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the “heartamard product™ of £ and G. Show that if F"and G are rational, then so
i« F 0 G. Moreover, it Fisrational and G is algebraic, then F O G is algebraic.

3—] Letk € P.and define n = Z»:“ (/‘: )x”. Example 6.2.7 shows that n
is a root of the polynomial

P(y) = ko' — (v — Dltk = Dy + 1171
Find (as fractional series) the other & — 1| roots of the polynomial P(v).

Deduce that P(y) is irreducible (as a polynomial over T(x)).
b. [3—] Find the discriminant of P(y).

. [3—] Detine f : Z x Z — Qby

fU—=1 ) =2f0.p+ fli+1.j—DH=0 (6.53)

for all (i, j) € N x N — {(0. 0)}, with the initial conditions f(0,0) = 1 and
fii.jy=0ifi <0orj <0.Thus f(i,00 =27, f(0,h =1, f1. 1) =1,
etc. Find the generating function F(x. v) = Zi.jzo fa. Hxt v,
[2+] Let f. g, h € K[[x]] with 2(0) = 0. Find a polynomial P(f, g, h, x) so
that .
I l

ag - — = ,

I —sf(st)y —1g(st)— h(st) /P
where diag is in the variable .
(5] Let f(n) be the number of paths from (C, 0) to (n1, 1) using the steps (1, 0),
(0. 1), and (1, 1); and let g(n) be the number of paths from (0, 0) to (11, n) using

any elements of N? — {(0, 0)} as steps. It is immediate from equations (6.27)
and (6.30) that g(n) = 2"~! f(n), n > 0. Is there a combinatorial proof?

a. [24] Let S be a subset of N x N — {(0, 0)} such that (i) every element of
S has the form (n, n), (n + I, n), or (n,n + 1), and (i) (n, n + 1) € S if
and only if (n + 1, n) € §. Let g(n) be the number of paths from (0, 0) to
(n, n)using steps from S. Let (n) be the number of such paths that never go
above the line y = x. (Let g(0) = A(0) = [.) Define G(x) = Z”)() glnmx",
H(x) =3, ghtn)x" and K(x) =3 cx". Show that

2
| — K(x)+ Gx)~!

b. [2—] Compute H (x) explicitly when S = {(0, 1), (1. 0), (I, 1)} and deduce
that in this case /fi(n) is the Schroder number r,. thus confirming Exer-
crse 6.39(j).

¢ [3—] Give a combinatorial proof that when S = {(0, 1). (1. 0), (1. 1)} and
n = 2. then A(n) is twice the number of ways to dissect a convex (1 + 2)-gon
with any number of diagonals that don’t intersect in their interiors.

(3] Let § be a subset of N x N — {(0. 0)} such that Z(m.n}ES X7 y" is rational,

€.g. 3 is finite or cofinite. Let f(n) be the number of lattice paths from (0. 0)

o (n.n) with steps from § that never go above the line ¥ = x. Show that

erzu funx is algebraic.

di

H(x) =

- o hl
[11-[2+] Show that the Catalan numbers C, = — (") count the number

of clemonts of the 66 et € 13 = whnY vEn pelonr W eirgie
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undefined terminology clear. (The terms used in (vv)—(yy) are defined in Chapter = h. L

7.) Ideally §; and S should be proved to have the same cardinality by exhibmng ab

a simple, elegant bijection ¢;; : §; — S; (so 4290 bijections in all). In SOme

cases the sets S; and §; will actually coincide, but their descriptions will differ

a. Triangulations of a convex (n + 2)-gon into n triangles by n — 1 diagonals
that do not intersect in their interiors:

RS B

b. Binary parenthesizations of a string of n + 1 letters: : S
(xx-x)x x(xx-x) (x-xx)x x(Xx-XxX) XX-XX “ i. Dy
se«

¢. Binary trees with n vertices: )
d. Plane binary trees with 2n + 1 vertices (or n + 1 endpoints):

e I

hei
e. Plane trees with n + | vertices:

S A A

f. Planted (i.e., root has degree one) trivalent plane trees with 2n + 2 vertices:

T Y
pyyews

g. Plane trees with n + 2 vertices such that the rightmost path of each subtree
of the root has even length: '

