Basic Combinatorics

Math 40210, Section 01 — Fall 2012

Homework 9 — Solutions
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e 2.6.2 6: In this question we use the basic fact, derived in class and in the textbook, that the
number of ways to place m identical objects into n distinguishable bins is the same as the

number of ways to select m objects from a set of n different types of objects with repetition
allowed, and in both cases the answer is (”+$_1).

e 2.6.2 6a: Here we are placing m = 50 identical objects (the burgers) into n = 20 distin-

guishable bins (the guests), so there are (**2)7") = ({) ways.

e 2.6.2 6b: One each guest has received one burger each, there are m = 30 left over, which

must be distributed among n = 20 guests, so there are (20+330071) = (gg) ways.

e 2.6.2 6¢: In the first part, there are 51 possibilities for the number % of burgers left over. If
k are left over, then we are dealing with the problem m = 50 — k and n = 20, leading to a
count of (20+50*k71) = (69*’“). So the total count is

50—k 50—k
i 69 — k
50— k)
k=0

In the second part, again we start by giving each guest one vertex each. Then there are 31
possibilities for the number £ of burgers left over when the balance is distributed. If % are



left over, then we are dealing with the problem m = 30 — k and n = 20, leading to a count
of (**7- 1) = (597F). So the total count is

30—k 30—k
i (49 — k)
— 30—k

There’s a “trick” way to do both of these parts: introduce a phantom 21st guest to receive the
unused burgers. In the first part we are now dealing with the m = 50, n = 21 problem, so
there are (21+50_1) = (;g) ways. In the second part we are dealing with the m = 30, n = 21

50
214+30—1\ _ (50
problem, so there are ( 30 ) = (30) ways.

General comment: We have just given a combinatorial proof of the following identity: for

all m, n,
i n+m— k;—l n+m
. )

k=0

i(”*’;‘l%(";m)

k=0

This is identical to

which is a more standard way to present this identity.

2.6.4 1(d): Experiment suggests F},, 1 F,,_; — F> = (—1)". We prove this by induction on n.
Base case is n = 1, which is trivial. We now try to deduce the n + 1 case from the n case.
The trick is to find exactly the right terms to apply the Fibonacci recurrence to:

Flnyny+1Fnyny-1 — Fr%Jrl = Fopl) — Fn+1
= (Fn+1+Fn)Fn_ (Fn—i_Fn*l)FnJrl
= FoFy+F2—EF,Fop — F 1 Fhp
= —(FpuFy — FY)
= —(—=1)" (induction hypothesis)
= (=",

as required.

2.6.4 3: Form generating function:

Alx) = 5x+asx® +azz® + ...
= 52+ (a; + 6ag)z? + (ag + 6a1)z® +
= br+a(ar +ar®+...) + 62 (ap +arx +...)
= br+zA(7) + 62°A,.
S0 5 5 1 1
T T
A - = = —
@) = =6 sz -37) 1-3x 1+2s
and a, = 3" — (—1)"2".




e 2.6.4 5(d): Induction on n, base case n = 0 trivial. For the induction step:

n+1 n
Zsz = (ZFIE>+F3+1
k=0 k=0

EF.Fhi1+ Fi 41 (induction hypothesis)
= (Fn+Fn+1>Fn+1
Fn+2Fn+1

= F(n—i—l)—i—an—l-la
as required.

e 2.6.4 8(a): We prove this by induction on n, the base cases n = 1 and 2 being trivial. For the
induction step:

Lyyw = Lo+ L,
= (Fpy1+ Fno1) + (F, + F,_5) (inductive hypothesis)
= (Foy1 +Fo) + (For + Fo)
= Fo+ F,,

as required. Notice that base cases n = 1,2 need to be verified here, since the induction
hypothesis is applied both to L,, and L,,_;.

e 2.6.4 10: Let h, be the number of hopscotch boards with n squares. It’s clear that Ay = 1
and hy = 1. For n > 2, there are h,,_; boards that begin with a single-square position (once
that square had been put down, it can be completed to a legitimate board by the addition of
any (n — 1)-square board), and there are h,,_» boards that begin with a two-square position.
So hp, = hp_1 + h,_o forn > 2. The h’s are thus just a “shifted” Fibonacci sequence:
hn — LI'n41.-

e 2.6.4 11: From the preceding problem, F;, is the number of hopscotch boards with n — 1
squares. How many such Hopscotch boards have exactly & two-square positions? The k two-
square positions account for 2k of the squares, leaving n — 1 — 2k single-square positions,
so (n—1—2k+k =n—k — 1 positions in all. To construct an (n — 1)-square Hopscotch
board with exactly k& two-square positions, we just select which k& of the n — k — 1 positions
are the two-square ones, SO ("7’“71) choices in all. Summing over all possible k£ we get the

k
total number of (n — 1)-square Hopscotch boards:

