Exercises

219

the "heartamard product" of F and G. Show that if F and G are rational, then so is $F \heartsuit G$. Moreover, if F is rational and G is algebraic, then $F \heartsuit G$ is algebraic.

6.13. a. [3-] Let $k \in \mathbb{P}$, and define $\eta = \sum_{n \geq 0} {kn \choose n} x^n$. Example 6.2.7 shows that η is a root of the polynomial

$$P(y) = k^k x y^k - (y - 1)[(k - 1)y + 1]^{k-1}.$$

Find (as fractional series) the other k-1 roots of the polynomial P(y). Deduce that P(y) is irreducible (as a polynomial over $\mathbb{C}(x)$).

b. [3-] Find the discriminant of P(y).

6.14. [3-] Define $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$ by

$$f(i-1,j) - 2f(i,j) + f(i+1,j-1) = 0 (6.53)$$

for all $(i, j) \in \mathbb{N} \times \mathbb{N} - \{(0, 0)\}$, with the initial conditions f(0, 0) = 1 and f(i, j) = 0 if i < 0 or j < 0. Thus $f(i, 0) = 2^{-i}$, $f(0, 1) = \frac{1}{4}$, $f(1, 1) = \frac{1}{4}$, etc. Find the generating function $F(x, y) = \sum_{i,j \ge 0} f(i, j) x^i y^j$.

6.15. [2+] Let $f, g, h \in K[[x]]$ with h(0) = 0. Find a polynomial P(f, g, h, x) so that

$$\operatorname{diag} \frac{1}{1 - sf(st) - tg(st) - h(st)} = \frac{1}{\sqrt{P}},$$

where diag is in the variable x.

- **6.16.** [5-] Let f(n) be the number of paths from (0, 0) to (n, n) using the steps (1, 0), (0, 1), and (1, 1); and let g(n) be the number of paths from (0, 0) to (n, n) using any elements of $\mathbb{N}^2 \{(0, 0)\}$ as steps. It is immediate from equations (6.27) and (6.30) that $g(n) = 2^{n-1} f(n)$, n > 0. Is there a combinatorial proof?
- **6.17. a.** [2+] Let S be a subset of $\mathbb{N} \times \mathbb{N} \{(0,0)\}$ such that (i) every element of S has the form (n,n), (n+1,n), or (n,n+1), and (ii) $(n,n+1) \in S$ if and only if $(n+1,n) \in S$. Let g(n) be the number of paths from (0,0) to (n,n) using steps from S. Let h(n) be the number of such paths that never go above the line y = x. (Let g(0) = h(0) = 1.) Define $G(x) = \sum_{n \ge 0} g(n)x^n$, $H(x) = \sum_{n \ge 0} h(n)x^n$, and $K(x) = \sum_{(n,n) \in S} x^n$. Show that

$$H(x) = \frac{2}{1 - K(x) + G(x)^{-1}}.$$

- **b.** [2–] Compute H(x) explicitly when $S = \{(0, 1), (1, 0), (1, 1)\}$ and deduce that in this case h(n) is the Schröder number r_n , thus confirming Exercise 6.39(j).
- **c.** [3-] Give a *combinatorial* proof that when $S = \{(0, 1), (1, 0), (1, 1)\}$ and $n \ge 2$, then h(n) is twice the number of ways to dissect a convex (n + 2)-gon with any number of diagonals that don't intersect in their interiors.
- **6.18.** [3] Let S be a subset of $\mathbb{N} \times \mathbb{N} \{(0,0)\}$ such that $\sum_{(m,n) \in S} x^m y^n$ is rational, e.g., S is finite or cofinite. Let f(n) be the number of lattice paths from (0,0) to (n,n) with steps from S that never go above the line y = x. Show that $\sum_{n \geq 0} f(n) x^n$ is algebraic.
- **6.19.** [1]-[3+] Show that the Catalan numbers $C_n = \frac{1}{n+1} {2n \choose n}$ count the number of elements of the 66 sets $S_n(A) = i = (nnn)$ given below. We illustrate

undefined terminology clear. (The terms used in (vv)–(yy) are defined in Chapter 7.) Ideally S_i and S_j should be proved to have the same cardinality by exhibiting a simple, elegant bijection $\phi_{ij}: S_i \to S_j$ (so 4290 bijections in all). In some cases the sets S_i and S_j will actually coincide, but their descriptions will differ

a. Triangulations of a convex (n + 2)-gon into n triangles by n - 1 diagonals that do not intersect in their interiors:

b. Binary parenthesizations of a string of n + 1 letters:

