) and using Stirling’s
formula to analyze the behavior of

( N/2
αN/2

)
, we obtain the near matching lower bound

log it(D KN,d) � N

2

[
H(α) + 1

d

(
1 + o(1)

)]
.

If N = o(d/(1 − α)d) and G is bipartite, then the gap between our bounds on it(G) and it(D KN,d)

is just a multiplicative factor of O (
√

N); indeed, in this case (taking any c = ω(1)) we obtain from
the first bound of (2) that

it(D KN,d) �
(
1 − o(1)

)( N
2
t

)
2

N
2 (H(α)+ 1

d ).

For smaller sets, whose sizes scale with N/d rather than N , the final bounds in (1) and (2) come
into play. Specifically, for any N , t and d

it(D KN,d) �

⎧⎨
⎩

( N
2
t

)
2t(1+o(1)) if t = o( N

d ),

(1 + o(1))
( N

2
)
2t if t = o(

√
N ).

(3)
t d
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Note that in the latter case, for G with a perfect matching we have it(G) � (1 + o(1))it(D KN,d). To
obtain (3) from (2) we use

t−1∏
k=1

(
1 − 2kd

N

)
� exp

{
−4d

N

t−1∑
k=1

k

}
� exp

{
−2dt(t − 1)

N

}
.

2. Counting matchings

Given a graph G and a nonnegative real number λ, we can form weighted matchings of G by
assigning each matching containing � edges weight λ� . The weighted partition function, Z match

λ (G),
gives the total weight of matchings. Formally,

Z match
λ (G) :=

∑
m∈M(G)

λ|m| =
N
2∑

k=0

mk(G)λk.

(This is often referred to as the generating function for matchings or the matching polynomial.)
We will prove Theorem 1.3 by showing a bound on the partition function, and then using that bound
to limit the number of matchings of a particular weight (size).

Lemma 2.1. For all d-regular graphs G, Z match
λ (G) � (1 + dλ)

N
2 .

This lemma is easily proven in the bipartite case; the difficulty arises when we want to prove the
same bound for general graphs. Indeed, if G is a bipartite graph with bipartition classes A and B , we
can easily see that the right-hand side above counts a superset of weighted matchings. Elements in
this superset are sets of edges no two of which are adjacent to the same element of A (but with no
restriction on incidences with B).

Proof of Lemma 2.1. To prove this lemma, we will use the following result of Friedgut [5], which
describes a weighted version of the information theoretic Shearer’s Lemma.

Theorem 2.2 (Friedgut). Let H = (V , E) be a hypergraph, and F1, F2, . . . , Fr subsets of V such that every
v ∈ V belongs to at least t of the sets Fi . Let Hi be the projection hypergraphs: Hi = (V , Ei), where Ei =
{e ∩ Fie ∈ E}. For each edge e ∈ E, define ei = e ∩ Fi , and assign each ei a nonnegative real weight wi(ei).

Then (∑
e∈E

r∏
i=1

wi(ei)

)t

�
∏

i

∑
ei∈Ei

wi(ei)
t .

The first step in applying this theorem is to define appropriate variables. Let G = (V , E) be a d-
regular graph, with its vertex set {v1, v2, . . . , v N }. We will use G to form an associated matching
hypergraph, H = (E, M), where the vertex set of the hypergraph is the edge set of G , and M is the
sets of matchings in G . Let Fi be the set of edges incident to a vertex vi ∈ V . Note that each edge in E
is covered twice by

⋃N
i=1 Fi , so we may take t = 2. We define the trace sets, Ei = {Fi ∩m: m ∈ M}, as

the set of possible intersections of a matching with the set of edges incident with vi . Let mi = m ∩ Fi .
Then for all i, assign

wi(mi) =
{

1 if mi = ∅,√
λ else.

With these definitions we have
∑

mi∈Ei
wi(mi)

2 = 1 + dλ, and for a fixed m,
∏

i wi(mi) = √
λ

(2|m|)
.

Putting these expressions into Theorem 2.2, we have that
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(
Z match

λ (G)
)2 =

( ∑
m∈M

λ|m|
)2

�
N∏

i=1

(1 + dλ).

Therefore,

Z match
λ (G) � (1 + dλ)

N
2 . �

Remark 2.1. After the submission of this paper, L. Gurvits pointed out an alternative proof of
Lemma 2.1, which applies to graphs with average degree d and actually gives a slight improve-
ment when G does not have a perfect matching. By a result of Heilmann and Lieb [9], the roots
of Z match

λ (G) = 0 are all real and negative, and so we can write Z match
λ (G) = ∏ν(G)

i=1 (1 + αiλ) for some

positive αi ’s with
∑

αi = (Z match
λ (G))′|λ=0 = |E(G)| = Nd

2 , where ν(G) is the size of the largest match-
ing of G . Applying the arithmetic mean—geometric mean inequality to this expression we obtain

Z match
λ (G) �

(
1 + λ

∑
αi

ν(G)

)ν(G)

=
(

1 + λ
Nd

2ν(G)

)ν(G)

� (1 + dλ)
N
2 .