X (R,
k

(Practically, £ goes from 0 to the last £ with 2k < n — 1, but for any other & the binomial
coefficient is automatically zero, so we might as well sum over all k).



e 2.6.5 2(a): Form generating function:

A(z) = ag+arr+ax® + ...
ap + (ag + )z + (ay + )z + ...
= ap+ax(ag+az+..)+erx(l+x+2%..)

cx
= ao+zA(x) + T

So
ao cT

B (1—x)%
The coefficient of z™ in ay/(1 — x) is ag times the coefficient of ™ in 1/(1 — x), which

is ag times 1 or ag. The coefficient of 2™ in cx/(1 — x)? is c times the coefficient of 2" in
x/(1 — x)?, which is ¢ times n or cn (this is equation (2.44) of the book, on page 183). So

A(z)

a, = ag + cn.

e 2.6.5 2(e): Form generating function:

Alx) = ap+ar+ax®+ ...
= ag+ (bag + )z + (bay + 2¢)z* + (bag + 3c)x® + ...
= ag+br(ag+ax+...)+cr(l+2r+32°+...)
= ap+ brA(x) + “

(1—z)*
(The last part above is obtained either by noticing that the derivative of 1/(1—xz)is 1/(1—x)?,
and that the derivative of 1+z +22+. . ., the power series of 1/(1 —x), is 1+ 2z +3z*+. . .,

so this must be the power series of 1/(1 — x)?; or by using equation (2.44) of the text on page
183). So

_ ag n cr
S l—br  (1—bx)(l—ax)?
We use partial fractions for the second term. Since b # 1 we write

cx A B C

A(x)

by l—2? 1—br T1—z (I—ap
and solve to get
be —c 1
A= B = -
(1—-10)% 1-0b ¢ 1-0b
SO
ao be 1 c 1 c 1
Alz) = _
(=) 1—bx+<(1—b)2>1—bx (1—b>1—x+<1—b>(1—x)2
and

= ) (75) <00 (15)

(the last part using the equation before (2.44) of the book, on page 183).
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e 2657@): ty = 1,t; = 2,1ty = 4, t3 = 7 (in this last case, only 111 is left out). For a
recurrence: consider how the sequence starts - with a 0, with 10, or with with 110 (it can’t
start with anything other than these three possibilities). This lets us say

tn = tnl + it +ths.
We can use this for n > 3, since it already gives t3 = 7.

e 2.6.5 7(b): Here’s the generating function of the ¢’s:

T(x) = to+tiw +tox® +ts2® +tya* + ...
= 1420 +42 + (ty +t; +to)x® + (ts +ta + 1)z + ...
= 1420 +42* +2(T(z) — 20 — 1) + 2*(T(2) — 1) + 2°T ()
SO )
l+xz+=x
T = )
() l—z—2a%2—2a3

e 2.6.5 7(c): Here’s the generating function of the ¢*’s:

T*(x) = ty+tix+ o+t + ...
22+ tox® +tixt
2 + 2T ()
3+ 2t 4 2f
l—x—2a%—2a3

172

g "L‘Q—‘—

l—z—2a%2—23

e 2.6.6 3(a): p3 = 1, py = 2, p5 = 5, p¢ = 14. Pictures of p3 through p; are easy to come up
with; for pg, see apicture at http://en.wikipedia.org/wiki/Catalan_number
in the section “Applications in Combinatorics”.

e 2.6.6 3(b): For p;, if the vertices are labeled cyclicly 1 through n, and vertex 1 is not an
endpoint of one of the the triangulation edges, then there must be an edge from 7 to 2, and
there are pg ways to complete the triangulation.

If 1 is in an edge, and the earliest (in numerical order) vertex that it’s joined to by one of the
triangulation edges is 3 then there is one way to complete the triangulation on the 123 side,
and pg ways on the 345671 side.

