Name:	
Instructor:	

Math 10560, Final Exam: May 5, 2008

- Be sure that you have all 14 pages of the test.
- No calculators are to be used.
- The exam lasts for two hours.
- When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.

		PLEAS	E MAR	K YOU	R ANSV	VERS W	ITH A	N X, no	ot a circ	ele!	
1. 2.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	15. 16.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)
3. 4.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	18.	(a) (a)	(b) (b)	(c)	(d) (d)	(e) (e)
5. 6.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	19. 20.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)
7. 8.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	21. 22.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)
9. 10.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	23. 24.	(a) (a)	(b) (b)	(c)	(d) (d)	(e) (e)
11. 12.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	25.	(a)	(b)	(c)	(d)	(e)
13. 14.	(a) (a)	(b)	(c) (c)	(d) (d)	(e) (e)						

Instructor:

Multiple Choice

1.(6 pts.) The function $f(x) = x + e^x$ is one-to-one. Find $(f^{-1})'(1)$.

- (a) $\frac{1}{1+e}$

- (b) 1 (c) 0 (d) e^{-1} (e) $\frac{1}{2}$

2.(6 pts.) Solve the following equation for x:

$$\ln(x+4) - \ln x = 1 .$$

(a)
$$x = \frac{4}{1 - e}$$

(b)
$$x = \frac{4}{e-1} \text{ and } x = \frac{4}{e+1}$$

- There is no solution. (c)
- (d) x = e + 2 and x = e 2
- (e) $x = \frac{4}{e-1}$

Name: Instructor:

3.(6 pts.) Find the derivative of $(x^2 + 1)^{x^2+1}$.

- (a) $(x^2+1)^{x^2+1}(2x\ln(x^2+1))$
- (b) $(x^2+1)^{x^2+1} 2x(\ln(x^2+1)+1)$
- (c) $2x(x^2+1)^{x^2}$
- (d) $(x^2+1)^{x^2+1}$
- (e) This function is not defined and hence has no derivative.

4.(6 pts.) Compute the integral $\int_0^1 \frac{x^2 dx}{x^3 + 1}$.

- (a) $\frac{\ln 2}{3}$ (b) $\ln 2$ (c) 0 (d) $\frac{1}{2}$ (e) ∞

Name: _______
Instructor: ______

5.(6 pts.) Find $\lim_{x \to +\infty} \frac{3^x}{3x^3 + 8x^2 - 117x + 10}$.

- (a) Does not exist but is not $+\infty$ or $-\infty$.
- (b) $\frac{1}{3}$
- (c) $+\infty$
- (d) 1
- (e) $-\infty$

6.(6 pts.) Simplify $\tan^{-1}(\tan \frac{7\pi}{8})$.

(a) 0

(b) not enough information to tell.

(c) $\frac{7\pi}{8}$

(d) $-\frac{\pi}{8}$

(e) $\frac{\pi}{8}$

Name: ______
Instructor: _____

7.(6 pts.) Calculate the integral $\int_0^1 xe^{-x}dx$.

- (a) $1 \frac{2}{e}$
- (b) 1

(c) $-1 - \frac{1}{e}$

- (d) $1 \frac{1}{e}$
 - (e) $\frac{1}{e}$

8.(6 pts.) $\int_0^{\frac{\pi}{2}} \sin^3 x \cos^2 x \ dx =$

- (a) $\frac{5}{12}$
- (b) $\frac{4}{21}$

(c) $\frac{2}{15}$

- (d) $\frac{2}{45}$
- (e) $-\frac{2}{15}$

Name: _____

Instructor:

9.(6 pts.) Evaluate the integral

$$\int \frac{x^2 + 2x - 1}{x^3 - x} \, dx.$$

(a)
$$\ln |x(x+1)^2| + C$$

(b)
$$\ln \left| \frac{x^2 - x}{x+1} \right| + C$$

(c)
$$\ln \left| \frac{x^2 + x}{x - 1} \right| + C$$

(d)
$$\ln |x^3 - x| + C$$

(e)
$$-\frac{1}{x^2} + \ln \left| \frac{x+1}{x-1} \right| + C$$

10.(6 pts.) Estimate

$$\int_0^1 \cos(x^2) \, dx$$

using the Midpoint Rule with n=4

(a)
$$\frac{1}{4} \left(\cos(\frac{1}{16}) + 2\cos(\frac{1}{4}) + 2\cos(\frac{9}{16}) + \cos(1)\right)$$

(b)
$$\frac{1}{8} \left(\cos\left(\frac{1}{16}\right) + \cos\left(\frac{1}{4}\right) + \cos\left(\frac{9}{16}\right) + \cos(1)\right)$$

(c)
$$\frac{1}{4} \left(\cos\left(\frac{1}{64}\right) + 2\cos\left(\frac{9}{64}\right) + 2\cos\left(\frac{25}{64}\right) + \cos\left(\frac{49}{64}\right)\right)$$

(d)
$$\frac{1}{8}(1 + \cos(\frac{1}{16}) + \cos(\frac{1}{4}) + \cos(\frac{9}{16}))$$

(e)
$$\frac{1}{4} \left(\cos\left(\frac{1}{64}\right) + \cos\left(\frac{9}{64}\right) + \cos\left(\frac{25}{64}\right) + \cos\left(\frac{49}{64}\right)\right)$$

Instructor:

11.(6 pts.) Evaluate

$$\int_0^\infty \frac{e^x}{e^{2x} + 1} \, dx.$$

- (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{1}{2}$ (d) 1
- (e) diverges

12.(6 pts.) The curve $y = 1 - x^2$ with $0 \le x \le 1$ is revolved about the **y-axis**. Find the surface area of the resulting surface.

(a)
$$\frac{2\pi}{15} \left(6\sqrt{3} + 1 \right)$$

(b)
$$\pi \left(\sqrt{5} + \frac{1}{2} \ln |\sqrt{5} + 2| - 2 \right)$$

(c)
$$\frac{\pi}{6} \left(5\sqrt{5} - 1 \right)$$

(d)
$$\frac{\pi}{6}\sqrt{5}$$

$$(e) \quad \frac{2\pi}{35} \left(2\sqrt{3} - 22 \right)$$

Name: _____

Instructor:

13.(6 pts.) Find the centroid of the region bounded by

$$y = \frac{1}{x^2}$$
 $y = 0$, $x = 1$, $x = 2$.

- (a) $(\bar{x}, \bar{y}) = \left(2\ln 2, \frac{7}{24}\right)$
- (b) $(\bar{x}, \bar{y}) = \left(\frac{8 \ln 2}{7}, \frac{1}{6}\right)$
- (c) $(\bar{x}, \bar{y}) = \left(\frac{3}{2}, \frac{7}{24}\right)$

- (d) $(\bar{x}, \bar{y}) = \left(\frac{3}{2}, \frac{1}{160}\right)$
- (e) $(\bar{x}, \bar{y}) = \left(\frac{1}{2\ln 2}, \frac{7}{4\ln 2}\right)$

14.(6 pts.) Use Euler's method with step size 0.2 to estimate y(0.4) where y(x) is the solution of the initial-value problem

$$y' = 1 - 5xy,$$
 $y(0) = 0.$

- (a) $y(0.4) \approx 0.8$
- (b) $y(0.4) \approx 0.2$
- (c) $y(0.4) \approx 0.36$

- (d) $y(0.4) \approx 1$
- (e) $y(0.4) \approx 1.5$

Name: _____

Instructor:

15.(6 pts.) Solve the differential equation

$$y' = \sqrt{x}e^{-y}.$$

- (a) $y = -\ln\left(\frac{1}{2}x^{-1/2} + C\right)$
- (b) $y = \ln \left| \frac{2}{3} x^{3/2} \right| + C$
- (c) $y = -\ln\left(\frac{2}{3}x^{3/2} + C\right)$
- (d) $y = \ln\left(\frac{2}{3}x^{3/2} + C\right)$

(e) $y = \ln \left| \frac{1}{2} x^{1/2} \right| + C$

16.(6 pts.) Solve the differential equation

$$y' + 2y - 2e^x = 0.$$

(a) $y = \frac{2}{3}e^x + Ce^{-2x}$

(b) $y = \frac{2}{3}e^x + C$

(c) $y = 2e^{-x} + Ce^{-2x}$

 $(d) \quad y = \frac{1}{2e^x + C}$

(e) $y = e^x - \frac{e^x}{x} + \frac{C}{x}$

Instructor:

17.(6 pts.) Find the limit of the sequence $\left\{\frac{1}{2}\ln(n^2+1) - \ln(2n+1)\right\}_{n=1}^{\infty}$.

- Sequence diverges (a)
- $-\ln 2$ (b)

 $(c) \quad 0$

(d) ln 2 (e) -2

18.(6 pts.) Determine whether the follow sequence is convergent or not. If it is convergent, find its sum.

$$\sum_{n=1}^{\infty} \frac{3^n + 4^n}{7^n}$$

(a) Series diverges

- (b) Series converges to $\frac{12}{7}$ (d) Series converges to $\frac{5}{12}$
- Series converges to $\frac{25}{12}$ (c)

Series converges to $\frac{1}{7}$ (e)

Name:

Instructor:

19.(6 pts.) Which is the only statement that is true about the four series

- (I) $\sum_{n=1}^{\infty} \frac{1}{n^{5/3}}$ (II) $\sum_{n=1}^{\infty} 5^{n/3}$ (III) $\sum_{n=1}^{\infty} \frac{1}{n^{3/5}}$ (IV) $\sum_{n=1}^{\infty} \frac{1}{5^{n/3}}$?
- (a) All four series converge
- (I) converges, (II), (III) and (IV) diverge (b)
- (I) and (II) converge, (III) and (IV) diverge (c)
- (d) (I) and (IV) converge, (II) and (III) diverge
- (I) and (III) converge, (II) and (IV) diverge (e)

20.(6 pts.) Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-5)^n}{n}.$$

(a) (4,6)

(b) [4,6)

(c) [-1,1)

(d) (4, 6] (e) (-1,1)

Instructor: _____

21.(6 pts.) What is the coefficient of $(x-1)^2$ in the Taylor series of $f(x)=x^{1/3}$ centered at a = 1?

- (a) $-\frac{2}{9}$ (b) $\frac{1}{9}$ (c) $\frac{2}{9}$ (d) $-\frac{1}{3}$ (e) $-\frac{1}{9}$

22.(6 pts.) Which of the following is the first few terms of the Maclaurin series for

$$\int \frac{\sin x}{x} \ dx ?$$

- (a) $C \frac{x^2}{3(3!)} + \frac{x^4}{5(5!)} \frac{x^6}{7(7!)} + \cdots$
- (b) $C + x \frac{x^3}{3(3!)} + \frac{x^5}{5(5!)} \frac{x^7}{7(7!)} + \cdots$
- (c) $C \frac{x^2}{3!} + \frac{x^4}{5!} \frac{x^6}{7!} + \cdots$
- (d) $C + x \frac{x^2}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \cdots$
- (e) $C + x + \frac{x^3}{3} \frac{x^5}{5} + \cdots$

Name: _______
Instructor: ______

23.(6 pts.) The arc length of the parameterized curve $x = \cos^2 t$, $y = \sin t$, for $0 \le t \le \frac{\pi}{3}$, is given by which one of the following integrals?

- (a) $\int_0^{\frac{\pi}{3}} \cos t \sqrt{4 \sin^2 t + 1} \ dt$
- (b) $\int_0^{\frac{\pi}{3}} \sin t \sqrt{4 \sin^2 t + 1} \ dt$
- (c) $\int_0^{\frac{\pi}{3}} \sqrt{\cos^4 t + \sin^2 t} \ dt$
- (d) $\int_{0}^{\frac{\pi}{3}} \sqrt{1 + \cos^2 t} \ dt$
- (e) $\int_0^{\frac{\pi}{3}} \cos^2 t \sqrt{\cos^4 t + \sin^2 t} \ dt$

24.(6 pts.) Find the slope of the tangent line to the curve $r = 3 \sin \theta$ at $\theta = 0$. **Hint:** A polar curve is also a parametrized curve.

- (a) -1
- (b) 1
- (c) 0
- (d) 2
- (e) π

Name: _______
Instructor: ______

25.(6 pts.) The area inside the curve $r = 3 + 2\cos\theta$ and outside the circle r = 2 is given by which integral below?

Hint: The region is symmetric with respect to the x-axis.

(a)
$$\int_0^{\frac{2\pi}{3}} \left(12 + 5\cos\theta + 4\cos^2\theta\right) d\theta$$

(b)
$$\int_0^{\frac{\pi}{3}} \left(5 + 12\cos\theta + 4\cos^2\theta\right) d\theta$$

(c)
$$\int_0^{\frac{\pi}{3}} \left(12 + 5\cos\theta + 4\cos^2\theta\right) d\theta$$

(d)
$$\frac{1}{2} \int_0^{\frac{2\pi}{3}} \left(5 + 12\cos\theta + 4\cos^2\theta\right) d\theta$$

(e)
$$\int_0^{\frac{2\pi}{3}} \left(5 + 12\cos\theta + 4\cos^2\theta\right) d\theta$$

Name:		
Instructor:	ANSWERS	

Math 10560, Final Exam: May 5, 2008

- Be sure that you have all 14 pages of the test.
- No calculators are to be used.
- The exam lasts for two hours.
- When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.

					R ANSW	DIOS II	1111 11	,	70 W CII C		
1.	(a)	(b)	(c)	(d)	(ullet)	15.	(a)	(b)	(c)	(ullet)	(e)
2.	(a)	(b)	(c)	(d)	(ullet)		(ullet)	(b)	(c)	(d)	(e)
3.	(a)	(•)	(c)	(d)	(e)		(a)	(•)	(c)	(d)	(e)
4.	(ullet)	(b)	(c)	(d)	(e)	18.	()	(b)	. ,	(d)	(e)
5.	(a)	(b)	(•)	(d)	(e)		(a)	(b)		(•)	(e)
6.	(a)	(b)	(c)	(ullet)	(e)	20.	()	(b)	(c)	(ullet)	(e)
7.	(•)	(b)	(c)	(d)	(e)		(a)	(b)	(c)	(d)	(•)
8.	(a)	(b)	(ullet)	(d)	(e)	22.	,	(ullet)	(c)	(d)	(e)
9.	(a)	(•)	(c)	(d)	(e)		(•)		(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(ullet)	24.	(a)	(b)	(ullet)	(d)	(e)
11.	(•)	(b)	(c)	(d)	(e)	25.	(a)	(b)	(c)	(d)	(•)
12.	(a)	(b)	(ullet)	(d)	(e)						
13.	(•)	(b)	(c)	(d)	(e)						
14.	(a)	(b)	(ullet)	(d)	(e)						