
Basic Combinatorics

Math 40210, Section 01 — Fall 2012

Homework 9 — Solutions
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+
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• 2.6.2 6: In this question we use the basic fact, derived in class and in the textbook, that the
number of ways to place m identical objects into n distinguishable bins is the same as the
number of ways to select m objects from a set of n different types of objects with repetition
allowed, and in both cases the answer is

(
n+m−1

m

)
.

• 2.6.2 6a: Here we are placing m = 50 identical objects (the burgers) into n = 20 distin-
guishable bins (the guests), so there are

(
20+50−1

50

)
=
(
69
50

)
ways.

• 2.6.2 6b: One each guest has received one burger each, there are m = 30 left over, which
must be distributed among n = 20 guests, so there are

(
20+30−1

30

)
=
(
49
30

)
ways.

• 2.6.2 6c: In the first part, there are 51 possibilities for the number k of burgers left over. If
k are left over, then we are dealing with the problem m = 50 − k and n = 20, leading to a
count of

(
20+50−k−1

50−k

)
=
(
69−k
50−k

)
. So the total count is

50∑
k=0

(
69− k
50− k

)
.

In the second part, again we start by giving each guest one vertex each. Then there are 31
possibilities for the number k of burgers left over when the balance is distributed. If k are
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left over, then we are dealing with the problem m = 30 − k and n = 20, leading to a count
of
(
20+30−k−1

30−k

)
=
(
49−k
30−k

)
. So the total count is

30∑
k=0

(
49− k
30− k

)
.

There’s a “trick” way to do both of these parts: introduce a phantom 21st guest to receive the
unused burgers. In the first part we are now dealing with the m = 50, n = 21 problem, so
there are

(
21+50−1

50

)
=
(
70
50

)
ways. In the second part we are dealing with the m = 30, n = 21

problem, so there are
(
21+30−1

30

)
=
(
50
30

)
ways.

General comment: We have just given a combinatorial proof of the following identity: for
all m,n,

m∑
k=0

(
n+m− k − 1

m− k

)
=

(
n+m

m

)
.

This is identical to
m∑
k=0

(
n+ k − 1

k

)
=

(
n+m

m

)
,

which is a more standard way to present this identity.

• 2.6.4 1(d): Experiment suggests Fn+1Fn−1 − F 2
n = (−1)n. We prove this by induction on n.

Base case is n = 1, which is trivial. We now try to deduce the n + 1 case from the n case.
The trick is to find exactly the right terms to apply the Fibonacci recurrence to:

F(n+1)+1F(n+1)−1 − F 2
n+1 = Fn+2Fn − F 2

n+1

= (Fn+1 + Fn)Fn − (Fn + Fn−1)Fn+1

= Fn+1Fn + F 2
n − FnFn+1 − Fn−1Fn+1

= −
(
Fn+1Fn−1 − F 2

n

)
= −(−1)n (induction hypothesis)
= (−1)n+1,

as required.

• 2.6.4 3: Form generating function:

A(x) = 5x+ a2x
2 + a3x

3 + . . .

= 5x+ (a1 + 6a0)x
2 + (a2 + 6a1)x

3 + . . .

= 5x+ x(a1x+ a2x
2 + . . .) + 6x2(a0 + a1x+ . . .)

= 5x+ xA(x) + 6x2Ax.

So
A(x) =

5x

1− x− 6x2
=

5x

(1 + 2x)(1− 3x)
=

1

1− 3x
− 1

1 + 2x

and an = 3n − (−1)n2n.
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• 2.6.4 5(d): Induction on n, base case n = 0 trivial. For the induction step:

n+1∑
k=0

F 2
k =

(
n∑
k=0

F 2
k

)
+ F 2

n+1

= FnFn+1 + F 2
n+1 (induction hypothesis)

= (Fn + Fn+1)Fn+1

= Fn+2Fn+1

= F(n+1)+1Fn+1,

as required.

• 2.6.4 8(a): We prove this by induction on n, the base cases n = 1 and 2 being trivial. For the
induction step:

Ln+1 = Ln + Ln−1

= (Fn+1 + Fn−1) + (Fn + Fn−2) (inductive hypothesis)
= (Fn+1 + Fn) + (Fn−1 + Fn−2)

= Fn+2 + Fn,

as required. Notice that base cases n = 1, 2 need to be verified here, since the induction
hypothesis is applied both to Ln and Ln−1.

• 2.6.4 10: Let hn be the number of hopscotch boards with n squares. It’s clear that h0 = 1
and h1 = 1. For n ≥ 2, there are hn−1 boards that begin with a single-square position (once
that square had been put down, it can be completed to a legitimate board by the addition of
any (n − 1)-square board), and there are hn−2 boards that begin with a two-square position.
So hn = hn−1 + hn−2 for n ≥ 2. The h’s are thus just a “shifted” Fibonacci sequence:
hn = Fn+1.

• 2.6.4 11: From the preceding problem, Fn is the number of hopscotch boards with n − 1
squares. How many such Hopscotch boards have exactly k two-square positions? The k two-
square positions account for 2k of the squares, leaving n − 1 − 2k single-square positions,
so (n− 1− 2k + k = n− k − 1 positions in all. To construct an (n− 1)-square Hopscotch
board with exactly k two-square positions, we just select which k of the n− k − 1 positions
are the two-square ones, so

(
n−k−1

k

)
choices in all. Summing over all possible k we get the

total number of (n− 1)-square Hopscotch boards:

hn−1 = Fn =
∑
k

(
n− k − 1

k

)
.

(Practically, k goes from 0 to the last k with 2k ≤ n − 1, but for any other k the binomial
coefficient is automatically zero, so we might as well sum over all k).
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• 2.6.5 2(a): Form generating function:

A(x) = a0 + a1x+ a2x
2 + . . .

= a0 + (a0 + c)x+ (a1 + c)x2 + . . .

= a0 + x(a0 + a1x+ . . .) + cx(1 + x+ x2 . . .)

= a0 + xA(x) +
cx

1− x
.

So
A(x) =

a0
1− x

+
cx

(1− x)2
.

The coefficient of xn in a0/(1 − x) is a0 times the coefficient of xn in 1/(1 − x), which
is a0 times 1 or a0. The coefficient of xn in cx/(1 − x)2 is c times the coefficient of xn in
x/(1− x)2, which is c times n or cn (this is equation (2.44) of the book, on page 183). So

an = a0 + cn.

• 2.6.5 2(e): Form generating function:

A(x) = a0 + a1x+ a2x
2 + . . .

= a0 + (ba0 + c)x+ (ba1 + 2c)x2 + (ba2 + 3c)x3 + . . .

= a0 + bx(a0 + a1x+ . . .) + cx(1 + 2x+ 3x2 + . . .)

= a0 + bxA(x) +
cx

(1− x)2
.

(The last part above is obtained either by noticing that the derivative of 1/(1−x) is 1/(1−x)2,
and that the derivative of 1+x+x2+ . . ., the power series of 1/(1−x), is 1+2x+3x2+ . . .,
so this must be the power series of 1/(1−x)2; or by using equation (2.44) of the text on page
183). So

A(x) =
a0

1− bx
+

cx

(1− bx)(1− x)2
.

We use partial fractions for the second term. Since b 6= 1 we write

cx

(1− bx)(1− x)2
=

A

1− bx
+

B

1− x
+

C

(1− x)2

and solve to get

A =
bc

(1− b)2
, B =

−c
1− b

, C =
1

1− b
,

so

A(x) =
a0

1− bx
+

(
bc

(1− b)2

)
1

1− bx
−
(

c

1− b

)
1

1− x
+

(
c

1− b

)
1

(1− x)2

and

an = a0b
n +

(
bc

(1− b)2

)
bn +

(
c

1− b

)
+ (n+ 1)

(
c

1− b

)
,

(the last part using the equation before (2.44) of the book, on page 183).
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• 2.6.5 7(a): t0 = 1, t1 = 2, t2 = 4, t3 = 7 (in this last case, only 111 is left out). For a
recurrence: consider how the sequence starts - with a 0, with 10, or with with 110 (it can’t
start with anything other than these three possibilities). This lets us say

tn = tn1 + tn−2 + tn−3.

We can use this for n ≥ 3, since it already gives t3 = 7.

• 2.6.5 7(b): Here’s the generating function of the t’s:

T (x) = t0 + t1x+ t2x
2 + t3x

3 + t4x
4 + . . .

= 1 + 2x+ 4x2 + (t2 + t1 + t0)x
3 + (t3 + t2 + t1)x

4 + . . .

= 1 + 2x+ 4x2 + x(T (x)− 2x− 1) + x2(T (x)− 1) + x3T (x)

so

T (x) =
1 + x+ x2

1− x− x2 − x3
.

• 2.6.5 7(c): Here’s the generating function of the t?’s:

T ?(x) = t?0 + t?1x+ t?2x
2 + t?3x

3 + . . .

= x2 + t0x
3 + t1x

4 + . . .

= x2 + x3T (x)

= x2 +
x3 + x4 + x5

1− x− x2 − x3

=
x2

1− x− x2 − x3

• 2.6.6 3(a): p3 = 1, p4 = 2, p5 = 5, p6 = 14. Pictures of p3 through p5 are easy to come up
with; for p6, see a picture at http://en.wikipedia.org/wiki/Catalan_number
in the section “Applications in Combinatorics”.

• 2.6.6 3(b): For p7, if the vertices are labeled cyclicly 1 through n, and vertex 1 is not an
endpoint of one of the the triangulation edges, then there must be an edge from 7 to 2, and
there are p6 ways to complete the triangulation.

If 1 is in an edge, and the earliest (in numerical order) vertex that it’s joined to by one of the
triangulation edges is 3 then there is one way to complete the triangulation on the 123 side,
and p6 ways on the 345671 side.

If 1 is in an edge, and the earliest vertex that it’s joined to by one of the triangulation edges
is 4 then there is one way to complete the triangulation on the 1234 side, and p5 ways on the
45671 side.

If 1 is in an edge, and the earliest vertex that it’s joined to by one of the triangulation edges
is 5 then there are two ways to complete the triangulation on each side of the 15 edge, inde-
pendently.
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If 1 is in an edge, and the earliest (in numerical order) vertex that it’s joined to by one of the
triangulation edges is 6 then there is one way to complete the triangulation on the 671 side,
and p5 ways on the 123456 side (26 must be an edge, since 1 can’t be joined to 3, 4 or 5).

This gives a total of p6 + p6 + p5 + 2 ∗ 2 + p5 = 42. S0 p7 = 42.

• 2.6.6 3(c): The last part suggests a general strategy for counting pn. We look at the earliest
vertex (in numerical order) that 1 is joined to by an edge of the triangulation. If that vertex is
3 (the smallest possible) then there is 1 way to complete to triangulation on the 123 side (it’s
already completed!) and pn−1 ways on the other side.

If the earliest vertex joined to 1 is k for some n− 1 ≤ k > 3, then, since 1 cannot be joined
to any of 3 through k − 1, it must be that to triangulate the 12 . . . k side we have an edge
from 2 to k, leaving pk−1 completions on the polygon 23 . . . k. On the other side (k . . . 1)
there are pn−k+2 triangulations (since what’s left is a (n − k + 2)-sided polygon), and these
triangulations can be done independently of the triangulations of the 12 . . . k side, giving
pk−1pn−k+2 in all.

Finally, if 1 is not an endpoint of one of the the triangulation edges, then there must be an
edge from n to 2, and there are pn−1 ways to complete the triangulation.

We get the recurrence: p3 = 1 and for n ≥ 3,

pn = pn−1 + p3pn−2 + p4pn−3 + . . .+ pn−2p3 + pn−1.

Defining p2 = 1, this can also be written as p2 = 1 and for n ≥ 3,

pn = p2pn−1 + p3pn−2 + p4pn−3 + . . .+ pn−2p3 + pn−1p2.

Setting pn+2 = cn, this becomes: c0 = 1 and for n ≥ 1,

cn = c0cn−1 + c1cn−2 + c2cn−3 + . . .+ cn−2c1 + cn−1c0.

This is the Catalan recurrence exactly, so

cn =

(
2n
n

)
n+ 1

, pn =

(
2n−4
n−2

)
n− 1

.

• 2.6.6 5: If we interpret UP steps as runs scored by White Sox, and DOWN steps as runs
scored by Cubs, then a mountain ridgeline is exactly a game between the teams that ends in
an n-n tie and in which the Cubs never hold the lead, so rn is exactly the nth Catalan number,
as we discussed in class.

• 2.6.6 8: The prime number p divides k! exactly[
k

p

]
+

[
k

p2

]
+

[
k

p3

]
+ . . .

times, where [x] is the greatest integer less than or equal to x. The term [k/p] counts the
number of multiples of p that are at most k; each of these contributes a factor of p; the term
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[k/p2] counts the number of multiples of p2 that are at most k; each of these contributes a
new factor of p that wasn’t counted in the first term; and so on. Notice that the sum can be
thought of as an infinite one: as soon as we get to a term [k/p`] where p` is greater than k,
we just start getting 0’s.

So, for each prime p, the number of times it divides (2k)! is exactly[
2k

p

]
+

[
2k

p2

]
+

[
2k

p3

]
+ . . .

the number of times it divides k!(k + 1)! is exactly([
k

p

]
+

[
k

p2

]
+

[
k

p3

]
+ . . .

)
+

([
k + 1

p

]
+

[
k + 1

p2

]
+

[
k + 1

p3

]
+ . . .

)
.

To show that (2k)!/(k!(k+1)!) is an integer, we need to show that for every prime p, the first
expression is at least as big as the second.

It is enough to show that for all integers α ≥ 1 and all k and p (a prime),[
2k

pα

]
≥
[
k

pα

]
+

[
k + 1

pα

]
Let’s say k/pα = mpα + r where 0 ≤ r ≤ pα − 1. Then 2k/pα = 2mpα + 2r. and
(k + 1)/pα = mpα + r + 1. We have[

2k

pα

]
=

{
2m if 2r < pα

2m+ 1 if 2r ≥ pα,[
k + 1

pα

]
=

{
m+ 1 if r = pα − 1
m othetrwise,

and [
k

pα

]
= m.

The only way it can happen that [
2k

pα

]
<

[
k

pα

]
+

[
k + 1

pα

]
is when r = pα − 1 and 2r < pα; but this can only happen if pα < 2, which cannot happen
since p is a prime, so ≥ 2, and α ≥ 1. So we are done.
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