If 1 is in an edge, and the earliest vertex that it’s joined to by one of the triangulation edges
is 4 then there is one way to complete the triangulation on the 1234 side, and p; ways on the
45671 side.

If 1 is in an edge, and the earliest vertex that it’s joined to by one of the triangulation edges
is 5 then there are two ways to complete the triangulation on each side of the 15 edge, inde-
pendently.



If 1 is in an edge, and the earliest (in numerical order) vertex that it’s joined to by one of the
triangulation edges is 6 then there is one way to complete the triangulation on the 671 side,
and ps; ways on the 123456 side (26 must be an edge, since 1 can’t be joined to 3, 4 or 5).

This gives a total of pg + pg + p5 + 2 * 2 + p5 = 42. SO p; = 42.
2.6.6 3(c): The last part suggests a general strategy for counting p,,. We look at the earliest
vertex (in numerical order) that 1 is joined to by an edge of the triangulation. If that vertex is

3 (the smallest possible) then there is 1 way to complete to triangulation on the 123 side (it’s
already completed!) and p,,_; ways on the other side.

If the earliest vertex joined to 1 is k& for some n — 1 < k > 3, then, since 1 cannot be joined
to any of 3 through £ — 1, it must be that to triangulate the 12... k% side we have an edge
from 2 to k, leaving p;_; completions on the polygon 23...k. On the other side (k...1)
there are p,,_» triangulations (since what’s left is a (n — k + 2)-sided polygon), and these
triangulations can be done independently of the triangulations of the 12... k% side, giving

Pk—1Pn—k+2 in all.

Finally, if 1 is not an endpoint of one of the the triangulation edges, then there must be an
edge from n to 2, and there are p,,_; ways to complete the triangulation.

We get the recurrence: p3 = 1 and for n > 3,

Pn = Pn-1 +P3Pn—2 + PaPn-3+ ...+ Dn_2P3+ Pn_1-

Defining p, = 1, this can also be written as p, = 1 and for n > 3,

Pn = P2Pn—1 + DP3Pn—2 + PaPn—-3 + ...+ Pn—2P3 + Pn—1P2-

Setting p,,1 2 = ¢, this becomes: ¢y = 1 and forn > 1,
Cp = CCp—1 F C1Cp—2 + C2Cp—3 + ... + Cp—2C1 + Cp—1Cp.

This is the Catalan recurrence exactly, so

() G=)

n+1’ Pn = n—1"

n

2.6.6 5: If we interpret UP steps as runs scored by White Sox, and DOWN steps as runs
scored by Cubs, then a mountain ridgeline is exactly a game between the teams that ends in
an n-n tie and in which the Cubs never hold the lead, so r,, is exactly the nth Catalan number,
as we discussed in class.

2.6.6 8: The prime number p divides k! exactly

EREREIS

times, where [z] is the greatest integer less than or equal to x. The term [k/p] counts the
number of multiples of p that are at most k; each of these contributes a factor of p; the term
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[k/p?] counts the number of multiples of p? that are at most k; each of these contributes a
new factor of p that wasn’t counted in the first term; and so on. Notice that the sum can be
thought of as an infinite one: as soon as we get to a term [k/p‘] where p’ is greater than k,
we just start getting 0’s.

So, for each prime p, the number of times it divides (2k)! is exactly
2k 2k 2k
—| + - + — +
p p p
the number of times it divides k!(k + 1)! is exactly
k k k k+1 k+1 k+1
—+—2+—3+...+ + 3 + 3 + ... ).
b p p p p p

To show that (2k)!/(k!(k+ 1)!) is an integer, we need to show that for every prime p, the first
expression is at least as big as the second.

It is enough to show that for all integers o > 1 and all £ and p (a prime),

2] 2] [

p” p” p”

Let’s say k/p® = mp® + r where 0 < r < p® — 1. Then 2k/p® = 2mp* + 2r. and
(k+1)/p* = mp® + r + 1. We have

2k 2m  if 2r < p®
pe | 2m+1 if 2r > p°,

E+11 [ m+1 ifr=p*—1
pe | m othetrwise,

H

— | =m.
pa

The only way it can happen that

#) < ] [5

is when r = p® — 1 and 2r < p“; but this can only happen if p® < 2, which cannot happen
since p is a prime, so > 2, and « > 1. So we are done.

and




