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Abstract. We show that for all sufficiently large d, the uniform proper 3-coloring model (in
physics called the 3-state antiferromagnetic Potts model at zero temperature) on Z

d admits multiple
maximal-entropy Gibbs measures. This is a consequence of the following combinatorial result: if a
proper 3-coloring is chosen uniformly from a box in Z

d, conditioned on color 0 being given to all
the vertices on the boundary of the box which are at an odd distance from a fixed vertex v in the
box, then the probability that v gets color 0 is exponentially small in d. The proof proceeds through
an analysis of a certain type of cutset separating v from the boundary of the box and builds on
techniques developed by Galvin and Kahn in their proof of phase transition in the hard-core model
on Zd. Building further on these techniques, we study local Markov chains for sampling proper
3-colorings of the discrete torus Z

d
n. We show that there is a constant ρ ≈ 0.22 such that for all even

n ≥ 4 and d sufficiently large, if M is a Markov chain on the set of proper 3-colorings of Zd
n that

updates the color of at most ρnd vertices at each step and whose stationary distribution is uniform,
then the mixing time of M (the time taken for M to reach a distribution that is close to uniform,
starting from an arbitrary coloring) is essentially exponential in nd−1.

Key words. 3-coloring, Potts model, Peierls argument, phase coexistence, MCMC, torpid
mixing
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1. Introduction. A (proper) q-coloring of a graph G = (V,E) is a function
χ : V (G) → [q] satisfying χ(u) �= χ(v) whenever uv ∈ E, where we use the notation
[q] = {0, . . . , q − 1}. In the language of statistical physics, a q-coloring of G is a
configuration in the zero-temperature q-state antiferromagnetic Potts model on G [33].
This is a simple model of the occupation of space by a collection of q types of particles:
the vertices of G represent sites, each occupied by exactly one particle, and the edges
of G represent pairs of sites that are bonded (by spatial proximity, for example) and
cannot be occupied by particles of the same type. We write Cq(G), or simply Cq, for
the set of q-colorings of G.

A basic question concerning Cq is, what does a typical (uniformly chosen) element
look like? For finite G, uniform measure on Cq is unambiguous. For infinite G, the
standard approach to defining uniform measure on Cq is through the notion of a Gibbs
measure, which, roughly speaking, is a measure on Cq whose restriction to any finite
subset of V is uniform.

Formally, for finite W ⊆ V let ∂extW be the set of vertices outside W that are
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1224 D. GALVIN, J. KAHN, D. RANDALL, AND G. B. SORKIN

adjacent to something in W , and let μW+ be uniform measure on the set of proper
q-colorings of the subgraph of G induced by W ∪∂extW . Equip Cq with the σ-algebra
generated by the cylinder events {χ(v) = i} for v ∈ V and i ∈ [q]. We say that a
measure μ on (Cq,Fcyl) is a Gibbs measure (with uniform specification) if it satisfies
the Dobrushin–Lanford–Ruelle conditions: for every finite W ⊆ V , for μ-almost-all
χ̄ ∈ Cq it holds that

μ
(
χ�W= χ̄�W | χ�V \W= χ̄�V \W

)
= μW+ (χ�W= χ̄�W | χ�∂extW= χ̄�∂extW )

(where χ�W , for example, indicates the restriction of χ to W ). In other words, the
probability distribution of a random χ restricted to finite W , conditioned on its values
outside W , depends only on its values on the boundary of W , and furthermore the
conditional distribution is the same as for the finite graph W ∪ ∂extW . See, e.g., [19]
for a thorough treatment of this topic.

General compactness arguments show that an infinite graph G admits at least one
Gibbs measure. A simple recipe for producing one is the following. For χ ∈ Cq = Cq(G)
and W ⊆ V , let Cχ

q (W ) be the set of colorings that agree with χ off W . Fix χ ∈ Cq
and a nested sequence (Wi)

∞
i=1 of finite subsets of V satisfying ∪iWi = V . For

each i let μχ
i be the (finitely supported) uniform measure on Cχ

q (Wi). Any (weak)
subsequential limit of the μχ

i ’s (and by compactness there must be at least one such)
is a Gibbs measure. This fact was originally proved, in a much more general context,
by Dobrushin [10]; see, e.g., [5, Theorem 3.5] for a simple proof in the present context.

A central concern in statistical physics (again see [19] for a thorough discussion) is
understanding when a particular system—in our case the q-coloring model—exhibits
phase coexistence (a.k.a. phase transition) on a given infinite G, meaning that it admits
more than one Gibbs measure. Actually, as we explain below, what we are really
interested in is whether there are multiple Gibbs measures that are all substantial in
an appropriate sense.

Our particular concern here is with G = Z
d, the usual nearest-neighbor graph on

the d-dimensional integer lattice. This is a bipartite graph, with bipartition classes
E (the even vertices, the set of lattice points the sum of whose coordinates is even)
and O (the odd vertices). We will also use E and O for induced partition classes
of subgraphs of Zd. Intuition suggests that, for large d, the set of 3-colorings of Zd

should mainly consist of six classes, each identified by a predominance of one of the
colors on one of E , O, with the other two colors mainly assigned to the other partition
class; thus (again for large enough d) the set of Gibbs measures should include six
distinct measures corresponding to these classes. A well-known conjecture that this
is the case goes back at least to Kotecký circa 1985 [26] (see, e.g., [25] for context),
although the explicit conjecture seems not to have appeared in print until the very
recent [27], where a similar result to that of the present paper is obtained on a class
of quasi-transitive planar quadrangulations.

Our first main result verifies Kotecký’s conjecture. To state the result precisely,
we set up some notation. Let χ(0,O) ∈ C3 be any 3-coloring of Zd satisfying χ|O ≡ 0.
For each n ∈ N, let Wn consist of the box {−n, . . . , n}d together with all the odd
vertices of the box {−(n+ 1), . . . , n+ 1}d. Let v ∈ E and w ∈ O be fixed vertices of

Z
d. Let μ(0,O) be any subsequential limit of the μ

χ(0,O)
n ’s.

Theorem 1.1. With notation as above,

μ(0,O)(σ(v) = m)

{ ≤ e−Ω(d) if m = 0,

≥ 1/2− e−Ω(d) if m ∈ {1, 2},
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and

μ(0,O)(σ(w) = m)

{ ≥ 1/2− e−Ω(d) if m = 0,
≤ 1/4 + e−Ω(d) if m ∈ {1, 2}.

This immediately implies that μ(0,O) together with μ(1,O), μ(2,O), μ(0,E), μ(1,E),
and μ(2,E) (all defined in the obvious way) form a collection of six distinct Gibbs
measures for all sufficiently large d.

It is possible for a Gibbs measure to be trivial. For example, if χ ∈ C3(Z2) is the
mod 3-coloring (satisfying χ((x, y)) = x+ y (mod 3)) and Wi is the �∞ ball of radius
i, then it is straightforward to check that the only coloring that agrees with χ off Wi is
χ itself, and so the μχ

i ’s in this case have as their unique limit the Gibbs measure with
support {χ}. (See, e.g., [6] for other examples of such “frozen” Gibbs measures for
the q-coloring model on the infinite regular tree.) These trivialities are avoided if we
focus on Gibbs measures of maximal entropy (essentially measures with substantial
support; see section 5 for a precise definition). Kotecký’s conjecture as originally told
to us [26] was that the 3-coloring model in high dimension admits multiple Gibbs
measures of maximal entropy.

Theorem 1.2. The Gibbs measure μ(0,O) constructed above is a measure of
maximal entropy.

The q-coloring model is the zero-temperature limit of the q-state antiferromag-
netic Potts model. One significance of Gibbs measures of maximal entropy for the
q-coloring model, established by Aizenman and Lieb [2], is that these are the only
measures that can arise as the limit of Gibbs measures for the Potts model as the
temperature goes to zero.

At present our methods do not extend beyond q = 3, but we strongly believe that
the phenomenon of phase coexistence for the q-coloring model on Z

d occurs for all
q ≥ 3. A resolution of the following conjecture would be of great interest in both the
statistical physics and discrete probability communities.

Conjecture 1.3. For all q > 3 and all sufficiently large d = d(q), there is more
than one Gibbs measure of maximal entropy for the q-coloring model on Z

d.

The natural expectation is that for odd q there are at least 2
(

q
�q/2�

)
such measures

and for even q at least
(

q
q/2

)
such, corresponding to choices of a partition [q] = A ∪B

with |A| = 
q/2� and a partition class of Zd on which colors from A are preferred.
(Note that the issue here is only the analogue of Theorem 1.1; Theorem 1.2 extends
without difficulty.) The analogous statement for proper q-colorings of the Hamming
cube {0, 1}d was proved in [12].

In this paper we also consider the problem of using Markov chains to sample uni-
formly at random from the set Cq(G), for finite G. Sampling and counting colorings of
a graph are fundamental problems in computer science and discrete mathematics. One
approach is to design a Markov chain whose stationary distribution is uniform over
the set of colorings of G. Then, starting from an arbitrary coloring and simulating a
random walk according to this chain for a sufficient number of steps, we get a sample
from a distribution which is close to uniform. The number of steps required for the dis-
tribution to get close to uniform is referred to as the mixing time (see, e.g., [36]). The
chain is called rapidly mixing if the mixing time is polynomial in |V | (so it converges
quickly to stationarity); it is torpidly mixing if its mixing time is super-polynomial in
|V | (so it converges slowly). There has been a long history of studying mixing times
of various chains in the context of colorings (see, e.g., [1, 13, 20, 22, 23, 29]).
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1226 D. GALVIN, J. KAHN, D. RANDALL, AND G. B. SORKIN

A particular focus of this study has been on Glauber dynamics. For q-colorings
this is any single-site update Markov chain that connects two colorings only if they
differ on at most a single vertex. The Metropolis chain Mq on state space Cq has
transition probabilities Pq(χ1, χ2), χ1, χ2 ∈ Cq, given by

Pq(χ1, χ2) =

⎧⎨
⎩

0 if |{v ∈ V : χ1(v) �= χ2(v)}| > 1;
1

q|V | if |{v ∈ V : χ1(v) �= χ2(v)}| = 1;

1−∑χ1 �=χ′
2∈Cq

Pq(χ1, χ
′
2) if χ1 = χ2.

We may think of Mq dynamically as follows. From a q-coloring χ, choose a vertex v
uniformly from V and a color j uniformly from [q]. Then recolor v with color j if the
result is a (proper) q-coloring; otherwise stay at χ.

When Mq is ergodic (i.e., when the state space of q-colorings is connected), its
stationary distribution πq is uniform over q-colorings. A series of recent papers has
shown that Mq is rapidly mixing provided the number of colors is sufficiently large
compared to the maximum degree (see [13] and the references therein). Substantially
less is known when the number of colors is small. In fact, for q small it is NP-complete
to decide whether a graph admits even one q-coloring (see, e.g., [18]).

In this paper we consider the mixing rate of Mq on rectangular regions of Zd. It is
known [29] that for q ≥ 3, Glauber dynamics is ergodic on any such lattice region. In
Z
2 much is known about the mixing rate of Mq. Randall and Tetali [34], building on

work of Luby, Randall, and Sinclair [29], showed that Glauber dynamics for sampling
3-colorings is rapidly mixing on any finite, simply connected subregion of Z2 when
the colors on the boundary of the region are fixed. Goldberg, Martin, and Paterson
[20] subsequently showed that the chain remains fast on rectangular regions without
this boundary restriction. Substantially more is known when there are many colors:
Jerrum [23] showed that Glauber dynamics is rapidly mixing on any graph satisfying
q ≥ 2Δ, where q is the number of colors and Δ is the maximum degree, thus showing
Glauber dynamics is fast on Z

2 when q ≥ 8. It has since been shown that it is fast
for q ≥ 6 [1, 7]. Surprisingly, the efficiency remains unresolved for q = 4 or 5.

In higher dimensions much less is known when q is small. The belief among physi-
cists working in the field is that Glauber dynamics on 3-colorings is torpidly mixing
when the dimension d of the cubic lattice is large enough (see, e.g., the discussions
in [38, 39]), but there are no rigorous results. Here, we obtain the first such rigorous
result by proving torpid mixing of the chain on cubic lattices with periodic boundary
conditions.

Formally, we consider 3-colorings of the even discrete torus Zd
n. This is the graph

on vertex set [n]d (with n even) with edge set consisting of those pairs of vertices that
differ on exactly one coordinate and differ by 1 (mod n) on that coordinate. For a
Markov chain M on C3 = C3(Zd

n) we denote by τM the mixing time of the chain (see
section 3 for a precise definition). We prove the following.

Theorem 1.4. There is a constant d0 > 0 for which the following holds. For
d ≥ d0 and n ≥ 4 even, the Glauber dynamics chain M3 on C3 satisfies

τM3 ≥ exp

{
nd−1

d4 log2 n

}
.

When n = 2, Zd
n becomes the Hamming cube {0, 1}d. Slow mixing of Glauber

dynamics for sampling 3-colorings was proved in this case in [14]. As with the case of
phase coexistence, we strongly believe that torpid mixing holds for all q > 3 as well,
as long as the dimension is sufficiently high.
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Conjecture 1.5. For all q > 3, all even n ≥ 2, and all sufficiently large
d = d(q), the mixing time of the Glauber dynamics chain Mq on Cq is (essentially)
exponential in nd−1.

Our techniques actually apply to a more general class of chains. A Markov chain
M on state space C3 is said to be ρ-local if, in each step of the chain, at most ρ|V |
vertices have their colors changed; that is, if

PM(χ1, χ2) �= 0 ⇒ |{v ∈ V : χ1(v) �= χ2(v)}| ≤ ρ|V |.

These types of chains were introduced in [11], where the terminology ρ|V |-cautious
was employed. We prove the following, which easily implies Theorem 1.4.

Theorem 1.6. Fix ρ > 0 satisfying H(ρ) + ρ < 1. There is a constant d0 =
d0(ρ) > 0 for which the following holds. For d ≥ d0 and n ≥ 4 even, if M is an
ergodic ρ-local Markov chain on C3 with uniform stationary distribution, then

τM ≥ exp

{
nd−1

d4 log2 n

}
.

Here H(x) = −x log x − (1 − x) log(1 − x) is the usual binary entropy function.
Note that all ρ ≤ 0.22 satisfy H(ρ) + ρ < 1.

We show phase transition using a Peierls argument, to be discussed in detail in
section 2.3. We show torpid mixing via a conductance argument by identifying a cut in
the state space requiring exponential time to cross. For both results, our work builds
heavily on technical machinery introduced by Galvin and Kahn [16] showing that the
hard-core (independent set) model on Z

d exhibits phase transition for some values
of the density parameter λ that go to zero as the dimension grows. Specifically, for
λ > 0, choose I from I(Λn) (the set of independent sets of the box Λn = {−n, . . . , n})
with Pr(I = I) ∝ λ|I|. Galvin and Kahn showed that for λ > Cd−1/4 log3/4 d (for
some constant C) and fixed v ∈ E ,

lim
n→∞P(v ∈ I | I ⊇ ∂intΛn ∩ E) ≥ (1 + o(1))λ

1 + λ

whereas

lim
n→∞P (v ∈ I | I ⊇ ∂intΛn ∩ O) ≤ (1 + λ)−2d(1−o(1)),

where ∂intΛn is the set of vertices in Λn that are adjacent (in Z
d) to something outside

Λn. In other words, the influence of the boundary on the center of a large box persists
as the boundary recedes.

Neither the results of [16] (showing phase coexistence for the hard-core model on
Z
d) nor Theorem 1.1 (concerning 3-colorings of Zd) directly imply anything about

the behavior of Markov chains on finite lattice regions. However, they do suggest
that in the finite setting, typical configurations fall into the distinct classes described
in stationarity and that local Markov chains will be unlikely to move between these
classes; the remaining configurations are expected to have negligible weight for large
lattice regions, even when they are finite.

Galvin [15] extended the results of [16], showing that in sufficiently high dimen-
sion, Glauber dynamics on independent sets mixes torpidly in rectangular regions of
Z
d with periodic boundary conditions. Similar results were known previously about

independent sets; however, one significant new contribution of [15] was showing that
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as d increases, the critical λ above which Glauber dynamics mixes torpidly tends to 0.
In particular, there is some dimension d0 such that for all d ≥ d0, Glauber dynamics
will be torpid on Z

d when λ = 1. This turns out to be the crucial new ingredient
allowing us to rigorously verify phase transition and torpid mixing for 3-colorings in
high dimensions, as there turns out to be a close connection between the independent
set model at λ = 1 and the 3-coloring model. Unlike many statistical physics models,
the 3-coloring model does not come equipped with a parameter such as λ that can
be tweaked to establish desired bounds; this makes the proofs here significantly more
delicate than the usual phase-transition and torpid-mixing arguments.