SEETaEE I
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h. Lattice paths from (0, 0) to (n, n) with steps (0, 1) or (I, 0), never rising
above the line y = x:

b

i. Dyck paths from (0, 0) to (2, 0), i.e., lattice paths with steps (1, 1) and
(1, —1), never falling below the x-axis:

[,

j. Dyck paths (as defined in (i)) from (0, 0) to (2n + 2, 0) such that any maximal
sequence of consecutive steps (1, —1) ending on the x-axis has odd length:

N TN

k. Dyck paths (as defined in (i)) from (0, 0) to (2n + 2, 0) with no peaks at
- height two

VSN

L. (Unordered) pairs of lattice paths with n + 1 steps each, starting at (0, 0),
using steps (1, 0) or (0, 1), ending at the same point, and only intersecting at
- the beginning and end:

L L 4 y L L ] L4 * &

& ° & ®

m. (Unordered) pairs of lattice paths with n — 1 steps each, starting at (0, 0),
using steps (1, 0) or (0, 1), ending at the same point, such that one path never
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rises above the other path:

r d —

n. n nonintersecting chords joining 2x points on the circumference of a circle:

— N N\ L

0. Ways of connecting 2n points in the plane lying on a horizontal line by n

nonintersecting arcs, each arc connecting two of the points and lying above
the points:

S ay oo ﬁ\\nm@

p. Ways of drawing in the plane n + 1 points lying on a horizontal line L and

n arcs connecting them such that () the arcs do not pass below L, (8) the
graph thus formed is a tree, (y) no two arcs intersect in their interiors (i.e.,
the arcs are noncrossing), and (8) at every vertex, all the arcs exit in the same
direction (left or right):

ESN A LA TN (A

q. Ways of drawing in the plane n + 1 points lying on a horizontal line L and n

arcs connecting them such that () the arcs do not pass below L, (f) the graph
thus formed is a tree, () no arc (including its endpoints) lies strictly below
another arc, and (8) at every vertex, all the arcs exit in the same direction (left
or right): ‘

r. Sequences of n 1’s and n —1’s such that every partial sum is nonnegative

(with —1 denoted simply as — below):

nli—--_11-1-— 11—-——1- 1-1l1-- 1-1-1-

s. Sequences | < a; <--- < a, of integers witha; < i:

11 112 113 122 123

t. Sequences a; < a; < --- < a,— of integers satisfying 1 < a; < 2i:

12 13 14 23 24

u. Sequences aj, az, ..., a, of integers such that a; = O and 0 < ag;4; < 1

a,~+1:
000 001 010 011 012

aa. .

bb. .

ce. .

dd.
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v. Sequences dj. ds. .. .. ay -y of integers such that a; < land all partial suns
are nonnegative:

0,0 0.1 1.—1 1,0 1.1

w. Sequences ay. as. ... . ay of integers such that d; = — 1, all partial sums are
nonnegative, and a; + ¢y + - .. + a, = 0:

0.0.0 0.1, -1 1.0, =1 Io—=1.0 2, —1.—]

X. Sequences ay. as. . . .. a, of integers such that ) = d; < n —1i,and such i
thatif i < j, q; > 0, aj > 0.and a4 = q, 2 = - =a;_; = 0, then :
J =1 > q —a;:

000 010 100 200 110

y. Sequences ay, a-. ... . a, of integers such that ; < a; < n and such that if
I < j < a,. then a; < a:

1
123 133 223 323 1333
:

7. Sequences ay, ao, .. ., dy of integers such that | = a; =<1 and such that if 4
a,':j,thena,;,gj—rforl§r§j—-1: !

LIE 112 113 121 123

aa. Equivalence classes B of words in the alphabet [n — 1] such that any three J
consecutive letters of any word in B are distinct, under the equivalence re- 1
lation wijv ~ wujiv for any words «, v and any i, j € [ — 1] satisfying
i = j =2 K

, , S
Wi on

(For n = 4 a representative of each class is given by ¥4, 1,2, 3, 12, 21, 13,
23,32, 123,132,213, 321, 2132)

bb. Partitions A = (Aly...y Ayoy) with Ap < n — 1 (so the diagram of A is
contained in an (n — 1) x (n — 1) square), such that if 1’ = (1], Moo

denotes the conjugate partition to A then Al > X; whenever Ap >0

ol

0.00 (1.O) (1.1) 2, 1) (2. 2) B

ce. Permutations aja- - - “oy of the multiset {12, 27, . n:} such that: (i) the “
first occurrences of 1.2, ... . n appear in increasing order, and (ii) there is

no subsequence of the form afap:
[12233 112332 122331 123320 122133
dd. Permutations dicy -+ -dyy of the set [2n] such that: ( 1.3..... 2n =1

appear in increasing order. (i) 2. 4. .. 2n appear in increasing order. and
(it) 2i — | appears before 2/ | <6<

LTms

. crl ki L

EIRre
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ee. Permutations ajas - - -a, of [n] with longest decreasing subsequence of
length at most two (i.e., there does not exist i < j < k,a; > a; > @),
called 321-avoiding permutations:

123 213 132 312 231

ff. Permutations a,d» - - - a, of [n] for which there does not exist i < j < k
and a; < ax < a; (called 312-avoiding permutations):

123 132 213 231 321

gg. Permutations w of [2n] with n cycles of length two, such that the product
(1,2,...,2n) - whasn + 1 cycles:

(1,2,3,4,5,6)1,2)(3, 4)5, 6) = (1)(2, 4, 6)(3)(5)
(1,2,3,4,5,6)1,2)3, 6)(4,5) = (1)2, 6)3, 5)4)
(1,2,3,4,5,6)(1,4)2,3)5,6) = (1, 3)(2)4, 6)5)
(1,2,3,4,5,6)1, 6)(2,3)4, 5) = (1, 3, 5)(2)(4)(6)
(1,2,3,4,5,6)1, 6)2,5@3,4) = (1, 5)2, 4)(3)(6)

hh. Pairs (¢, v) of permutations of [n} such that ¥ and v have a total of n 4+ 1
cycles,and uv = (1,2, ...,n).

(LB -(1,2,3) (1,2,3)- (D3 1, 2)(3) - (1, 3)2)
(1,3)2) - (1)(2,3) ()2, 3)-(1,2)(3)

ii. Permutations ajay - - - a, of [n] that can be put in increasing order on a
single stack, defined recursively as follows: If { is the empty sequence, then
let S(@) = @. If w = unv is a sequence of distinct integers with largest term
n, then S(w) = Su)S(v)n. A stack-sortable permutation w is one for which
S(w) = w: 75

alaz...an

For example,

4123 i 3 12 3 123 1234 i
4 4 4

123 132 213 312 321

1L

nn.

P

th
ir

P

—R =X ¥

1r
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pp. Noncrossing partitions of [n], i.e., partitions 7 = {By, .. , B¢} € T, such
thatifa <b <c <danda,c € B;andb,d € Bj,thenl = J:

123 12-3 132 23-1 123

qq. Partitions {By, ..., B} of [n] such that if the numbers 1,2, ..., n are ar-
ranged in order aroundacucle then the convex hulls of the blocks B1, .., By

are pairwise disjoint:
rr. Noncrossing Murasaki diagrams with n vertical lines:

T MM

ss. Noncrossing partitions of some set [k] with n + 1 blocks, such that any two
elements of the same block differ by at least three:

1-2-3—4 14—2-3-5 15-2-3—4 25—-1-3—-4 16—-25-3-4

tt. Noncrossing partitions of [2n + 1] into n + 1 blocks, such that no block
contains two consecutive integers:
137—46—2—5 1357—2—4—6 157—-24-3-6
17-246—3—5 17-26—35—4 ‘

uu. Nonnesting partitions of [n], i.e., partitions of [n] such that if a, e appear in;
a block B and b, d appear in a different block B’ wherea < b < d < e,

then there is a ¢ € B satisfying b < ¢ < d:

123 123 132 23-1 123

(The unique partition of [4] that isn’t nonnesting is 14-23))
vv. Young diagrams that fit in the shape (n — 1, n — , 1)

@

ww. Standard Young tableaux of shape (n, n) (or equivalently, of shape (n, n— D)

123 124 125 134 135
456 356 346 256 246

or

123 124 125 134 135
45 35 34 25 24

5q

yy. Ci
er

zz. Ci

(n

aaa. Li

bbb. O

cce. On
ad
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12
21

Figure 6-5. A poset with ', = 14 order ideals.

xx. Pairs (P, Q) of standard Young tableaux of the same shape, each with »
squares and at most two rows:

, 12 12 12 13 13 12 13 13
(123, 123) (3 ,3) <3 ,2) (2 3 ) (z ,2)

¥y. Column-strict plane partitions of shape (1 — [, n — 2. .. . I, such that each
entry in the i-throw is equalton —j orn —j + |-

33 33 32 32 22
2 l 2 l l

7z. Convex subsets S of the poset Z x Z, up to translation by a diagonal vector
(m,m), such that it (i, j)y € Sthen 0 </ — Jj < n:

WO} (2.0 (1,0L 2.0} {(2,0). (2, 1))

aaa. Linear extensions of the poset 2 X n:

N
SN 123456
1o .5 123546
N 132456
2 P 132546
w 135246
L

bbb. Order ideals of Int(n — 1), the poset of intervals of the chainn — 1:

!

| rd W a. b ub. abe
l a e Y

2 Int(2)

cee. Order ideals of the poset A, obtained from the poset(n — 1) X (n — 1) by
adding the relations (1. j) < (j.i)ifi > J (see Figure 6-5 for the Hasse

st g o
e

[ et LU R ST
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ddd.

€ee.

g28.

hhh.

ii.

kkk.

1L

diagram of A4):
g {11} {11,21} {11,21,12} {11, 21, 12,22}

Nonisomorphic n-element posets with no induced subposet isomorphic to
2+20r3+1:

I\//\f

Nonisomorphic (n + 1)-element posets that are a union of two chains and

that are not a (nontrivial) ordinal sum, rooted at a minimal element:

FLope e NN

Relations R on [n] that are reflexive (i Ri), symmetric (i Rj = jRi), and‘
suchthatifl <i < j<k<n and i Rk, then i Rj and j Rk (in the example
below we write ij for the pair (i, j), and we omit the pairs i)
@ {12,21} {23,32} {12,21,23,32} {12,21, 13,31, 23, 32}
Joining some of the vertices of a convex (n — 1)-gon by disjoint line segments,
and circling a subset of the remaining vertices: ‘
I . ® . ®
« . ® ®

Ways to stack coins in the plane, the bottom row consisting of n consecutive :

coins:

@ Q. OO é%

Q00 OO0 OCO OO OO0

n-tuples (aj,az, ..., an) of integers a@; > 2 such that in the sequence

lajas - - - a, 1, each a; divides the sum of its two neighbors:

14321 13521 13231 12531 12341

. n-element multisets on Z/(n + 1)Z whose elements sum to 0:

000 013 022 112 233

n-element subsets S of N x N such that if (i, j) € S theni > j and there is
a lattice path from (0, 0) to (i, j) with steps (0, 1), (1, 0), and (1, 1) that lies -

entirely inside S: :
(0,0, (1,0), 2,00} {(0,0),(1,0), (1, D} {(0,0).(1,0).(2, D}
{0,0), (1, D, (2, D} {(0,0),(1, 1), (2, 2)}

Regions into which the cone x; > x3 = -+ = Xp in R” is divided by the
hyperplanes x; —x; = l,forl <i < j <n (the diagram below shows the

Figure 6-6

situ

mmm. Pos
arr;

suc
ru
(ne

nnn. n-t

1S
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39
wh
=
EN
n
(o]
39
wn
+

2 3 1 3 2 1 5 ! i
1 1 1 1 1 1 1 !

Figure 6-6. The frieze pattern corresponding to the sequence (1,3,2, 1,5, 1,2, 3).

situation for n = 3, intersected with the hyperplane x, + X3+ x3 = 0):

mmm. Positive integer sequences a;, a,, ... ., dn+ for which there exists an integer
array (necessarily with n + 1 rows)

1 1 | | 1 | 1 |
ay a; as o dpg a) ay any—|
by by b b b N
1 2 3 n+2 1 12 (654)
ry r3 Fny2 1y
| | | 1

such that any four neighboring entries in the confi guration surt satisfy st =
ru + 1 (an example of such an array for (ay, ..., ag)=(1,3.2, 1, 5,1,2,3)
(necessarily unique) is given by Figure 6-6):

12213 22131 21312 13122 31221

nnn. n-tuples (ay, . . . a,) of positive integers such that the tridiagonal matrix
[a, 1 0 0 - . . o0 0]
I a 1 0 . . . 0 0
o 1 a 1 - . . 0 0
O 0 0 0 - - . g 1
00 0 o - . . l an |

is positive definite with determinant one:

131 122 221 213 312