Proof of Theorem 1.3. We begin with the upper bound. We may assume 0 < � < N/2, since the
extreme cases � = 0, N/2 are obvious. For fixed �, a single term of the partition function Z match

λ (G) is

bounded by the whole sum, and so by Lemma 2.1 we have m�(G)λ� � Z match
λ (G) � (1 + dλ)

N
2 and

m�(G) � (1 + dλ)
N
2

(
1

λ

)�

. (4)

We take

λ = �

d( N
2 − �)

to minimize the right-hand side of (4) and obtain the upper bound in Theorem 1.3 (in the case
� = αN

2 ):

log
(
m�(G)

)
� log

( N
2

N
2 − �

) N
2
(

d( N
2 − �)

�

)�

= N

2

(
2�

N
log d + H(2�/N)

)

= N

2

(
α log d + H(α)

)
.

We now turn to the lower bound. We begin by observing

m�(D KN,d) =
∑

a1,...,aN/2d :
0�ai�d,

∑
i ai=�

N/2d∏
i=1

(
d

ai

)2

ai !. (5)

Here the ai ’s are the sizes of the intersections of the matching with each of the components of D K N,d ,

and the term
(d

ai

)2
ai ! counts the number of matchings of size ai in a single copy of Kd,d . (The binomial

term represents the choice of ai endvertices for the matching from each partition class, and the
factorial term tells us how many ways there are to pair the endvertices from the top and bottom to
form a matching.)

From Stirling’s formula we have that there is an absolute constant c � 1 such that for any d � 1
and 0 < a < d,

log

((
d

a

)2

a!
)

� a log d + a log
a

d
− a log e + 2H(a/d)d − log cd, (6)
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and we may verify by hand that (6) holds also for a = 0,d. Combining (5) and (6) we see that
log(m�(D KN,d)) is bounded below by

N

2

(
2�

N
log d − 2�

N
log e − log cd

d
+ 2

N

N/2d∑
i=1

(
ai log

ai

d
+ 2H(ai/d)d

))
(7)

for any valid sequence of ai ’s. To get our lower bound in the case � = α N
2 , we consider (7) for that

sequence of ai ’s in which each ai is either �αd	 or 
αd�. Note that by the mean value theorem, there
is a constant cα > 0 such that both

log

αd�

d
, log

�αd	
d

� logα − cα

d

and

H

( 
αd�
d

)
, H

( �αd	
d

)
� H(α) − cα

d
.

(Here we use∣∣∣∣ 
αd�
d

− α

∣∣∣∣,
∣∣∣∣ �αd	

d
− α

∣∣∣∣ � 1

d

and α �= 0,1.) Putting these bounds into (7) we obtain

log
(
m�(D KN,d)

)
� N

2

(
α log d + 2H(α) + α log

(
α

e

)
+ Ω

(
log d

d

))
,

with the constant in the Ω term depending on α. �
3. Counting independent sets

In this section we prove the various assertions of Theorem 1.6. We begin with the second bound
in (1). We use a result from [8], which states that for any λ > 0 and any d-regular N-vertex bipartite
graph G , the weighted independent set partition function satisfies

Z ind
λ (G) :=

∑
I∈I(G)

λ|I| �
(
2(1 + λ)d − 1

) N
2d . (8)

Choose λ so that λN
2(1+λ)

= t . Noting that it(G)λ
λN

2(1+λ) is the contribution to Z ind
λ (G) from independent

sets of size t we have

it(G) � Z ind
λ (G)

λ
λN

2(1+λ)

� (2(1 + λ)d − 1)
N
2d

λ
λN

2(1+λ)

= 2
N
2d

(
1 + λ

λ
λ

1+λ

)N/2(
1 − 1

2(1 + λ)d − 1

) N
2d

= 2H( λ
1+λ

) N
2 + N

2d e
− N

4d(1+λ)d

= 2H( 2t
N ) N

2 + N
2d − N log e

4d (1− 2t
N )d

. (9)

We use (8) to make the critical substitution in (9).
To obtain the first bound in (1) we need the following analog of (8) for G not necessarily bipartite:

Z ind
λ (G) � 2

N
d (1 + λ)

N
2 . (10)
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From (10) we easily obtain the claimed bound, following the steps of the derivation of the second
bound in (1) from (8). We prove (10) by using a more general result on graph homomorphisms. For
graphs G = (V 1, E1) and H = (V 2, E2) set

Hom(G, H) = {
f : V 1 → V 2: {u, v} ∈ E1 ⇒ {

f (u), f (v)
} ∈ E2

}
.

That is, Hom(G, H) is the set of graph homomorphisms from G to H . Fix a total order ≺ on V (G).
For each v ∈ V (G), write P≺(v) for {w ∈ V (G): {w, v} ∈ E(G), w ≺ v} and p≺(v) for |P≺(v)|. The
following natural generalization of a theorem of J. Kahn is due to D. Galvin (see [11] for a proof).

Theorem 3.1. For any d-regular and N-vertex graph G (not necessarily bipartite) and any total order ≺
on V (G),

∣∣Hom(G, H)
∣∣ �

∏
v∈V (G)

∣∣Hom(K p≺(v),p≺(v), H)
∣∣ 1

d .

If G is bipartite with bipartition classes E and O and ≺ satisfies u ≺ v for all u ∈ E , v ∈ O then
Theorem 3.1 reduces to the main result of [8].

To prove (10), we first note that (by continuity) it is enough to prove the result for λ rational.
Let C be an integer such that Cλ is also an integer, and let HC be the graph which consists of an
independent set of size Cλ and a complete looped graph on C vertices, with a complete bipartite
graph joining the two. As described in [8] we have, for any graph G on N vertices,∣∣Hom(G, HC )

∣∣ = C N Z ind
λ (G).

For G d-regular and N-vertex, we apply Theorem 3.1 twice to obtain

Z ind
λ (G) = |Hom(G, HC )|

C N

�
∏

v∈V (G) |Hom(K p≺(v),p≺(v), HC )| 1
d

C N

=
∏

v∈V (G)(C2p≺(v) Z ind
λ (K p≺(v),p≺(v)))

1
d

C N

�
C

2
∑

v∈V (G) p≺(v)

d
∏

v∈V (G)(2(1 + λ)p≺(v))
1
d

C N

= 2
N
d

C
2
∑

v∈V (G) p≺(v)

d (1 + λ)

∑
v∈V (G) p≺(v)

d

C N
.

Now noting that

∑
v∈V (G)

p≺(v) = ∣∣E(G)
∣∣ = Nd

2

we obtain

Zλ(G) � 2
N
d (1 + λ)

N
2 ,

as claimed.
We now turn to the third bound in (1). Fix a perfect matching of G joining a set of vertices

A ⊆ V (G) of size N/2 to the set B := V (G) \ A. Let f be the bijection from subsets of A to subsets of
B that moves the set along the chosen matching. Every independent set in G of size t is of the form
I A ∪ I B where I A ⊆ A, I B ⊆ B , f (A) ∩ B = ∅ and |A| + |B| = t . We therefore count all the independent
sets of size t (and more) by choosing a subset of A of size t (

(N/2
t

)
choices) and a subset of this set

to send to B via f (2t choices).
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To obtain the first bound in (2), we introduce a probabilistic framework and use Markov’s inequal-
ity. If we divide a set of size N/2 into N/2d blocks of size d and choose a uniform subset of size t ,
then the probability that this set misses a particular block is

(N/2−d
t

)
/
(N/2

t

)
. Let X be a random vari-

able representing the number of blocks that the t-set misses. Let bk equal the number of t-sets which
miss exactly k blocks. Then P(X = k) = bk/

(N/2
t

)
. Let χA be the indicator variable for the event A.

Then

X =
N
2d∑

i=0

χ{block i empty}

and by linearity of expectation the expected number of blocks missed satisfies

μ := E(X) = N

2d

( N
2 −d

t

)
( N

2
t

) � N

2d

(
1 − 2t

N

)d

. (11)

From Markov’s inequality we have

cμ∑
k=0

P(X = k) = P(X � cμ) �
(

1 − 1

c

)
.

We substitute the previously discussed value for P(X = k), yielding the inequality

cμ∑
k=0

bk �
(

1 − 1

c

)( N
2
t

)
. (12)

How many independent sets of size t does D KN,d have? To choose an independent set from D KN,d
of size t , we first create a bipartition E ∪ O of D KN,d by choosing (arbitrarily) one of the bipartition
classes of each of the N/2d Kd,d ’s of D KN,d to be in E . We then choose a subset of E of size t .
The number of subsets of E which have empty intersection with exactly k of the Kd,d ’s that make

up D KN,d is precisely bk . Each of these subsets corresponds to 2
N
2d −k independent sets in D KN,d .

Combining this observation with (11) and (12) we obtain the first bound in (2):

it(D KN,d) = 2
N
2d

∑
k�0

2−kbk

� 2
N
2d −cμ

cμ∑
k=0

bk

�
(

1 − 1

c

)( N
2
t

)
2

N
2 ( 1

d − c
d (1− t

M )d).

Finally we turn to the second bound in (2). We obtain the claimed bound by considering all of the
independent sets whose intersection with each component of D K N,d has size either 0 or 1:

it(D KN,d) � (2d)t
( N

2d

t

)
.

After a little algebra, the right-hand side above is seen to be exactly the right-hand side of the second
bound in (2).
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