The rest of the paper is laid out as follows. In section 2 we give the proof
of Theorem 1.1 (phase transition), modulo one of our two main technical lemmas,
Lemma 2.2. This section also provides an overview of our proof strategy (section
2.3). In section 3, we give the proof of Theorem 1.6 (torpid mixing), modulo the
second main technical lemma, Lemma 3.1. Section 4 provides the proofs of Lemmas
2.2 and 3.1, while in section 5 we prove Theorem 1.2 (measures of maximal entropy).

The original aim of this work was to prove Theorem 1.1 (phase coexistence).
We achieved this at a 2002 Newton Institute programme,1 and the second author
discussed the result in talks and in communications with R. Kotecký and others. We
then noticed that with some additional work we could obtain a proof of Theorem 1.6
(torpid mixing). This result was presented by the first and third authors in [17], which
also includes the first mention of Theorem 1.1 in print. During preparation of the
present manuscript we learned from Ron Peled of his recent [31], whose main result
contains Theorem 1.1 (of which he heard from Kotecký only after proving his result
[32]). Though similar in spirit, the approach of [31], which exploits a correspondence
between colorings and height functions, is different from the present argument, which
stays within the world of colorings.

2. Proof of Theorem 1.1. In this section we show that the 3-coloring model
on Z

d admits multiple Gibbs measures for all sufficiently large d (Theorem 1.1).

2.1. Some notation. Let Σ = (V,E) be a bipartite graph with bipartition
classes E and O. For X ⊆ V , write ∇(X) for the set of edges in E that have one end
in X and one end outside X ; X for V \ X ; ∂intX for the set of vertices in X that
are adjacent to something outside X ; ∂extX for the set of vertices outside X that are
adjacent to something in X ; X+ for X ∪∂extX ; and XE for X ∩E and XO for X ∩O.
Further, for x ∈ V set ∂x = ∂ext{x}. We abuse notation slightly, identifying sets of
vertices of V and the subgraphs they induce.

2.2. Finitizing Theorem 1.1. Theorem 1.1 may be finitized as follows. Set
Λ = Λn = {−n, . . . , n}d. (Throughout, n will be fixed, so we drop the dependence in
the notation.) Set

CO
3 = {χ ∈ C3(Λ) : χ|∂intΛ∩O ≡ 0}

and for v0 ∈ (Λ \ ∂intΛ) ∩ E set

CO
3 (v0) = {χ ∈ CO

3 : χ(v0) = 0}.
In other words, CO

3 is the subset of (proper) 3-colorings of Λ in which all the odd
vertices on the boundary get color 0, while CO

3 (v0) is the set of those colorings in
which even v0 also gets color 0. We prove the following.

1Isaac Newton Institute for Mathematical Sciences Programme on Computation, Combinatorics
and Probability, July 29 to December 20, 2002, http://www.newton.ac.uk/programmes/CMP/.
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Theorem 2.1. For all n,

(2.1)
|CO

3 (v0)|
|CO

3 | ≤ e−Ω(d)

as d → ∞ (with the implicit constant independent of n).
With some extra work we could replace e−Ω(d) here with 2−2d(1−o(1)). This would

require dealing more carefully with small c0 in Lemma 2.2, and to simplify the pre-
sentation we chose not to do this. The interested reader may consult [16] (and in
particular the end of section 2.13 of that reference) for the approach.

Theorem 2.1 implies Theorem 1.1. Indeed, let μ(0,O) be any subsequential limit

of the μ
χ(0,O)
n ’s, where the notation is as in the discussion before the statement of

Theorem 1.1. From Theorem 2.1 we immediately have μ(0,O)(χ(v) = 0) ≤ e−Ω(d)

and so, by symmetry, μ(0,O)(χ(v) = 1) = μ(0,O)(χ(v) = 2) ≥ 1/2 − e−Ω(d). A
second application of Theorem 2.1 (together with a union bound) shows that, for
Q = {χ(v′) �= 0 for all v′ ∼ w}, μ(0,O)(Q) = 1− e−Ω(d), whence

μ(0,O)(χ(w) = 0) = μ(0,O)(Q)μ(0,O)(χ(w) = 0|Q) ≥ (1 − e−Ω(d))/2,

and then symmetry gives the second inequality in Theorem 1.1.

2.3. Preview. For a generic χ ∈ CO
3 (v0) there is a region of Λ around v0 con-

sisting predominantly of even vertices colored 0 together with their neighbors, and a
region around ∂intΛ consisting of odd vertices colored 0 together with their neighbors.
These regions are separated by a two-layer 0-free moat or cutset. In section 2.4 we
describe a procedure that associates a particular such cutset with each χ ∈ CO

3 (v0).
Our main technical result, Lemma 2.2, asserts that for each possible cutset size c, the
probability that the cutset associated with a uniformly chosen coloring has size c is
exponentially small in c. This lemma is presented in section 2.5, where it is also used
to derive Theorem 2.1.

We use a variant of the Peierls argument to prove Lemma 2.2. This argument
was originally presented by Peierls in [30] (with a minor error eventually corrected
by Griffiths in [21]); the form that we use traces back to Dobrushin [9]. By carefully
modifying χ ∈ CO

3 (v0) inside its cutset, we can exploit the fact that the cutset is 0-free
to map χ to a set ϕ(χ) of many different χ′ ∈ CO

3 . If the ϕ(χ)’s were disjoint for distinct
χ’s, we would be done, having shown that there are many more 3-colorings in CO

3 than
in CO

3 (v0). To control the possible overlap, we define a flow ν : CO
3 (v0)×CO

3 → [0,∞)
supported on pairs (χ, χ′) with χ′ ∈ ϕ(χ) in such a way that the flow out of each
χ ∈ CO

3 (v0) is 1. Any uniform bound we can obtain on the flow into elements of CO
3

is then easily seen to be a bound on |CO
3 (v0)|/|CO

3 |. We define the flow via a notion
of approximation modified from [16]. To each cutset γ we associate a set A(γ) that
approximates the interior of γ in a precise sense, in such a way that as we run over all
possible γ, the total number of approximate sets used is small. Then for each χ′ ∈ CO

3

and each approximation A, we consider the set of those χ ∈ CO
3 (v0) with χ′ ∈ ϕ(χ)

and with A the approximation to γ. We define the flow so that if this set is large,
then ν(χ, χ′) is small for each χ in the set. In this way we control the flow into χ′

corresponding to each approximation A; since the total number of approximations is
small, we control the total flow into χ′. In the language of statistical physics, this
approximation scheme is a course-graining argument. The details appear in section 4.

The main result of [16] is proved along lines similar to those described above. One
of the difficulties we encounter in moving from these arguments on independent sets
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to arguments on colorings is that of finding an analogous way of modifying a coloring
inside a cutset in order to exploit the fact that it is 0-free. The beginning of section 4
(in particular Claims 4.1 and 4.2) describes an appropriate modification that has all
the properties we desire.

2.4. Cutsets. We now describe a way of associating with each χ ∈ CO
3 (v0) a

minimal edge cutset, following an approach of [4] and [15]. (An alternate construction
is given in [16]. The present construction is perhaps more transparent.)

Given χ ∈ CO
3 (v0) set I = I(χ) = χ−1(0). Note that I is an independent set (a

set of vertices no two of which are adjacent). Let R be the component of (IE)+ that
includes v0. Let C be the component of R that includes ∂intΛ. Set γ = γ(χ) = ∇(C)
and W = W (χ) = C. Evidently C is connected, and W consists of R, which is
connected, together with a number of other components of R, each of which are
joined to R; so W is also connected. It follows that γ is a minimal edge cutset in Λ,
separating v0 from ∂intΛ. Note that γ depends only on the independent set I. Note
also that the vertex set of γ is ∂intW ∪ ∂extW . We write |γ| for the size (number of
edges) of γ.

The next lemma summarizes the properties of γ that we will draw upon in what
follows; having established these properties we will not subsequently refer to the details
of the construction. For the most part these properties will not be used directly but
will be referred to to validate the applications of various results from [16].

Lemma 2.1. For each χ ∈ CO
3 (v0) we have the following:

(2.2) v0 ∈ W and ∂intΛ ∩W = ∅;

(2.3) ∂intW ⊆ O and ∂extW ⊆ E ;

(2.4) ∂intW ∩ I = ∅ and ∂extW ∩ I = ∅;

(2.5) ∀v ∈ ∂intW, ∂v ∩W ∩ I �= ∅;

(2.6) WO = ∂extW
E and W E =

{
y ∈ E : ∂y ⊆ WO} ;

and

(2.7) for large enough d, |γ| ≥ max{|W |1−1/d, d2}.
Proof. That v0 ∈ W and ∂intΛ ∩W = ∅ is clear.
Properties (2.3), (2.4), (2.5), and (2.6) are also easily verified; see [15, Lemma

3.3] (in particular, items (6) through (9) of that lemma) for a detailed proof; note
that the cutset γ that we have constructed here is a member of the family of cutsets
considered in that lemma.

The isoperimetric inequality of Bollobás and Leader [3, Theorem 3] says that
if W ⊆ Λ satisfies |W | ≤ nd/2, then |∇(W )| ≥ |W |1−1/d. Since W ∩ ∂intΛ = ∅
we may apply this (perhaps with W viewed as a subset of a larger Λ) to conclude
that |γ| ≥ |W |1−1/d. For the second inequality in (2.7), note that by (2.6) we have
|γ| = 2d(|WO|−|W E |). In [16, Lemma 2.13] it is shown that if A,G ⊆ Λ satisfy A ⊆ E ,
G ⊆ O, G = ∂extA, A = {v ∈ E : ∂v ⊆ G}, (A ∪ G) ∩ ∂Λ = ∅, and |G| < dO(1), thenD
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|G|−|A| ≥ |G|(1−O(1/d)).2 By (2.2) and (2.6), WO and W E satisfy these conditions,
and so noting that |WO| ≥ 2d, we get |γ| ≥ 2d2(1 − o(1)) ≥ d2 for |W | ≤ dO(1); the
first inequality in (2.7) implies the second for all larger |W |.

The cutsets also satisfy a connectivity property (specifically, that ∂intW ∪ ∂extW
induces a connected graph). We will not use this property explicitly in what follows;
it is an important ingredient in the proof of Lemma 4.1 (a combination of results from
[15] and [16]), where it serves to bound the number of cutsets of a given size that use
a given edge.

2.5. The main lemma for phase transition. For c0 ∈ N set

W(c0, v0) =
{
γ : |γ| = c0, γ = γ(χ) for some χ ∈ CO

3 (v0)
}

and set W = ∪c0W(c0, v0). Set CO
3 (c0, v0) =

{
χ ∈ CO

3 (v0) : |γ(χ)| = c0
}
. The main

technical lemma we need to prove phase transition is the following.
Lemma 2.2. There are constants C, d0 > 0 such that the following holds. For all

d ≥ d0, n, and c0,

|CO
3 (c0, v0)|
|CO

3 | ≤ exp

{
−Cc0

d

}
.

We give the proof in section 4.
From Lemma 2.2, we easily obtain Theorem 2.1. Indeed, for all n and d ≥ d0 we

have (using (2.7) for the restriction on c0)

|CO
3 (v0)| ≤

∑
c0≥d2

|CO
3 (c0, v0)|

≤
∑

c0≥d2

exp

{
−Cc0

d

}
|CO

3 |

≤ e−Ω(d)|CO
3 |.

3. Proof of Theorem 1.6. The aim of this section is to show that in the finite
setting of the discrete torus, Glauber dynamics for sampling from 3-colorings mixes
torpidly (Theorem 1.6). We begin by formalizing some definitions. Given an ergodic
Markov chain M on state space Ω with stationary distribution π, let P t(x, ·) be the
distribution of the chain at time t given that it started in state x. The mixing time
τM of M is defined to be

τM = min

⎧⎨
⎩t0 : max

x∈Ω

1

2

∑
y∈Ω

|P t(x, y)− π(y)| ≤ 1

e
∀t > t0

⎫⎬
⎭ .

We prove Theorem 1.6 via a well-known conductance argument [24, 28, 37], using
a form of the argument derived in [11]. Let A ⊆ Ω and M ⊆ Ω \A satisfy π(A) ≤ 1/2
and ω1 ∈ A,ω2 ∈ Ω \ (A ∪M) ⇒ P (ω1, ω2) = 0. Then from [11] we have

(3.1) τM ≥ π(A)

8π(M)
.

2Note that in [16, Lemma 2.13], the roles of E and O are reversed from their roles here. Also,
the setting of that lemma is the discrete torus obtained from Λ by identifying opposite faces, but our
condition (A ∪G) ∩ ∂Λ = ∅ ensures that the proof from [16] goes through without any change.
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Let us return to the setup of Theorem 1.6. For even n, Z
d
n is bipartite with

partition classes E (consisting of those vertices the sum of whose coordinates is even)
and O. We will show that most 3-colorings have an imbalance whereby the vertices
colored 0 lie either predominantly in E or predominantly in O, and those that are
roughly balanced are highly unlikely in stationarity. Accordingly let us define the set
of balanced 3-colorings by

Cb,ρ
3 = {χ ∈ C3 :

∣∣|χ−1(0) ∩ E|−|χ−1(0) ∩ O|∣∣ ≤ ρnd/2}
and let

CE,ρ
3 = {χ ∈ C3 : |χ−1(0) ∩ E| − |χ−1(0) ∩ O| > ρnd/2}.

By symmetry, π3(CE,ρ
3 ) ≤ 1/2 (recall that π3 is uniform distribution). Notice that

since M updates at most ρnd vertices in each step, we have that if χ1 ∈ CE,ρ
3 and

χ2 ∈ C3 \ (CE,ρ
3 ∪ Cb,ρ

3 ), then PM(χ1, χ2) = 0. Therefore, by (3.1),

τM ≥ π3(CE,ρ
3 )

8π3(Cb,ρ
3 )

≥ 1− π3(CE,ρ
3 )

16π3(Cb,ρ
3 )

,

and so Theorem 1.6 follows from the following critical theorem.
Theorem 3.1. Fix ρ > 0 satisfying H(ρ) + ρ < 1. There is a constant d0 =

d0(ρ) > 0 for which the following holds. For d ≥ d0 and n ≥ 4 even,

π3(Cb,ρ
3 ) ≤ exp

{ −2nd−1

d4 log2 n

}
.

3.1. Cutsets revisited. One difficulty we have to overcome in moving from a
Gibbs measure argument to a torpid mixing argument is that of going from bounding
the probability of a configuration having a single cutset to bounding the probability
of it having an ensemble of cutsets. Another difficulty is that the cutsets we consider
in these ensembles can be topologically more complex than the connected cutsets that
are considered in the phase transition result. In part, both of these difficulties are
dealt with by the machinery developed in [15].

We begin by describing a way of associating with each χ ∈ Cb,ρ
3 a collection of

minimal edge cutsets, extending the process described in section 2.4.
For χ ∈ Cb,ρ

3 set I = I(χ) = χ−1(0). Given a component R of (IE)+ or (IO)+

and a component C of R, set γ = γ(R,C, χ) = ∇(C) and W = W (R,C, χ) = C. As
in section 2.4, γ is a minimal edge cutset in Z

d
n. Define intγ, the interior of γ, to be

the smaller of C,W (if |W | = |C|, take intγ = W ).
The collection of cutsets associated to χ depend only on the independent set I

and coincide exactly with the cutsets associated to an independent set in [15]. We
may therefore apply the machinery developed in [15] for independent set cutsets in
the present setting. In particular, from [15, Lemmas 3.1 and 3.2] we know that for
each χ ∈ C3 there is a subset Γ(χ) of the collection of cutsets associated to χ that
satisfies either

∀ γ ∈ Γ(χ), intγ = W , ∀ γ, γ′ ∈ Γ(χ) with γ �= γ′, intγ ∩ intγ′ = ∅,(3.2)

and ∀ γ ∈ Γ(χ), R is a component of (IE )+ and IE ⊆ ∪γ∈Γ(χ)intγ,

or the analogue of (3.2) with E replaced by O. Set Ceven
3 = {χ ∈ C3 : χ satisfies (3.2)}.

From here on whenever χ ∈ Ceven
3 is given we assume that I is its associated inde-

pendent set and that Γ(χ) is a particular collection of cutsets associated with χ and
satisfying (3.2).
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The cutsets that we have constructed here have many properties in common with
those constructed in section 2.4; in particular, each γ ∈ Γ(χ) satisfies (2.3), (2.4),
(2.5), and (2.6) (see again [15, Lemma 3.3] items (6) through (9)), as well as (2.7).
The proof of (2.7) appeals to [3, Theorem 8] instead of [3, Theorem 3] and uses the
fact that for large enough n and for |G| = dO(1) we may apply [16, Lemma 2.13]
without modification.

The cutsets in Γ(χ) also satisfy a connectivity property, although because the
torus is topologically more complex than Z

d the connectivity property is more in-
volved. In [15, Lemma 3.4] it is shown that each γ ∈ Γ(χ) either is connected in
the dual of the torus (the graph on the edges of the torus in which two edges are
adjacent if there is a 4-cycle including both of them) or has at least nd−1 edges in
each component. As in the case of phase transition, this property is important in the
proof of Lemma 4.1, but since we take this lemma directly from [15] we do not give
further details here.

3.2. The main lemma for torpid mixing. For c ∈ N and v ∈ V set

W(c, v) =
{
γ : |γ| = c, γ ∈ Γ(χ) for some χ ∈ Ceven

3 , and v ∈ (intγ)E
}

and set W = ∪c,vW(c, v). A profile of a collection {γ0, . . . , γ�} ⊆ W is a vector
p = (c0, v0, . . . , c�, v�) with γi ∈ W(ci, vi) for all i. Given a profile p set

C3(p) =
{
χ ∈ Ceven

3 : Γ(χ) contains a subset with profile p
}
.

Our main lemma for the torpid mixing argument (cf. [15, Lemma 3.5]) is the following.
Lemma 3.1. There are constants C, d0 > 0 such that the following holds. For all

even n ≥ 4 and d ≥ d0, and all profiles p as above,

π3(C3(p)) ≤ exp

{
−C

∑�
i=0 ci
d

}
.

3.3. Proof of Theorem 3.1. We will prove Lemma 3.1 in section 4. Here, we
derive Theorem 3.1 from it. Throughout we assume that the conditions of Theorem
3.1 and Lemma 3.1 are satisfied (with d0 sufficiently large to support our assertions).

We begin with an easy count that dispenses with colorings where |I(χ)| is small.
Set

Csmall
3 =

{
χ ∈ Cb,ρ

3 : min{|IE |, |IO|} ≤ nd

4d1/2

}
.

Lemma 3.2. π3(Csmall
3 ) ≤ exp

{−Ω(nd)
}
.

Proof. For any A ⊆ E and B ⊆ O, let comp(A,B) be the number of components
in V \ (A ∪B ∪ ∂�A ∪ ∂�B), where for T ⊆ E (or O),

∂�T = {x ∈ ∂extT : ∂x ⊆ T } (= {x ∈ V : ∂x ⊆ T }).
We begin by noting that by E-O symmetry

(3.3) |Csmall
3 | ≤ 2

∑
exp2 {|∂�A|+ |∂�B|+ comp(A,B)} ,

where the sum is over all pairs A ⊆ E , B ⊆ O with no edges between A and B and
satisfying |A| ≤ nd/4d1/2 and |B| ≤ (ρ+1/2d1/2)nd/2. Indeed, once we have specified
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that the set of vertices colored 0 is A ∪B, we have a free choice between 1 and 2 for
the color at x ∈ ∂�A ∪ ∂�B, and we also have a free choice between the two possible
colorings of each component of V \ (A ∪B ∪ ∂�A ∪ ∂�B).

A key observation is the following. For A and B contributing to the sum in (3.3),

(3.4) comp(A,B) ≤ nd

2d
.

To see this, let C be a component of V \ (A ∪ B). If C = {v} consists of a single
vertex, then (depending on the parity of v) we have either ∂v ⊆ A or ∂v ⊆ B and so
v ∈ ∂�A ∪ ∂�B. Otherwise, let vw be an edge of C with v ∈ E (and so w ∈ O). If v
has k edges to B and u has � to A, then (since there are no edges from A to B) we
have (k−1)+(�−1) ≤ 2d−2 or k+ � ≤ 2d. (Here we are using that in Z

d
n, if uv ∈ E,

then there is a matching between all but one of the neighbors of u and v.) Since v
has 2d− 1− k edges to O \ (B ∪ {w}) and w has 2d− 1− � edges to E \ (A ∪ {v}) we
have that |C| = 4d− (k + �) ≥ 2d. From this (3.4) follows.

Inserting (3.4) into (3.3) and bounding |∂�A| and |∂�B| by the maximum values
of |A| and |B| (valid since T ⊆ E (or O) satisfies |T | ≤ |∂extT |, so |∂�T | ≤ |T |) and
with the remaining inequalities justified below, we have

|Csmall
3 | ≤ exp2

{
nd

2

(
ρ+

1

d1/2
+

1

d

)}
·

∑
i≤nd/4d1/2

(
nd/2

i

)
·

∑
j≤(ρ+1/2d1/2)nd/2

(
nd/2

j

)

≤ exp2

{
nd

2

(
ρ+

1

d1/2
+

1

d
+H

(
1

2d1/2

)
+H

(
ρ+

1

2d1/2

))}
(3.5)

≤ exp2

{
nd

2
(1− Ω(1))

}
(3.6)

for sufficiently large d = d(ρ). In (3.5) we use the bound
∑[βM ]

i=0

(
M
i

) ≤ 2H(β)M for

β ≤ 1
2 ; in (3.6) we use H(ρ) + ρ < 1. Using 2n

d/2 ≤ |C3|, the lemma follows.
We now consider

Clarge, even
3 := (Cb,ρ

3 \ Csmall
3 ) ∩ Ceven

3 .

By Lemma 3.2 and E-O symmetry, Theorem 3.1 reduces to bounding (say)

(3.7) π3(Clarge, even
3 ) ≤ exp

{
− 3nd−1

d4 log2 n

}
.

Let Clarge, even, nt
3 be the set of χ ∈ Clarge, even

3 such that there is a γ ∈ Γ(χ) with

|γ| ≥ nd−1 and let Clarge, even, triv
3 = Clarge, even

3 \ Clarge, even, nt
3 . We assert that

(3.8) π3(Clarge, even, nt
3 ) ≤ exp

{
−Ω

(
nd−1

d

)}

and

(3.9) π3(Clarge, even, triv
3 ) ≤ exp

{
− 4nd−1

d4 log2 n

}
;

this gives (3.7) and so completes the proof of Theorem 3.1. Both (3.8) and (3.9) are
corollaries of Lemma 3.1, and the steps are identical to those that are used to bound
the measures of Inontrivial

large,even and Itrivial
large,even in [15, section 3.3]. We now give the details.
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With the sum below running over all profiles p of the form (c, v) with v ∈ V and

c ≥ nd−1, and with the inequalities justified below, we have

π3(Clarge, even, nt
3 ) ≤

∑
p

π3(C3(p))

≤ n2d exp

{
−Ω

(
nd−1

d

)}
(3.10)

≤ exp

{
−Ω

(
nd−1

d

)}
,

giving (3.8). We use Lemma 3.1 in (3.10). The factor of n2d is for the choices of c
and v.

The verification of (3.9) involves finding an i ∈ [Ω(log d), O(d log n)] and a set
Γi(χ) ⊆ Γ(χ) of cutsets with the properties that |Γi(χ)| ≈ nd/2i, |γ| ≈ 2i for each

γ ∈ Γi(χ) and
∑

γ∈Γi(χ)
|γ| ≈ nd−1. The measure of Clarge, even, triv

3 is then at most

the product of a term that is exponentially small in nd−1 (from Lemma 3.1), a term
corresponding to the choice of a fixed vertex in each of the interiors, and a term
corresponding to the choice of the collection of cutset sizes. The second term will be
negligible because Γi(χ) is small and the third will be negligible because all γ ∈ Γi(χ)
have similar sizes.

More precisely, for χ ∈ Clarge, even, triv
3 and γ ∈ Γ(χ) we have |γ| ≥ |intγ|1−1/d (by

(2.7)) and so ∑
γ∈Γ(χ)

|γ|d/(d−1) ≥
∑

γ∈Γ(χ)

|intγ| ≥ |IE | ≥ nd/4d1/2.

The second inequality is from (3.2) and the third follows since χ �∈ Csmall
3 .

Set Γi(χ) = {γ ∈ Γ(χ) : 2i−1 ≤ |γ| < 2i}. Note that Γi(χ) is empty for 2i < d2

(again by (2.7)) and for 2i−1 > nd−1 so we may assume that

(3.11) 2 log d ≤ i ≤ (d− 1) logn+ 1.

Since
∑∞

m=1 1/m
2 = π2/6, there is an i such that

(3.12)
∑

γ∈Γi(χ)

|γ| d
d−1 ≥ Ω

(
nd

d1/2i2

)
.

Choose the smallest such i and set � = |Γi(χ)|. We have
∑

γ∈Γi(χ)
|γ| ≥ Ω(�2i) (this

follows from the fact that each γ ∈ Γi(χ) satisfies |γ| ≥ 2i−1) and

(3.13) O

(
dnd

2i

)
≥ � ≥ Ω

(
nd

2
id

d−1 i2d1/2

)
.

The first inequality follows from that fact that
∑

γ |γ| ≤ dnd = |E|; the second follows

from (3.12) and the fact that each γ has |γ|d/(d−1) ≤ 2di/(d−1). We therefore have
χ ∈ C3(p) for some p = (c1, v1, . . . , c�, v�) with � satisfying (3.13), with

(3.14)

�∑
j=1

cj ≥ O(�2i),
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with

(3.15) cj ≤ 2i

for each j and with i satisfying (3.11). With the sum below running over all p satisfying
(3.11), (3.13), (3.14), and (3.15) we have

π3(Clarge, even, triv
3 ) ≤

∑
p

π3(C3(p)).(3.16)

The right-hand side of (3.16) is, by Lemma 3.1, at most

d logn max

{
2�i
(
nd

�

)
exp

{
−Ω

(
�2i

d

)}
: i satisfying (3.11)

}
.

The factor of d logn is an upper bound on the number of choices for i; the factor of

2�i is for the choice of the cj ’s; and the factor
(
nd

�

)
is for the choice of the � (distinct)

vj ’s. By (3.11) and the second inequality in (3.13) we have (for d sufficiently large)

2�i
(
nd

�

)
≤ 2�i

(
nd

�

)�

≤ 2�i
(
O
(
2

id
d−1 i2d1/2

))�
≤ 24�i = exp

{
o

(
2i

d

)}
,

so that in fact the right-hand side of (3.16) is at most

d log n max
i

exp

{
−Ω

(
2i�

d

)}
.

Taking � as small as possible we see that this is at most

d logn max
i

exp

{
−Ω

(
2ind

d2
id

d−1 i2d1/2

)}

and taking i as large as possible we see that it is at most exp{−4nd−1/d4 log2 n}.
Putting these observations together we obtain (3.9).

4. Proof of Lemmas 2.2 and 3.1. In this section we complete the proofs of
Theorems 1.1 and 1.4 by establishing the two technical statements concerning cutsets
from sections 2 and 3. Much of what follows is modified from [15] and [16]. Because
the cutsets described in sections 2.4 and 3.1 are quite similar, the two proofs proceed
almost identically, and we give them in parallel. Before beginning this process we
reduce Lemma 3.1 to (4.1) below. Let p = (c0, v0, . . . , c�, v�) be given. Set p′ =
(c1, v1, . . . , c�, v�). We will show

(4.1)
|C3(p)|
|C3(p′)| ≤ exp

{
−Ω

(c0
d

)}
,

from which Lemma 3.1 follows by a telescoping product. To obtain (4.1) we define a
one-to-many map ϕ from C3(p) to C3(p′). We then define a flow ν : C3(p)× C3(p′) →
[0,∞) supported on pairs (χ, χ′) with χ′ ∈ ϕ(χ) satisfying

(4.2) ∀χ ∈ C3(p),
∑

χ′∈ϕ(χ)

ν(χ, χ′) = 1
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and

(4.3) ∀χ′ ∈ C3(p′),
∑

χ∈ϕ−1(χ′)

ν(χ, χ′) ≤ exp
{
−Ω

(c0
d

)}
.

This easily gives (4.1). To obtain Lemma 2.2, we prove a variant of (4.1) with C3(p′)
replaced by CO

3 and C3(p) replaced by CO
3 (c0, v0).

In what follows, we write D for both C3(p′) and CO
3 , and C for both C3(p) and

CO
3 (c0, v0), and we use V both for the vertex set of Zd

n and that of Λ.
For each s ∈ {±1, . . . ,±d}, define σs, the shift in direction s, by σs(x) = x+ es,

where es is the sth standard basis vector if s > 0 and es = −e−s if s < 0. For X ⊆ V
write σs(X) for {σs(x) : x ∈ X}. For γ ∈ W set W s = {x ∈ ∂intW : σ−s(x) �∈ W}.

Let χ ∈ C be given. For Lemma 3.1, arbitrarily pick γ ∈ Γ(χ) ∩ W(c0, v0) and
set W = intγ. For Lemma 2.2, simply take γ = γ(χ) and W = W (γ). Write f for
the map from {0, 1, 2} to {0, 1, 2} that sends 0 to 0 and transposes 1 and 2. For each
s ∈ {±1, . . . ,±d} and S ⊆ W define the function χs

S : V → {0, 1, 2} by

χs
S(v) =

⎧⎨
⎩

0 if v ∈ S,
χ(v) if v ∈ (W s \ S) ∪ (V \W ),
f(χ(σ−s(v))) if v ∈ W \W s,

and set ϕs(χ) = {χs
S : S ⊆ W s}.

Claim 4.1. ϕs(χ) ⊆ D.
Proof. We begin with the observation that the graph ∂intW ∪ ∂extW is bipartite

with bipartition (∂intW,∂extW ). This follows from (2.3). By (2.4), I ∩ (∂intW ∪
∂extW ) = ∅ and so for each component U of ∂intW ∪ ∂extW , χ is identically 1 on one
of U ∩ ∂intW , U ∩ ∂extW and identically 2 on the other.

Our main task is to show that ϕs(χ) ⊆ C3; that is, that for any S ⊆ W s and edge
uv, χs

S(u) �= χs
S(v). We consider several cases.

If u, v �∈ W , then χs
S(u) = χ(u) and χs

S(v) = χ(v). But χ(u) �= χ(v), so χs
S(u) �=

χs
S(v) in this case.

If u ∈ W and v �∈ W , then χs
S(v) = χ(v) and χs

S(u) ∈ {0, χ(u)} (we will justify
this in a moment). Since v ∈ ∂extW we have χ(v) �= 0 and we cannot ever have
χ(v) = χ(u), so χs

S(u) �= χs
S(v) in this case. To see that χs

S(u) ∈ {0, χ(u)}, we
consider subcases. If u ∈ S, then χs

S(u) = 0. If u ∈ W s \ S, then χs
S(u) = χ(u).

Finally, if u ∈ W \W s, then χs
S(u) = f(χ(σ−s(u))); and f(χ(σ−s(u))) is either 0 or

χ(u) depending on whether χ(σ−s(u)) equals 0 or χ(v) (χ(σ−s(u)) cannot equal χ(u)).
If u, v ∈ W \W s, then χs

S(u) = f(χ(σ−s(u))) and χs
S(v) = f(χ(σ−s(v))). Since

f is a bijection and χ(σ−s(u)) �= χ(σ−s(v)) we have χs
S(u) �= χs

S(v) in this case.
If u ∈ W \ W s and v ∈ W s \ S, then χs

S(u) ∈ {0, χ(u)} (as in the second case
above) and χs

S(v) = χ(v). Since χ(v) �= 0, we have χs
S(u) �= χs

S(v).
Noting that it is not possible to have both u, v ∈ W s, we finally treat the case

where u ∈ W \ W s and v ∈ S. In this case χs
S(v) = χ(v) = 0. Suppose (for a

contradiction) that χs
S(u) = 0. This can happen only if χ(σ−s(u)) = 0. If σ−s(u) = v,

we have a contradiction immediately. Otherwise, we have σ−s(v) �∈ W and so (since
σ−s(u)σ−s(v) ∈ E) σ−s(u) ∈ ∂intW , also a contradiction.

This verifies ϕs(χ) ⊆ C3. We now verify that ϕs(χ) ⊆ D. In the setting of Lemma
3.1 this is true because W is disjoint from the interiors of the remaining cutsets in
Γ(χ) and the operation that creates the elements of ϕs(χ) only modifies χ inside W .
In the setting of Lemma 2.2 it follows from the fact that W ∩ ∂intΛ = ∅.

Claim 4.2. Given χ′ ∈ ϕs(χ), χ can be uniquely reconstructed from W and s.
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Proof. We may reconstruct χ via

χ(v) =

{
χ′(v) if v ∈ V \W,
f(χ′(σs(v))) if v ∈ W.

We define the one-to-many map ϕ from C to D by setting ϕ(χ) = ϕs(χ) for a
particular direction s. To define ν and s, we employ the notion of approximation also
used in [16] and based on ideas introduced by Sapozhenko in [35]. For γ ∈ W , we say
A ⊆ V is an approximation of γ if

AE ⊇ W E and AO ⊆ WO,

dAO (x) ≥ 2d−
√
d ∀ x ∈ AE ,

and

dE\AE (y) ≥ 2d−
√
d ∀ y ∈ O \AO,

where dX(x) = |∂x ∩X |. Note that by (2.6), W (γ) is an approximation of γ.
Before stating our main approximation lemma, it will be convenient to further

refine our partition of cutsets. To this end set

W(we, wo, v0) =
{
γ : γ ∈ W with |WO| = wo, |W E | = we and v0 ∈ W E} .

Note that by (2.3) we have |γ| = 2d(|WO| − |W E |) so W(we, wo, v0) ⊆ W((wo −
we)/2d, v0).

Lemma 4.1. For each we, wo, and v0 there is a family A(we, wo, v0) of subsets
of V satisfying

|A(we, wo, v0)| ≤ exp
{
O
(
(wo − we)d

− 1
2 log

3
2 d
)}

and a map π : W(we, wo, v0) → A(we, wo, v0) such that for each γ ∈ W(we, wo, v0),
π(γ) is an approximation of γ.

Proof. In the setting of Lemma 2.2, this is exactly [16, Lemma 2.18]; in the setting
of Lemma 3.1 it is [15, Lemma 4.2].

Two comments are in order regarding our use of results from [16]. First, our
notation differs a little from that of [16]. The statement of [16, Lemma 2.18] is that

there exists a family U ⊆ 2E × 2O with |U| ≤ exp{O(δgd−1/2 log3/2 d)} and a map
π : G� → U such that for each member of G�, a certain pair of conditions (denoted
(27) and (45) in [16]) holds. In our notation U is A(we, wo, v0), δg is wo − we, G� is
W(we, wo, v0), and conditions (27) and (45) correspond directly to our definition of
approximation. Also, in [16] the roles of E and O are reversed from their roles here.

Second, although the cutsets from [16] are constructed differently from ours, they
satisfy all the properties established in Lemma 2.1 (as well as the connectivity property
alluded to after the proof of Lemma 2.1). That the cutsets from [16] satisfy properties
(2.2), (2.3), (2.4), (2.5), and (2.6) is established in [16, Proposition 2.6], while (2.7) is
established in [16, Lemma 2.13] and the necessary connectivity property is obtained
in [16, section 2.4].

In both settings, the proof proceeds along the same lines. We begin by associating
with each cutset a small set of vertices (much smaller than the size of the cutset) which
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weakly approximates the cutset in the sense that the neighborhood of the associated
set separates the interior of the cutset from the exterior. This part of the proof
combines algorithmic and probabilistic elements and relies heavily on the structure of
the lattice. The total number of weak approximations that can arise as we run over all
cutsets of a given size is controlled in part by the fact that these weak approximations
are connected (in a suitable sense); this property is inherited from the connectivity of
the cutsets themselves. The second part of the proof proceeds by refining the weak
approximations into approximations in the sense defined above. This part of the proof
is purely algorithmic and uses no properties of the lattice other than that it is regular
and bipartite.

We are now in a position to define ν and s. Recall that we have fixed, for each
χ ∈ ϕ−1(χ′), a particular cutset γ. Our plan is to fix we, wo, and A ∈ A(we, wo, v0)
and to consider the contribution to the sum in (4.3) from those χ ∈ ϕ−1(χ′) with
π(γ) = A. We will try to define ν in such a way that each of these individual
contributions to (4.3) is small; to succeed in this endeavor we must first choose s with
care. To this end, given A ∈ A(we, wo, v0) set

QE = AE ∩ ∂ext(O \AO) and QO = (O \AO) ∩ ∂extA
E .

To motivate the introduction of QE and QO, note that for γ ∈ π−1(A) we have
(by (2.6) and the definition of approximation)

AE \QE ⊆ W E ,

E \AE ⊆ E \W E ,

AO ⊆ WO,

and

O \ (AO ∪QO) ⊆ O \WO.

It follows that for each γ ∈ π−1(A), QE ∪ QO contains all vertices whose location in
the partition V = W ∪W is as yet unknown.

We choose s(χ) to be the smallest s for which both of |W s| ≥ .8(wo − we) and
|σs(Q

E)∩QO| ≤ 5|W s|/√d hold. This is the direction that minimizes the uncertainty
to be resolved when we attempt to reconstruct χ from the partial information provided
by χ′ ∈ ϕ−1(χ), s, and A. (That such an s exists is established in [16, (49) and (50)]
by an easy averaging argument). Note that s depends on γ but not I.

Now for each χ ∈ C let γ ∈ Γ(χ) be a particular cutset with γ ∈ W(c0, v0). Let
ϕ(χ) be as defined before, with s as specified above. Define

C = W s ∩ AO ∩ σs(Q
E)

and

D = W s \ C,
and for each χ′ ∈ ϕ(χ) set

ν(χ, χ′) =
(
1

4

)|C∩I(χ′)|(
3

4

)|C\I(χ′)|(
1

2

)|D|
.
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Note that for χ ∈ ϕ−1(χ′), ν(χ, χ′) depends on W but not on χ itself.
Since C ∪D partitions W we easily have (4.2). To obtain (4.1) we must establish

(4.3).
Fix we, wo such that 2d(wo − we) = c0. Fix A ∈ A(we, wo, v0) and s ∈

{±1, . . . ,±d}. For χ with γ ∈ W(we, wo, v0) write χ ∼s A if it holds that π(γ) = A
and s(χ) = s. We claim that with A, s, wo, and we fixed, for χ′ ∈ D

(4.4)
∑{

ν(χ, χ′) : χ ∼s A, χ ∈ ϕ−1(χ′)
} ≤

(√
3

2

)wo−we

.

We now describe the proof of (4.4). Write C(we, wo, s, A, χ
′) for the set of all

χ ∈ C such that W ∈ W(we, wo, v0), π(γ) = A, s(χ) = s, and χ′ ∈ ϕ(χ) and set
U = QE ∩σ−s(χ

′). Say that a triple (K,L,M) is good for χ if it satisfies the following
conditions:

K ∪ L ∪M is a minimal vertex cover of QE ∪QO,

K ⊆ QO, L ⊆ U , and M ⊆ QE \ U ,

and

K = ∂ext(U \ L).

We begin by establishing that χ ∈ C(we, wo, s, A, χ
′) always has a good triple.

Lemma 4.2. For each χ ∈ C(we, wo, s, A, χ
′) the triple

(K̂, L̂, M̂) := (W ∩QO, U \W, (QE \ U) \W )

is good for χ.
Proof. This comes directly from [16]. Our construction for (K̂, L̂, M̂) is identical

to the construction of the triple (K,L,M) given immediately before [16, (54)], and
the proof that the construction has the required properties comes from the discussion
immediately before and immediately after [16, (54)].

In view of Lemma 4.2 there is a triple (K,L,M) that is good for χ and which
has |K|+ |L| as small as possible. Choose one such, say, (K0(χ), L0(χ),M0(χ)). Set
K ′(χ) = K0 \ K̂ and L′(χ) = L0 \ L̂. Lemma 4.3 below establishes an upper bound
on ν(χ, χ′) in terms of |K0|, |L0|, |K ′|, and |L′|, and Lemma 4.4 shows that for each
choice of K ′, L′ there is at most one χ contributing to the sum in the lemma. These
two lemmas combine to give (4.4).

Lemma 4.3. For each χ ∈ C(we, wo, s, A, χ
′),

ν(χ, χ′) ≤
(√

3

2

)wo−we

2|K0|

3|K0|+|L0|2|K′|−|L′|

:= B(K ′, L′).

Proof. This comes directly from [16], by following from just before [16, (55)] to
just after [16, (60)], making superficial changes of notation.

The inequality in Lemma 4.3 is the 3-coloring analogue of the main inequality of
[16]. The key observation that makes this inequality useful is the following.
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Lemma 4.4. For each we, wo, s, A, χ
′, K ′, and L′, there is at most one χ with

χ ∈ C(we, wo, s, A, χ
′), K ′ = K ′(χ), and L′ = L′(χ).

Proof. The main point here is that K ′ and L′ determine WO via

K̂ = (K0 \K ′) ∪ (∂extL
′ ∩QO),

and so also W (via W E = {v ∈ E : ∂v ⊆ WO}). This is established in [16], specifically
in [16, (56)] and the paragraph immediately following it. But then by Claim 4.2 K ′

and L′ determine χ.
Lemmas 4.3 and 4.4 together now easily give (4.4):∑

χ∈C(we,wo,s,A,χ′)

ν(χ, χ′) ≤
∑

K′⊆K0, L′⊆L0

B(K ′, L′)

≤
(√

3

2

)wo−we

.

We have now almost reached (4.3). With the steps justified below we have that
for each χ′ ∈ D ∑

χ∈ϕ−1(χ′)

ν(χ, χ′) ≤
∑{

ν(χ, χ′) : χ ∼s A, χ ∈ ϕ−1(χ′)
}

≤ 2dc
2d

d−1

0 |A(we, wo, v0)|
(√

3

2

) c0
2d

(4.5)

≤ 2dc
2d

d−1

0 exp {−Ω (c0/d)}(4.6)

≤ exp {−Ω (c0/d)} ,(4.7)

completing the proof of (4.3). In the first inequality, the sum on the right-hand side
is over all choices of we, wo, s, and A. In (4.5), we note that there are |A(we, wo, v0)|
choices for A, 2d choices for s and c

d/(d−1)
0 choices for each of we, wo (this is because

c0 ≥ (we + wo)
1−1/d, by (2.7)), and we apply (4.4) to bound the summand. In

(4.6) we use Lemma 4.1. Finally in (4.7) we use c0 ≥ d2 (again by (2.7)) to bound

2dc
2d/(d−1)
0 = exp{o(c0/d)}.
5. Proof of Theorem 1.2 (measures of maximal entropy). Here we estab-

lish that the Gibbs measure studied in Theorem 1.1 is a measure of maximal entropy.
Recall that for a probability distribution X with finite range that takes on value x
with probability p(x), the entropy of X is

H(X) = −
∑

x∈range(X)

p(x) log p(x).

We have H(X) ≤ log |range(X)| with equality if and only if X is uniform.
Let Λn be the box {−n, . . . , n}d, and let C′

3(Λn) be the set of colorings of Λn

that can be extended to a coloring of Zd. The topological entropy of C3 (the set of
3-colorings of Zd) is

Htopo(C3) = lim
n→∞

log |C′
3(Λn)|

|Λn| .
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Let μ be any measure on (C3,Fcyl) and let Xn be the restriction to Λn of an element of
C3 chosen according to μ (so the range of Xn is a subset of C′

3). The measure-theoretic
entropy of C3 with respect to μ is

Hμ(C3) = lim
n→∞

H(Xn)

|Λn| .

Note that Hμ(C3) is always at most Htopo(C3). We say that μ is a measure of maximal
entropy if Hμ(C3) = Htopo(C3). The sense of measure of maximal entropy is that the
restriction of μ to any finite subset of Zd is supported (asymptotically) on as large a
set as possible. (See, e.g., [8] for a more thorough discussion of these topics.)

We wish to show that μχ(0,O) (as described in the introduction) is a measure of

maximal entropy. Fix m and n satisfying m > n. Let μm = μ
χ(0,O)
m be as described in

the introduction, and let Xm
n be the restriction to Λn of a coloring chosen according

to μm. We will show that

(5.1) H(Xm
n ) ≥ log |C′

3(Λn)| − 2|∂intΛn| log 3.
This is enough to show that μχ(0,O) is a measure of maximal entropy, since |∂intΛn| =
o(log |C′

3(Λn)|).
Since for any random variable X we have H(X) ≥ − logmaxx p(x), we will have

(31) if we show that, for each τ ∈ C′
3(Λn), we have

(5.2) Pr(Xm
n = τ) ≤ 32|∂intΛn|

|C′
3(Λn)| .

We need the following lemma. Here Σ is an arbitrary finite bipartite graph with
bipartition E ∪ O.

Lemma 5.1. Fix E ′ ⊆ E and O′ ⊆ O arbitrarily and let μ be uniform measure on
C3(Σ). For any E ′′ ⊆ E \ E ′, O′′ ⊆ O \ O′,

μ(χ ≡ 0 on E ′′ and χ ≡ 1 on O′′ | χ ≡ 0 on E ′ and χ ≡ 1 on O′) ≥ 3−|E′′∪O′′|.

Proof. We proceed by induction on |E ′′∪O′′|, beginning with the case |E ′′∪O′′| =
1. Without loss of generality, we may take O′′ = ∅ and E ′′ = {x} for some x ∈ E \ E ′.
Write C′ for the set of those χ satisfying χ|E′ ≡ 0 and χ|O′ ≡ 1, and, for i ∈ {0, 1, 2},
write C′

i for {χ ∈ C′ : χ(x) = i}. We wish to show that |C′
0|/|C′| ≥ 1/3, for which (by

1-2 symmetry) it is enough to show |C′
1| ≤ |C′

0|.
To verify this last inequality, consider the following map from C′

1 to C′: for χ ∈ C′
1,

let C be the set of vertices in Σ reachable from x using only vertices colored 0 and
1, and let χ′ be obtained from χ by interchanging 0 and 1 on C. We must have
C ∩ (E ′ ∪O′) = ∅ (since otherwise we would have an odd path from x to E ′ or an even
path from x to O′), so that in fact χ′ ∈ C′

0. Moreover, the map is injective since we
can recover χ by interchanging 0 and 1 on the set of vertices in Σ reachable from x
using only vertices colored 0 and 1 (under χ′).

For the induction step, consider the case |E ′′ ∪ O′′| = t > 1, where without loss
of generality |E ′′| > 0. Fix x ∈ E ′′. We have

μ(χ ≡ 0 on E ′′ and χ ≡ 1 on O′′ | χ ≡ 0 on E ′ and χ ≡ 1 on O′)
= μ(χ ≡ 0 on E ′′ \ {x} and χ ≡ 1 on O′′ | χ ≡ 0 on E ′ and χ ≡ 1 on O′)

× μ(χ(x) = 0 | χ ≡ 0 on E ′ ∪ (E ′′ \ {x}) and χ ≡ 1 on O′ ∪ O′′).
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The first term in the product above is at least 1/3 (it is another instance of the base
case), and the second term is at least 3−(t−1) (by induction), so the product is at least
3−t.

Now let A = Wm \ (Λn \ ∂intΛn) (recall from section 1 that Wm is the box
{−m, . . . ,m}d together with all the odd vertices of the box {−(m+1), . . . ,m+1}d).
For τ ∈ C′

3(Λn), let N(τ) be the number of χ ∈ C3(A) that agree with τ on Λn and can
be extended to colorings in supp(μm) := {χ ∈ C3 : μm(χ) > 0}. Thus N(τ) depends
only on the restriction of τ to ∂intΛn, and N(τ) = Pr(Xm

n = τ)|supp(μm)|.
Set

C∗(Λn) = {τ0 ∈ C′
3(Λn) : τ0 ≡ 0 on (∂intΛn) ∩ O and τ0 ≡ 1 on (∂intΛn) ∩ E}.

By Lemma 5.1 (with Σ = A ∪ ∂extWm, E ′ ∪ O′ = ∂extWm and E ′′ ∪ O′′ = ∂intΛn) we
have, for any τ0 ∈ C∗(Λn) and τ ∈ C′

3(Λn),

(5.3) N(τ0) ≥ 3−|∂intΛn|N(τ) = 3−|∂intΛn| Pr(Xm
n = τ)|supp(μm)|.

Another application of Lemma 5.1 (with Σ = Λn, E ′ ∪O′ = ∅ and E ′′ ∪O′′ = ∂intΛn)
yields

|C∗(Λn)|
|C′

3(Λn)| ≥ 3−|∂intΛn|,

and so, since N(τ0)/|supp(μm)| = Pr(Xm
n = τ0) ≤ |C∗(Λn)|−1, we get

(5.4) N(τ0) ≤ 3|∂intΛn|

|C′
3(Λn)| |supp(μm)|.

Combining (5.3) and (5.4) we get (5.2).
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[25] R. Kotecký, Long-range order for antiferromagnetic Potts models, Phys. Rev. B, 31 (1985),
pp. 3088–3092.
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