 $(xx \cdot x)x - x(xx \cdot x) - (x \cdot xx)x - x(x \cdot xx) - xx \cdot xx$

c. Binary trees with *n* vertices:

d. Plane binary trees with 2n + 1 vertices (or n + 1 endpoints):

e. Plane trees with n + 1 vertices:

f. Planted (i.e., root has degree one) trivalent plane trees with 2n + 2 vertices:

g. Plane trees with n + 2 vertices such that the rightmost path of each subtree of the root has even length:



h. Lá ab

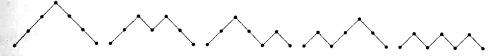
i. D:

j. Dy sec

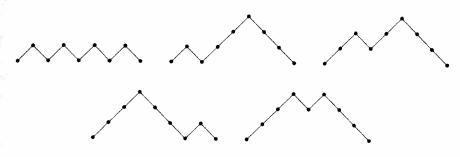
I. (U1 usi the

m. (Ur usii **h.** Lattice paths from (0, 0) to (n, n) with steps (0, 1) or (1, 0), never rising above the line y = x:

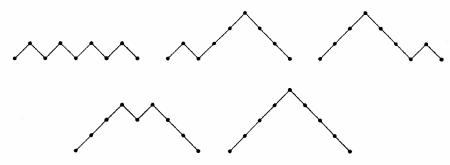
i. Dyck paths from (0, 0) to (2n, 0), i.e., lattice paths with steps (1, 1) and (1, -1), never falling below the x-axis:



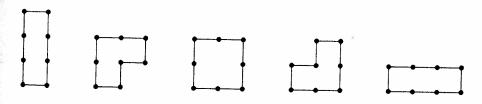
j. Dyck paths (as defined in (i)) from (0, 0) to (2n+2, 0) such that any maximal sequence of consecutive steps (1, -1) ending on the x-axis has odd length:



k. Dyck paths (as defined in (i)) from (0,0) to (2n + 2,0) with no peaks at height two



1. (Unordered) pairs of lattice paths with n + 1 steps each, starting at (0, 0), using steps (1, 0) or (0, 1), ending at the same point, and only intersecting at the beginning and end:



m. (Unordered) pairs of lattice paths with n-1 steps each, starting at (0,0), using steps (1,0) or (0,1), ending at the same point, such that one path never

rises above the other path:

v.

W.

x.

y.

z.

aa.

bb.

cc.

dd.

n. n nonintersecting chords joining 2n points on the circumference of a circle:

o. Ways of connecting 2n points in the plane lying on a horizontal line by n nonintersecting arcs, each arc connecting two of the points and lying above the points:

p. Ways of drawing in the plane n+1 points lying on a horizontal line L and n arcs connecting them such that (α) the arcs do not pass below L, (β) the graph thus formed is a tree, (γ) no two arcs intersect in their interiors (i.e., the arcs are noncrossing), and (δ) at every vertex, all the arcs exit in the same direction (left or right):

q. Ways of drawing in the plane n+1 points lying on a horizontal line L and n arcs connecting them such that (α) the arcs do not pass below L, (β) the graph thus formed is a tree, (γ) no arc (including its endpoints) lies strictly below another arc, and (δ) at every vertex, all the arcs exit in the same direction (left or right):

r. Sequences of n 1's and n-1's such that every partial sum is nonnegative (with -1 denoted simply as - below):

s. Sequences $1 \le a_1 \le \cdots \le a_n$ of integers with $a_i \le i$:

t. Sequences $a_1 < a_2 < \cdots < a_{n-1}$ of integers satisfying $1 \le a_i \le 2i$:

u. Sequences a_1, a_2, \ldots, a_n of integers such that $a_1 = 0$ and $0 \le a_{i+1} \le a_i + 1$:

Exercises 223

v. Sequences $a_1, a_2, \ldots, a_{n-1}$ of integers such that $a_i \le 1$ and all partial sums are nonnegative:

$$0, 0$$
 $0, 1$ $1, -1$ $1, 0$ $1, 1$

w. Sequences a_1, a_2, \ldots, a_n of integers such that $a_i \ge -1$, all partial sums are nonnegative, and $a_1 + a_2 + \cdots + a_n = 0$:

$$0, 0, 0, 0, 1, -1, 1, 0, -1, 1, -1, 0, 2, -1, -1$$

x. Sequences a_1, a_2, \ldots, a_n of integers such that $0 \le a_i \le n - i$, and such that if i < j, $a_i > 0$, $a_j > 0$, and $a_{i+1} = a_{i+2} = \cdots = a_{j-1} = 0$, then $j - i > a_i - a_j$:

y. Sequences a_1, a_2, \ldots, a_n of integers such that $i \le a_i \le n$ and such that if $i \le j \le a_i$, then $a_j \le a_i$:

z. Sequences a_1, a_2, \ldots, a_n of integers such that $1 \le a_i \le i$ and such that if $a_i = j$, then $a_{i-r} \le j-r$ for $1 \le r \le j-1$:

aa. Equivalence classes B of words in the alphabet [n-1] such that any three consecutive letters of any word in B are distinct, under the equivalence relation $uijv \sim ujiv$ for any words u, v and any $i, j \in [n-1]$ satisfying $|i-j| \geq 2$:

(For n=4 a representative of each class is given by \emptyset , 1, 2, 3, 12, 21, 13, 23, 32, 123, 132, 213, 321, 2132.)

bb. Partitions $\lambda = (\lambda_1, \dots, \lambda_{n-1})$ with $\lambda_1 \leq n-1$ (so the diagram of λ is contained in an $(n-1) \times (n-1)$ square), such that if $\lambda' = (\lambda'_1, \lambda'_2, \dots)$ denotes the conjugate partition to λ then $\lambda'_i \geq \lambda_i$ whenever $\lambda_i \geq i$:

$$(0,0)$$
 $(1,0)$ $(1,1)$ $(2,1)$ $(2,2)$

cc. Permutations $a_1a_2 \cdots a_{2n}$ of the multiset $\{1^2, 2^2, \dots, n^2\}$ such that: (i) the first occurrences of $1, 2, \dots, n$ appear in increasing order, and (ii) there is no subsequence of the form $\alpha\beta\alpha\beta$:

dd. Permutations $a_1a_2 \cdots a_{2n}$ of the set [2n] such that: (i) $1, 3, \ldots, 2n-1$ appear in increasing order, (ii) $2, 4, \ldots, 2n$ appear in increasing order, and (iii) 2i-1 appears before $2i, 1 \le i \le n$:

and the second second second second

ee. Permutations $a_1 a_2 \cdots a_n$ of [n] with longest decreasing subsequence of length at most two (i.e., there does not exist i < j < k, $a_i > a_j > a_k$), called 321-avoiding permutations:

ff. Permutations $a_1 a_2 \cdots a_n$ of [n] for which there does not exist i < j < k and $a_j < a_k < a_i$ (called 312-avoiding permutations):

gg. Permutations w of [2n] with n cycles of length two, such that the product $(1, 2, ..., 2n) \cdot w$ has n + 1 cycles:

$$(1, 2, 3, 4, 5, 6)(1, 2)(3, 4)(5, 6) = (1)(2, 4, 6)(3)(5)$$

$$(1, 2, 3, 4, 5, 6)(1, 2)(3, 6)(4, 5) = (1)(2, 6)(3, 5)(4)$$

$$(1, 2, 3, 4, 5, 6)(1, 4)(2, 3)(5, 6) = (1, 3)(2)(4, 6)(5)$$

$$(1, 2, 3, 4, 5, 6)(1, 6)(2, 3)(4, 5) = (1, 3, 5)(2)(4)(6)$$

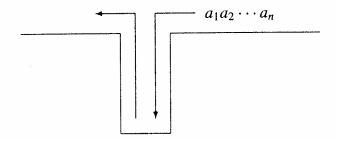
$$(1, 2, 3, 4, 5, 6)(1, 6)(2, 5)(3, 4) = (1, 5)(2, 4)(3)(6)$$

hh. Pairs (u, v) of permutations of [n] such that u and v have a total of n + 1 cycles, and uv = (1, 2, ..., n):

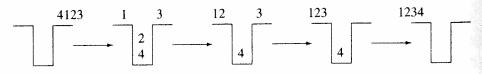
$$(1)(2)(3) \cdot (1, 2, 3) \quad (1, 2, 3) \cdot (1)(2)(3) \quad (1, 2)(3) \cdot (1, 3)(2)$$

 $(1, 3)(2) \cdot (1)(2, 3) \quad (1)(2, 3) \cdot (1, 2)(3)$

ii. Permutations $a_1a_2\cdots a_n$ of [n] that can be put in increasing order on a single stack, defined recursively as follows: If \emptyset is the empty sequence, then let $S(\emptyset) = \emptyset$. If w = unv is a sequence of distinct integers with largest term n, then S(w) = S(u)S(v)n. A stack-sortable permutation w is one for which S(w) = w:



For example,



123 132 213 312 321

jj. Ρε ρε

kk. Fi *u* in

II. C

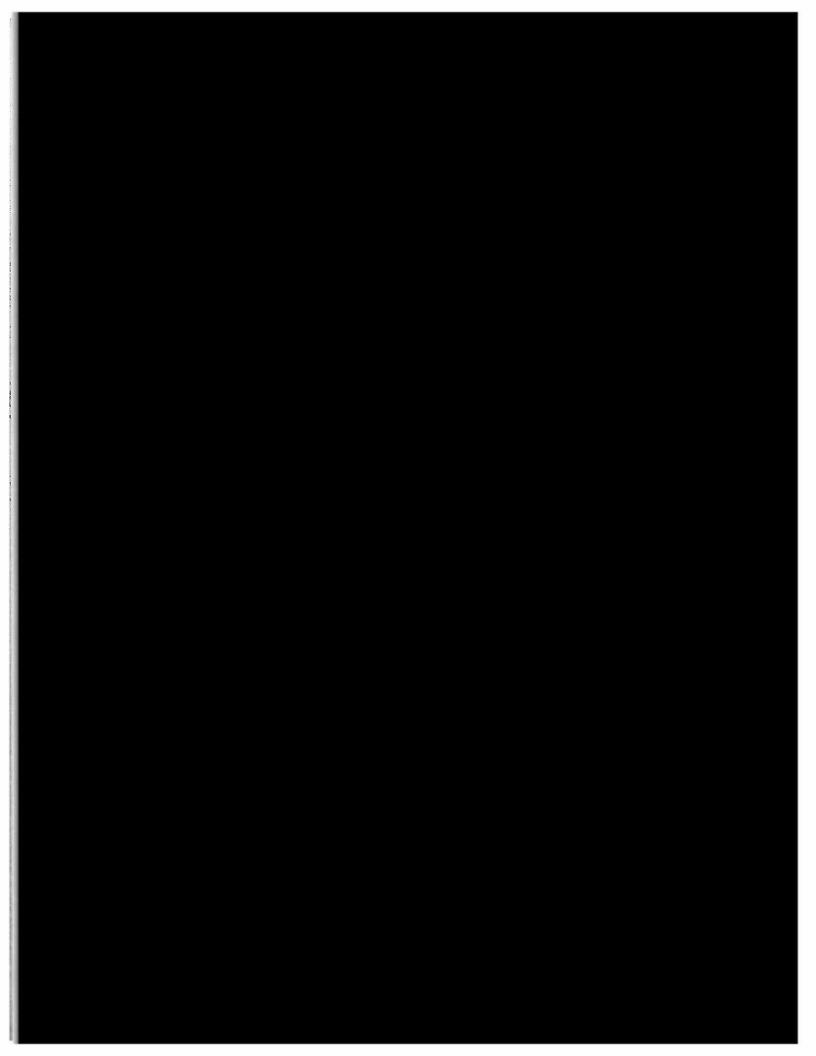
mm. B th in

nn. P

w m u

00. P

W



pp. Noncrossing partitions of [n], i.e., partitions $\pi = \{B_1, \ldots, B_k\} \in \Pi_n$ such that if a < b < c < d and $a, c \in B_i$ and $b, d \in B_j$, then i = j:

123 12-3 13-2 23-1 1-2-3

qq. Partitions $\{B_1, \ldots, B_k\}$ of [n] such that if the numbers $1, 2, \ldots, n$ are arranged in order around a circle, then the convex hulls of the blocks B_1, \ldots, B_k are pairwise disjoint:

rr. Noncrossing Murasaki diagrams with n vertical lines:

ss. Noncrossing partitions of some set [k] with n+1 blocks, such that any two elements of the same block differ by at least three:

1-2-3-4 14-2-3-5 15-2-3-4 25-1-3-4 16-25-3-4

tt. Noncrossing partitions of [2n + 1] into n + 1 blocks, such that no block contains two consecutive integers:

137-46-2-5 1357-2-4-6 157-24-3-6 17-246-3-5 17-26-35-4

uu. Nonnesting partitions of [n], i.e., partitions of [n] such that if a, e appear in a block B and b, d appear in a different block B' where a < b < d < e, then there is a $c \in B$ satisfying b < c < d:

(The unique partition of [4] that isn't nonnesting is 14-23.)

vv. Young diagrams that fit in the shape (n-1, n-2, ..., 1):

ww. Standard Young tableaux of shape (n, n) (or equivalently, of shape (n, n-1)):

123 124 125 134 135 456 356 346 256 246

or

123 124 125 134 135 45 35 34 25 24

- xx. Pa
- yy. Co
- **zz.** Co (n

aaa. Li

bbb. O₁

ccc. O₁

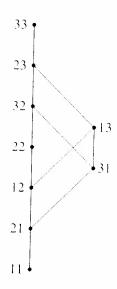


Figure 6-5. A poset with $C_4 = 14$ order ideals.

xx. Pairs (P, Q) of standard Young tableaux of the same shape, each with n squares and at most two rows:

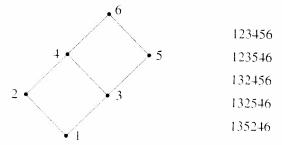
$$(123, 123) \quad \begin{pmatrix} 12 & 12 \\ 3 & , 3 \end{pmatrix} \quad \begin{pmatrix} 12 & 13 \\ 3 & , 2 \end{pmatrix} \quad \begin{pmatrix} 13 & 12 \\ 2 & , 3 \end{pmatrix} \quad \begin{pmatrix} 13 & 13 \\ 2 & , 2 \end{pmatrix}$$

yy. Column-strict plane partitions of shape (n-1, n-2, ..., 1), such that each entry in the *i*-th row is equal to n-i or n-i+1:

ZZ. Convex subsets S of the poset $\mathbb{Z} \times \mathbb{Z}$, up to translation by a diagonal vector (m, m), such that if $(i, j) \in S$ then 0 < i - j < n:

$$\emptyset = \{(1,0)\} = \{(2,0)\} = \{(1,0),(2,0)\} = \{(2,0),(2,1)\}$$

aaa. Linear extensions of the poset $2 \times n$:



bbb. Order ideals of Int(n-1), the poset of intervals of the chain n-1:

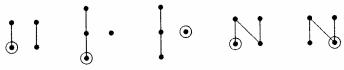
ccc. Order ideals of the poset A_n obtained from the poset $(n-1) \times (n-1)$ by adding the relations (i, j) < (j, i) if i > j (see Figure 6-5 for the Hasse

6 Algebraic,	D-Finite,	and Noncommutative	Generating	Functions
	6 Algebraic,	6 Algebraic, D-Finite,	6 Algebraic, D-Finite, and Noncommutative	6 Algebraic, D-Finite, and Noncommutative Generating

diagram of A_4):

ddd. Nonisomorphic *n*-element posets with no induced subposet isomorphic to 2 + 2 or 3 + 1:

eee. Nonisomorphic (n + 1)-element posets that are a union of two chains and that are not a (nontrivial) ordinal sum, rooted at a minimal element:

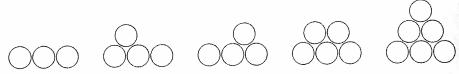


fff. Relations R on [n] that are reflexive (iRi), symmetric $(iRj \Rightarrow jRi)$, and such that if $1 \le i < j < k \le n$ and iRk, then iRj and jRk (in the example below we write ij for the pair (i, j), and we omit the pairs ii):

$$\emptyset$$
 {12, 21} {23, 32} {12, 21, 23, 32} {12, 21, 13, 31, 23, 32}

ggg. Joining some of the vertices of a convex (n-1)-gon by disjoint line segments, and circling a subset of the remaining vertices:

hhh. Ways to stack coins in the plane, the bottom row consisting of *n* consecutive coins:



iii. *n*-tuples (a_1, a_2, \ldots, a_n) of integers $a_i \ge 2$ such that in the sequence $1a_1a_2\cdots a_n1$, each a_i divides the sum of its two neighbors:

iii. *n*-element multisets on $\mathbb{Z}/(n+1)\mathbb{Z}$ whose elements sum to 0:

kkk. n-element subsets S of $\mathbb{N} \times \mathbb{N}$ such that if $(i, j) \in S$ then $i \geq j$ and there is a lattice path from (0, 0) to (i, j) with steps (0, 1), (1, 0), and (1, 1) that lies entirely inside S:

$$\{(0,0),(1,0),(2,0)\} \quad \{(0,0),(1,0),(1,1)\} \quad \{(0,0),(1,0),(2,1)\}$$

$$\{(0,0),(1,1),(2,1)\} \quad \{(0,0),(1,1),(2,2)\}$$

III. Regions into which the cone $x_1 \ge x_2 \ge \cdots \ge x_n$ in \mathbb{R}^n is divided by the hyperplanes $x_i - x_j = 1$, for $1 \le i < j \le n$ (the diagram below shows the

Figure 6-6

situ

mmm. Pos

arra

1

suc ru

(ne

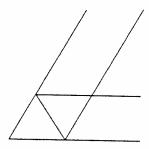
nnn. *n*-t

is p

Exercises 229

Figure 6-6. The frieze pattern corresponding to the sequence (1, 3, 2, 1, 5, 1, 2, 3).

situation for n = 3, intersected with the hyperplane $x_1 + x_2 + x_3 = 0$):



mmm. Positive integer sequences a_1, a_2, \dots, a_{n+2} for which there exists an integer array (necessarily with n+1 rows)

such that any four neighboring entries in the configuration s_u^r satisfy st = ru + 1 (an example of such an array for $(a_1, \ldots, a_8) = (1, 3, 2, 1, 5, 1, 2, 3)$ (necessarily unique) is given by Figure 6-6):

nnn. n-tuples $(a_1, \ldots a_n)$ of positive integers such that the tridiagonal matrix

$$\begin{bmatrix} a_1 & 1 & 0 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\ 1 & a_2 & 1 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\ 0 & 1 & a_3 & 1 & \cdot & \cdot & \cdot & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & a_{n-1} & 1 \\ 0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & 1 & a_n \end{bmatrix}$$

is positive definite with determinant one: