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Fig. 1: Overview of VolSegGS. Deformable 3D Gaussians are learned to represent a dynamic scene. Segmentation is then performed
in two stages: (1) coarse-level segmentation based on approximate view-independent colors of the Gaussians and (2) fine-level
segmentation leveraging an affinity field network. Tracking over the dynamic scene is achieved using a deformation field network.

Abstract—Visualization of large-scale time-dependent simulation data is crucial for domain scientists to analyze complex phenomena,
but it demands significant I/O bandwidth, storage, and computational resources. To enable effective visualization on local, low-end
machines, recent advances in view synthesis techniques, such as neural radiance fields, utilize neural networks to generate novel
visualizations for volumetric scenes. However, these methods focus on reconstruction quality rather than facilitating interactive
visualization exploration, such as feature extraction and tracking. We introduce VolSegGS, a novel Gaussian splatting framework that
supports interactive segmentation and tracking in dynamic volumetric scenes for exploratory visualization and analysis. Our approach
utilizes deformable 3D Gaussians to represent a dynamic volumetric scene, allowing for real-time novel view synthesis. For accurate
segmentation, we leverage the view-independent colors of Gaussians for coarse-level segmentation and refine the results with an
affinity field network for fine-level segmentation. Additionally, by embedding segmentation results within the Gaussians, we ensure
that their deformation enables continuous tracking of segmented regions over time. We demonstrate the effectiveness of VolSegGS
with several time-varying datasets and compare our solutions against state-of-the-art methods. With the ability to interact with a
dynamic scene in real time and provide flexible segmentation and tracking capabilities, VolSegGS offers a powerful solution under low
computational demands. This framework unlocks exciting new possibilities for time-varying volumetric data analysis and visualization.

Index Terms—Volume visualization, novel view synthesis, scene segmentation, segment tracking, deformable Gaussian splatting

1 INTRODUCTION

Domain scientists across scientific and engineering disciplines often
model complex phenomena through large-scale simulations. They typi-
cally run these simulations on high-performance computing resources
to analyze time-dependent processes. As a result, these simulations
generate vast amounts of high-resolution raw volumetric data over hun-
dreds or even thousands of timesteps. Standard direct volume rendering
(DVR) techniques require access to these volumetric data during ren-
dering. The large data size demands significant I/O bandwidth, storage,
and computational power for visualization and analysis. This poses
considerable challenges, making it difficult for domain scientists to
perform these tasks on standard desktop computers.

In DL4SciVis [62], recent advances in visualization generation [3,
18,20,22] aim to tackle these challenges by enabling novel view synthe-
sis (NVS) of volumetric scenes using multi-view 2D rendering images
instead of 3D volumetric data. These methods go beyond data genera-
tion [14–17,19,57,73] and neural compression [13,35,53,56,70]. They
significantly reduce data transfer and storage requirements by ensuring
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the solutions remain independent of the underlying data resolution. For
instance, InSituNet [20] and CoordNet [18] synthesize high-quality
visualization images by training deep neural networks on 2D rendering
images. However, using generative and global networks leads to slow
training, making these solutions less desirable for interactive applica-
tions. Furthermore, these works rely on interpolating 2D images for
synthesizing novel views without incorporating 3D awareness, yielding
subpar-quality synthesized visualizations.

In contrast, a more recent work of ViSNeRF [74] utilizes neural
radiance fields (NeRF) [40] to represent dynamic volumetric scenes.
Leveraging the factorization techniques from TensoRF [6], ViSNeRF
requires a small number of training images, achieves fast training,
and produces synthesized results with superior quality. Nevertheless,
ViSNeRF still falls short in rendering speeds due to the required DVR
computations inherent in NeRF.

Another key limitation of these visualization generation techniques
is that, in the absence of the original volumetric data and the cor-
responding transfer function (TF), they do not support altering the
appearance of visualizations at runtime. This restriction hampers the
flexibility to adjust visualizations and examine specific regions in detail.
StyleRF-VolVis [58] addresses this limitation by enabling color-based
content segmentation of a volumetric scene learned by NeRF to support
downstream targeted appearance editing. Nevertheless, this solution
is limited to static 3D scenes, lacks real-time rendering for certain
style edits, and restricts segmentation to color-based regions without
refinement for precise segmentation.

To enhance the performance and flexibility in visualization gener-
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ation and provide the previously unavailable capability of segment
extraction and tracking, we propose VolSegGS, Volumetric scene
Segmentation based on Gaussian Splatting (GS). As an alternative
solution for NeRF, the revival of direct projection of Gaussian splats
for volume visualization through the tremendous success of 3DGS [28]
points out a promising direction for real-time NVS. Our VolSegGS is a
novel framework that utilizes deformable 3D Gaussians for dynamic
volumetric scene representation, offering new 3D segmentation and
tracking capabilities. The primary objective is to retain the dynamic
scene representation of ViSNeRF while achieving real-time render-
ing. Specifically, instead of using ViSNeRF to store the densities and
colors of a dynamic scene, we leverage its architecture to create an
efficient deformation field network to capture the deformation of 3D
Gaussians. This allows us to represent the dynamic volumetric scene
while maintaining interactive rendering through the rasterization of
3D Gaussians, avoiding the computationally intensive DVR process
embedded in NeRF.

Furthermore, we propose a two-level segmentation strategy for flex-
ible segmentation of the 3D volumetric scene. First, the coarse-level
segmentation is based on the colors of 3D Gaussians. Second, the
fine-level segmentation utilizes an affinity field network trained with 2D
masks generated by the segment anything model (SAM) [32]. Users
can select a segment of interest at an appropriate level and continu-
ously track it throughout the dynamic scene. This is possible because
our segmentation is performed directly on the Gaussians. Therefore,
the segmented regions naturally follow temporal deformations of 3D
Gaussians, ensuring consistent tracking over time.

Our VolSegGS framework provides a unified solution for segmenta-
tion, tracking, and rendering, empowering the exploration of a dynamic
volumetric scene with greater efficiency and flexibility. To summarize,
our contributions are as follows:

• VolSegGS employs deformable 3D Gaussians to represent dy-
namic volumetric scenes learned from multi-view 2D volume
rendering images. This eliminates the need for the original 3D
volume and enables real-time exploratory visualization.

• We propose a two-level segmentation strategy for flexible vol-
umetric scene segmentation and utilize the deformation of 3D
Gaussians to continuously track arbitrary segments in real time.

• We evaluate VolSegGS against state-of-the-art methods for dy-
namic scene representation and 3D segmentation, demonstrating
its effectiveness in real-time NVS and 3D segmentation across
multiple time-varying datasets.

• We showcase the real-time segment tracking capabilities of the
complete VolSegGS framework across various dynamic scenarios,
supported by quantitative evaluations that highlight its accuracy
and consistency.

2 RELATED WORK

Visualization generation. Visualizing large-scale, time-dependent sim-
ulation data demands significant I/O bandwidth, storage, and computa-
tional resources. To mitigate these challenges, deep learning techniques
have been developed to generate visualizations directly via neural net-
works. These methods facilitate TF optimization [3], rendering effects
adjustment [22], image super-resolution [2, 63, 65], NVS [18], and
parameter space exploration [20,51], all without requiring access to the
original volumetric data. Recent advances have introduced neural rep-
resentations of volumetric data and 3D scenes via scene representation
networks (SRNs) [64, 68, 69], enabling high-fidelity visualization with
strong 3D consistency while greatly reducing storage and I/O costs.

Building upon the SRN framework, VolSegGS leverages deformable
3D Gaussians to represent dynamic volumetric scenes. It is computa-
tionally efficient compared to existing approaches and enables real-time
NVS, facilitating interactive and dynamic visualization exploration.

Novel view synthesis. For NVS, NeRF [40] has gained significant
attention for its ability to reconstruct high-fidelity 3D scenes from
2D images. NeRF represents a 3D scene as a continuous function,
utilizing a multi-layer perceptron (MLP) to map spatial coordinates
to density and color values. However, NeRF suffers from slow train-
ing and rendering, primarily due to its implicit representation and

the computational cost of DVR. In response, a series of follow-up
works [6, 11, 42, 77] have introduced explicit feature grids, either alone
or combined with lightweight MLPs, to enhance 3D scene representa-
tion efficiency. While these approaches have reduced training times to
minutes, they still fail to achieve truly interactive rendering. A more
recent advance, 3DGS [28], represents 3D scenes using 3D Gaussians
and replaces DVR with efficient rasterization, enabling real-time ren-
dering without relying on neural networks. Although these methods
have been limited to static scenes, numerous studies [44, 45, 67, 71, 72]
have explored deformable radiance fields to model temporal changes in
dynamic scenes.

In volume visualization, researchers have leveraged NeRF and GS
for high-fidelity visualization. For instance, ViSNeRF [74] employs a
multi-dimensional NeRF to facilitate flexible visualization synthesis
and parameter exploration. ReVolVE [75] reconstructs volumes from
multi-view training images for visualization enhancement. StyleRF-
VolVis [58] applies NeRF for expressive volumetric stylization, and
iVR-GS [59] and TexGS-VolVis [55] utilize editable GS for inverse
volume rendering and stylization.

VolSegGS adopts deformable 3D Gaussians to represent dynamic
volumetric scenes. Unlike ViSNeRF, which also handles dynamic
scenes, VolSegGS achieves real-time rendering while enabling tempo-
ral tracking of 3D segments via Gaussian deformation. Additionally,
incorporating ViSNeRF’s hybrid representation for the deformation
field, VolSegGS improves reconstruction quality and training efficiency
over prior deformable radiance field methods.

3D segmentation. In conventional volume visualization using DVR,
TFs map voxel intensities to color and opacity, effectively serving
as a basic form of 3D segmentation. Building on this concept, tradi-
tional methods [24, 25, 37, 46, 54, 61] extract high-dimensional features
from volume data to enable more advanced classification using multi-
dimensional TFs. However, handling high-dimensional features for
large-scale volume data is impractical on local machines, and manually
designing multi-dimensional TFs is both complex and time-consuming.
Another research direction [9, 60] applies deep learning for semantic
segmentation of 3D volume data. While these methods produce expert-
quality results, their reliance on manual annotations makes them costly
in both time and human effort.

A more recent trend leverages 2D-based foundation segmentation
models, performing slice-by-slice segmentation on volume data. For ex-
ample, MedSAM [38] applies the segment anything model (SAM) [32]
to segment medical images from CT and MRI scans. Although foun-
dation models reduce training costs, slice-by-slice processing remains
inherently inefficient. With the emergence of NeRF and 3DGS, re-
searchers have explored more diverse and efficient approaches for inte-
grating 2D foundation models into 3D segmentation. These approaches
include: transforming multi-view 2D masks into 3D masks [5, 7, 23],
distilling semantic knowledge from foundation models into 3D rep-
resentations [12, 29, 33], and training affinity fields with 2D mask
supervision from foundation models [4, 8, 30, 76].

VolSegGS introduces a two-level strategy for flexible 3D segmenta-
tion of volumetric scenes: (1) coarse-level segmentation relies on the
color attributes of 3D Gaussians, aligning with TF-based classification;
(2) fine-level segmentation employs an affinity field network trained
using 2D masks generated by SAM, allowing foundation models to
be efficiently integrated into 3D segmentation. This design ensures
compatibility with traditional TF-based segmentation methods while
leveraging the strengths of modern foundation models. The affinity
field enables multi-scale scene decomposition with a single training
pass, making it an efficient alternative to traditional segmentation ap-
proaches. Moreover, semantic priors learned from real-world data
may not generalize well to simulated datasets, making knowledge dis-
tillation approaches less effective for scientific visualization, further
highlighting the advantages of our affinity field-based approach.

Segment tracking. Traditional approaches track segments of inter-
est in time-varying volumetric data by explicitly comparing geometric
features across consecutive timesteps. Early methods [10,26,41,49,52]
use algorithms that match overlapping regions with similar characteris-
tics between adjacent timesteps. While these methods achieve accurate



tracking, they require each target segment to be processed separately
across all timesteps, leading to significant inefficiencies in practical
applications. Another class of approaches [48, 66] leverages merge
trees to capture the hierarchical topological structure of volume data.
By comparing merge trees and constructing connection graphs, these
methods track regions defined by the merge trees. While this approach
enables global tracking, computing merge trees for every timestep
remains computationally expensive.

Unlike previous methods, VolSegGS models the deformation of 3D
Gaussians to capture temporal variations in dynamic volumetric scenes.
This allows for real-time visualization exploration and segment tracking
at any point in time, including unseen intermediate timesteps.

3 VOLSEGGS
While methods like InSituNet [20] and ViSNeRF [74] have success-
fully enabled the exploration of dynamic visualization scenes without
requiring the original volume data, VolSegGS extends this capability by
integrating robust 3D segmentation techniques and enabling real-time
tracking and exploration of segmented regions across a dynamic scene.

As shown in Figure 1, VolSegGS begins by optimizing deformable
3D Gaussians (Sections 3.1 and 3.2) to represent the dynamic scene.
Users can then select a scene frame at any desired timestep for 3D seg-
mentation, which is applied to the corresponding deformed Gaussians.
The segmentation process consists of two key stages: (1) coarse-level
color-based segmentation (Section 3.3), where Gaussians are grouped
based on their approximate view-independent colors; and (2) fine-level
affinity-based segmentation (Section 3.4), which refines the segmen-
tation by learning affinity features from 2D masks generated by SAM.
Users choose a scene frame to pick a segment of interest for track-
ing. Since segmentation is performed directly on the Gaussians, the
segmented regions naturally follow Gaussian deformations, ensuring
consistent tracking throughout the dynamic scene.

3.1 3D Gaussian Splatting
3DGS [28] is a highly efficient alternative to NeRF [40] for represent-
ing 3D scenes. Unlike NeRF, which relies on neural network-based
implicit representations, 3DGS employs a rasterization-based approach
with a fully explicit representation, enabling real-time rendering. The
Gaussian function G(x) at a spatial position x is defined as

G(x) = exp
(
−1

2
(x−µµµ)T

Σ
−1(x−µµµ)

)
, (1)

where µµµ represents the spatial mean, and Σ is the covariance matrix,
which encodes the anisotropic shape of the Gaussian. The covariance
matrix Σ can be decomposed as

Σ = RSST RT , (2)

where R is the rotation matrix and S is the scaling matrix. To facilitate
separate optimization of these factors, we parameterize the scaling
vector s and the rotation quaternion r as independent Gaussian attributes
rather than directly optimizing the covariance matrix Σ.

During rendering, 3D Gaussians are projected onto the 2D image
plane. This requires transforming the 3D covariance matrix Σ into a 2D
covariance matrix Σ′, defined as

Σ
′ = JWΣWT JT , (3)

where W is the viewing transformation matrix, and J is the Jacobian
matrix of the affine approximation of the projective transformation.

The final pixel color C in the 2D rendered image is determined by
blending N overlapping Gaussians in order, computed as

C = ∑
i∈N

ciαi

i−1

∏
j=1

(1−α j), (4)

where ci is the view-dependent color of the i-th Gaussian, parameter-
ized by spherical harmonic (SH) coefficients. The opacity term αi is
computed as a weighted product of the Gaussian’s covariance matrix
Σ and its intrinsic opacity o. Note that in volume visualization, view-
dependent color is produced during the shading process in DVR. In
this work, we employ Blinn-Phong shading with ambient, diffuse, and

specular components to enhance perceptual clarity. While specular
reflection is inherently view-dependent, our use of headlight illumi-
nation also introduces view dependency into the diffuse component.
In DVR volumetric scenes, the opacity attribute of Gaussians plays a
critical role in representing the scene’s semi-transparency, enabling the
visualization of overlapping structures. As a result, each 3D Gaussian
at a spatial position x is parameterized by five learnable attributes: (µµµ ,
r, s, c, o), representing spatial mean, rotation quaternion, scaling vector,
view-dependent color, and opacity.

3.2 Deformable 3D Gaussians for Dynamic Scene
Recent works [36, 67, 71, 72] have extended 3DGS to represent dy-
namic scenes by introducing time-dependent modifications to Gaussian
attributes. These modifications, often called deformations, allow 3D
Gaussians to adapt over time, leading to deformable 3D Gaussians,
which incorporate time-varying attributes. Here, we present the formu-
lation of deformable 3D Gaussians as used in VolSegGS.

Deformable 3D Gaussian. We define the deformation of a canonical
3D Gaussian G as ∆G, i.e., ∆Gt = Gt −G, where Gt represents the
deformed 3D Gaussian at timestep t. The deformation ∆G captures
changes in mean position ∆µµµ , rotation ∆r, scaling ∆s, and opacity
∆o. In particular, geometric deformations—including ∆µµµ , ∆r, and
∆s—model changes in the geometry of visible regions in a dynamic
scene. Meanwhile, opacity deformation ∆o captures the appearance
and disappearance of scene regions over time. The color c remains
unchanged to ensure consistent coarse-level segment tracking. By
predicting ∆Gt , we obtain the deformed Gaussian Gt with attributes
(µµµt , rt , st , c, ot ). These updated Gaussians Gt are then used to render
the scene frame at timestep t.

canonical 3D Gaussians deformed 3D Gaussiansdeformation field network

t

μ (x, y, z) Δμ, Δr, Δs ,Δo

canonical 
Gaussian mean

time

(a)

(b)

(c)

(d)

Gaussian deformation

Fig. 2: The deformation field network takes the mean positions of 3D
Gaussians as input and outputs their deformations. It features an explicit
encoder structure consisting of (a) spatial feature planes and vectors,
as well as (b) a temporal feature vector. The features are sampled
from these planes and vectors, then (c) concatenated and fed into (d) a
lightweight MLP decoder.

Deformation field network. Following [67, 71], for a set of canon-
ical 3D Gaussians G, we predict the global deformation ∆G using a
deformation field network F , such that ∆Gt = F(G, t) at timestep t.
Inspired by ViSNeRF [74], as shown in Figure 2, our F adopts a hybrid
architecture, integrating an explicit spatiotemporal structure encoder H
and a lightweight MLP decoder D. In the encoder H, the explicit 4D
feature tensor T 4 ∈RXY ZT is decomposed into three spatial feature ma-
trices (MXY , MXZ , and MY Z), three spatial feature vectors (vX , vY , and
vZ), and one temporal feature vector (vT ). This decomposition signifi-
cantly reduces memory consumption while preserving expressiveness.
The formulation is expressed as

T 4 =T 3 ◦T 1 (5)

=
( Rs

∑
r=1

MXY
r ◦vZ

r +MXZ
r ◦vY

r +MY Z
r ◦vX

r

)
◦

Rt

∑
r=1

vT
r , (6)

where Rs and Rt are the numbers of low-rank and one-rank components
in spatial and temporal space, respectively. If the spatial resolution
is N (i.e., N = X = Y = Z), and the temporal resolution is T , this
decomposition reduces the complexity of the deformation field from



O(N3T ) to O(RsN2 +RsN +RtT ). The encoder H takes the means of
G as input and outputs the sampled features in spatiotemporal space.
The decoder D takes these encoded spatiotemporal features as input and
predicts the deformation ∆G. As shown in Figure 3, the hybrid structure
allows VolSegGS to generate higher-quality results with sharper edges
and more precise structures than the fully implicit one.

(a) fully implicit (b) hybrid (c) GT
Fig. 3: Comparison of deformation field network encoder structures via
rendered images of the Tangaroa dataset. The corner images highlight
the perceptible pixel-wise differences, with colors ranging from purple to
green to red, corresponding to low, medium, and high differences.

Optimization. Before learning the deformation of 3D Gaussians,
we train the canonical 3D Gaussians G following the 3DGS frame-
work [28], without incorporating temporal information. To optimize
the Gaussians, we minimize the L2 loss between the rendered image Î
at a training view and the ground truth (GT) image I

LL2 = ∥Î − I∥2
2. (7)

After warming up G, we jointly optimize G and F . Since the encoder
H maintains an explicit representation, we introduce total variation
(TV) regularization to smooth the learned features. The TV loss for a
2D matrix M and a 1D vector v is defined as

LTV = LTV1 +LTV2 ,

LTV1 = ∑v∈V ∑i ∥vi −vi−1∥2
2,

LTV2 = ∑M∈M ∑i, j

(
∥Mi, j −Mi−1, j∥2

2 +∥Mi, j −Mi, j−1∥2
2

)
,

(8)

where V represents the set of vectors, and M is the set of matrices.
In practice, we observed that using L2 loss alone introduced irregular

artifacts due to overfitting. To mitigate the artifacts and smooth the
rendering results, we incorporated an additional structural dissimilarity
(DSSIM) loss, defined as

LDSSIM = 1−SSIM(Î, I), (9)

where SSIM(Î, I) is the structural similarity index measure (SSIM)
between the rendered image Î and the GT image I.

The joint optimization of G and F is guided by the full loss function

L= LL2 +λ1LTV +λ2LDSSIM, (10)
where λ1 and λ2 are weights that balance the contributions of TV and
DSSIM losses. In the appendix, we provide a detailed analysis of the
loss functions and their impact on the performance of VolSegGS.
3.3 Coarse-Level Color-Based Segmentation
In scientific visualization, DVR uses a TF to map scalar voxel values
to corresponding colors and opacities, enhancing the contrast between
different components in a 3D dataset. However, because DVR consists
of overlapping semi-transparent layers, distinguishing individual com-
ponents in a 2D rendering after compositing becomes challenging. By
reconstructing a 3D scene from 2D images using 3D Gaussians, we can
identify distinct, coarse-level components based on the color attributes
of the Gaussians. For simplicity, we assume that Gaussian colors
remain time-invariant, ensuring consistent color-based segmentation
across a dynamic scene.

View-independent color approximation. Due to DVR shading
and lighting effects, a Gaussian’s color c may vary depending on the
viewing direction d. Thus, before clustering Gaussians, we approximate
the view-independent color c̃ by averaging the view-dependent colors
cd across all sampled viewing directions D

c̃ ≈ 1
∥D∥ ∑

d∈D
cd. (11)

We then apply a clustering algorithm, such as k-means, to group Gaus-
sians based on their approximate view-independent colors. Color differ-
ences are measured using Euclidean distance in the RGB color space,

(a) before removal (b) after removal (c) GT
Fig. 4: Outlier removal using the combustion dataset shows the purple
segment after coarse-level segmentation.

and the cluster centroids serve as the representative colors for different
components. Users can select components by choosing a representative
color or clicking directly on the rendered image.

Outlier removal. In practice, color-based segmentation can produce
outliers due to the visualization’s lighting effects or semi-transparent
layers. When segments are viewed individually, these outliers become
evident and can negatively affect the quality of 2D mask generation
in the subsequent fine-level segmentation. To mitigate this issue, we
employ an outlier removal technique. Specifically, we search for neigh-
bors within a small-radius sphere for each Gaussian. The Gaussian is
removed from the segmentation if the number of neighbors falls below
a predefined threshold. Although simple, this technique effectively
removes outliers and improves the overall quality of the segmentation
results, as shown in Figure 4.

3.4 Fine-Level Affinity-Based Segmentation
Color-based segmentation identifies components in the 3D scene based
on the colors of 3D Gaussians. However, it cannot distinguish fine-
grained structures within components that share similar colors. To
address this limitation, we introduce fine-level affinity-based segmenta-
tion, which lifts 2D masks generated from SAM to a 3D affinity field,
subdividing the coarse-level color-based segmentation results.

contrastive loss

SAM

means of
Gaussians

3D mask scales

Gaussian
affinity features

renderx

y

z

x

y

z

rendered image(a) SAM masks(b)

affinity field network
(c)

rendered Gaussian affinity features(e)

(f)(d)

Fig. 5: Affinity field network. (a) A rendered view of the mantle dataset
using VolSegGS. (b) 2D masks generated by SAM. (c) The affinity field
network takes the means of the Gaussians and 3D mask scales as
input to generate affinity features for the Gaussians. (d) 3D mask scales
control the segmentation granularity. (e) Affinity features of the Gaussians
rendered in the view. (f) Contrastive loss used for optimizing the affinity
field network.

Affinity field network. Recent works on Gaussian Grouping [8, 30,
76] have utilized feature fields to model the affinity between Gaussians,
effectively grouping those that are closely related. Instead of directly
optimizing the Gaussian affinity feature as an additional attribute, as
shown in Figure 5 (c), we employ a lightweight MLP as the affinity field
network, which uses the mean of each Gaussian to query its affinity
feature. This approach offers two key advantages: (1) the implicit MLP
generates a smoother, more continuous affinity field, helping mitigate
the impact of inconsistent masks across different views, and (2) the
model remains compact, as its size is independent of the total number
of Gaussians. To offer hierarchical fine-level segmentation, the affinity
field network takes an additional 3D mask scale input to control the
granularity of segmentation, as indicated in Figure 5 (d) and Figure 6.

2D mask generation. As illustrated in Figure 5 (b), we utilize
SAM [32] to generate 2D masks for training the affinity field net-



work. First, users select a scene frame at timestep t from the dynamic
scene to perform fine-level segmentation on the deformed Gaussians
Gt . VolSegGS then renders each coarsely segmented region in the
selected scene frame separately from multiple views. Finally, we use
SAM to generate 2D masks from the rendered images. We generate a
grid of points for each image and use the SAM predictor to produce
three candidate masks per point at different scales. We select the mask
with the highest confidence score and apply non-maximum suppression
(NMS) [43] to refine overlapping masks. As a result, each view pro-
duces a set of masks representing the segmented regions. To estimate
the 3D scale for each mask, we identify the Gaussians within the mask
and calculate the standard deviation of their means. Due to the chal-
lenge of consistently registering masks across different views, we train
the affinity field network on a per-view basis.

Optimization. To optimize the affinity field network, we first select
a random training view and obtain all masks generated by SAM along
with their corresponding 3D scales. Then, we use the affinity field
network to query the affinity feature f of each deformed Gaussian Gt
at the user-selected timestep t, using the 3D scale of its corresponding
SAM mask. Next, we render the affinity feature using the same blending
process as described in Equation 4, i.e.,

F = ∑
i∈N

fiαi

i−1

∏
j=1

(1−α j). (12)

As shown in Figure 5 (f), we compute the contrastive loss Lfeat using
the rendered affinity features of a view to optimize the affinity field
network

Lfeat = ∑
i∈N

∑
j∈N

δ (Fi,F j),where (13)

δ (Fi,F j) =

{
1−⟨Fi,F j⟩, if in the same mask
⟨Fi,F j⟩, otherwise

(14)

where Fi and F j are rendered affinity features. ⟨Fi,F j⟩ denote the
cosine similarity between Fi and F j. After training the affinity field
network, VolSegGS can segment the deformed Gaussians at timestep t
by querying their affinity features at multiple scales, thereby producing
hierarchical fine-level segmentation, as shown in Figure 6.

(a) coarse segment (b) large (c) medium (d) small
Fig. 6: Multi-scale fine-level segmentation with various granularities using
the mantle dataset. Top row: cyan segment. Bottom row: pink segment.

Table 1: Datasets for visualization generation of dynamic scenes, with
training images in PNG format.

volume volume # timesteps # views per training image
dataset resolution size (GB) for training timestep size (MB)
five jets 256×256×256×100 6.25 10 40 79.35

Tangaroa 600×360×240×100 19.31 20 30 145.22
mantle 720×402×360×100 38.82 20 20 43.03
vortex 512×512×512×100 50 30 20 169.66

combustion 960×1440×240×100 123.59 30 30 430.69

4 RESULTS AND DISCUSSION

This section presents qualitative and quantitative results for each stage
of our framework, including visualization generation, 3D segmentation,
and segment tracking.

4.1 Visualization Generation for Dynamic Scenes
Since effective segmentation relies on high-quality images, we assess
the visualization generation quality of VolSegGS for dynamic scenes.

Datasets. As shown in Table 1, VolSegGS is evaluated using dy-
namic visualization scenes from five time-varying volumetric datasets.
We uniformly sample 100 consecutive intermediate timesteps from each
dataset and render the scene frames for each timestep at a fixed image
resolution of 800×800. While all 100 timesteps are used to generate

inference images for evaluating the quality of VolSegGS and baseline
methods, a subset of timesteps is evenly sampled for generating training
images. The number of sampled timesteps for training is adjusted based
on the variation in speed of the dynamic volumetric scene. To ensure
an even distribution of training views around the volume data, camera
positions are determined using the spherical Fibonacci point set [39],
which uses a Fibonacci spiral to create a nearly uniform arrangement
without clustering. The test set is rendered using a spherical camera
system with 181 views, arranged along a spiral path with increasing
elevation and azimuth angles, capturing the changing scene frames
across the 100 timesteps.

Baselines. To evaluate the performance of VolSegGS, we compare
it with three methods from scientific visualization and two deformable
GS techniques:

• InSituNet [20]: A surrogate model using a GAN for parameter-
space exploration of ensemble simulations. We modify InSituNet
by adding upscaling convolutional blocks to output 1024×1024
images, which are then resized to 800×800 for evaluation.

• CoordNet [18]: A coordinate-based implicit neural representation
model designed for multiple visualization tasks, including NVS
and temporal interpolation.

• ViSNeRF [74]: A NeRF-based model utilizing efficient multi-
dimensional factorization for dynamic visualization synthesis.

• 4DGS [72]: A deformable GS method that employs explicit time-
conditioned 3D Gaussians and time-varying, view-dependent col-
ors, supported by 4D SH.

• Deformable 3D Gaussians (D3DGS) [71]: A deformable GS
method using an implicit deformation network to control the
deformation of mean, rotation, and scale of Gaussians, with fixed
color and opacity.

Training. All methods are trained and evaluated on a machine with
an NVIDIA A40 GPU featuring 48 GB of video memory. VolSegGS
follows a two-stage training process: (1) warming up canonical 3D
Gaussians using the training images for 3,000 iterations, and (2) jointly
training the canonical 3D Gaussians and the deformation field network
for 20,000 iterations. The training batch size is set to one image. The
learning rate for Gaussian attributes is consistent with 3DGS [28], while
the initial learning rate for the deformation field network’s encoder is
set to 1e−3, and for the decoder, it is set to 1e−4. For the full loss
function, we set λ1 = 1e−4 for LTV. LDSSIM is introduced only during
the final 5,000 iterations of joint training, with λ2 = 0.2.

Training parameters are set for the baselines following the reported
configurations. InSituNet is trained for 125,000 iterations with a batch
size of four images. CoordNet is trained for 300 epochs with a batch
size of 32,000 pixels. ViSNeRF is trained for 90,000 iterations with
a batch size of 4,096 pixels. Both 4DGS and D3DGS are trained
for 30,000 iterations with a batch size of one image. We maintain
approximately 150,000 Gaussians for 4DGS, D3DGS, and VolSegGS
to ensure a fair comparison among GS methods.

Qualitative results. Figure 7 shows that 2D-based methods (InSi-
tuNet and CoordNet) produce the least satisfactory results. Specifically,
InSituNet generates high-quality images but often deviates from the
requested view or timestep. This issue arises because InSituNet relies
on the closest available view, which may differ significantly from the
requested parameters. As the available views are limited compared
to the demand, the nearest matching view frequently remains substan-
tially different from the requested one. On the other hand, the images
generated by CoordNet appear blurry due to insufficient views for accu-
rate interpolation within its implicit neural representation. As a result,
both 2D-based methods require considerably more training images to
effectively capture variations across views and timesteps.

Among the 3D-aware methods, ViSNeRF produces relatively blurry
and noisy results for the Tangaroa, vortex, and combustion datasets,
while 4DGS, D3DGS, and VolSegGS deliver sharper, more detailed
results. This difference is mainly due to the rapid and simultaneous
changes in scene content across these datasets. While 4DGS, D3DGS,
and VolSegGS effectively capture these changes by modeling scene
deformation, ViSNeRF struggles to maintain geometric consistency due
to its reliance on interpolation between static scene frames. Another



(a) InSituNet (b) CoordNet (c) ViSNeRF (d) 4DGS (e) D3DGS (f) VolSegGS (g) GT
Fig. 7: Visualization generation. Top to bottom: a selected timestep of five jets, Tangaroa, mantle, vortex, and combustion.

Table 2: Visualization generation for dynamic scenes: average PSNR
(dB), SSIM, LPIPS, and rendering framerate (FPS) across all 181 syn-
thesized views, training time (TT, in minutes), and model size (MS, in
MB). The best ones are highlighted in bold.

dataset method PSNR↑ SSIM↑ LPIPS↓ FPS↑ TT↓ MS↓
InSituNet 14.93 0.829 0.167 5.89 1621.45 318.85
CoordNet 16.65 0.844 0.176 0.52 2065.83 5.71

five jets ViSNeRF 27.36 0.955 0.035 0.28 53.98 12.32
4DGS 26.14 0.955 0.044 214.13 68.87 96.41

D3DGS 25.45 0.948 0.037 37.20 42.82 37.01
VolSegGS 27.16 0.965 0.030 88.81 16.07 41.62
InSituNet 15.57 0.810 0.217 5.95 1591.25 318.85
CoordNet 16.87 0.828 0.234 0.49 3105.13 5.71

Tangaroa ViSNeRF 25.21 0.906 0.092 0.31 60.62 12.45
4DGS 27.33 0.945 0.059 213.62 69.38 96.96

D3DGS 26.49 0.940 0.055 36.11 43.85 37.63
VolSegGS 28.15 0.953 0.042 88.65 16.80 43.48
InSituNet 15.11 0.860 0.204 5.86 1632.91 318.85
CoordNet 15.75 0.861 0.229 0.51 2070.31 5.71

mantle ViSNeRF 29.36 0.975 0.021 0.29 68.16 12.99
4DGS 28.56 0.975 0.034 213.67 69.67 97.89

D3DGS 26.69 0.972 0.046 36.14 43.35 37.54
VolSegGS 29.02 0.979 0.030 89.29 15.98 43.21
InSituNet 14.76 0.748 0.322 5.78 1593.98 318.85
CoordNet 15.56 0.764 0.375 0.52 3139.56 5.71

vortex ViSNeRF 24.94 0.919 0.096 0.29 64.68 12.39
4DGS 25.82 0.940 0.081 209.21 73.57 105.96

D3DGS 23.64 0.932 0.119 36.40 42.86 37.51
VolSegGS 26.37 0.947 0.074 89.21 15.90 43.28
InSituNet 13.85 0.680 0.361 5.29 1604.72 318.85
CoordNet 14.72 0.696 0.370 0.50 4655.92 5.71

combustion ViSNeRF 22.45 0.800 0.202 0.28 69.33 14.15
4DGS 25.61 0.894 0.112 213.48 78.92 105.85

D3DGS 24.55 0.882 0.107 36.57 42.72 37.48
VolSegGS 25.76 0.897 0.092 88.35 16.92 43.37

notable observation is that ViSNeRF generally preserves specular high-
lights better than 4DGS, D3DGS, and VolSegGS, especially for the five
jets and vortex datasets. This advantage arises because ViSNeRF uses
a view-direction-conditioned MLP decoder to learn view-dependent
colors, whereas 4DGS, D3DGS, and VolSegGS rely solely on SH.

Among the GS methods, which all model Gaussian deformation, the
generation quality is generally similar across all datasets. However, due
to the use of an implicit MLP in the deformation network, D3DGS and
VolSegGS produce smoother synthesized images than 4DGS, which

uses explicit 4D Gaussians. This difference is particularly noticeable
in the transparent regions of the Tangaroa, vortex, and combustion
datasets. Additionally, D3DGS leads to more missing parts in the syn-
thesized images compared to 4DGS and VolSegGS, particularly for
the Tangaroa, mantle, and vortex datasets. Upon investigation, we at-
tribute this issue to using L1 and DSSIM losses in D3DGS. Specifically,
these losses provide insufficient gradient signals for capturing subtle
structural details, preventing the deformation network from accurately
positioning and representing Gaussians in these regions, resulting in
missing content in the synthesized images. In contrast, VolSegGS em-
ploys L2 loss (which more effectively penalizes large errors in small
regions) and postpones the application of DSSIM loss until the final
5,000 iterations, ensuring better structural preservation.

Quantitative results. We evaluate the quality of the synthesized
images compared to the GT images using three metrics: peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM), and learned
perceptual image patch similarity (LPIPS) [78]. Additionally, we re-
port the rendering framerate, training time, and model size to assess
method efficiency. Quantitative results are presented in Table 2. Overall,
3D-aware methods (ViSNeRF, 4DGS, D3DGS, and VolSegGS) con-
sistently outperform 2D-based ones (InSituNet and CoordNet) across
all datasets. Among the 3D-aware methods, ViSNeRF achieves the
highest PSNR for the five jets and mantle datasets but falls behind the
GS methods (4DGS, D3DGS, and VolSegGS) for the Tangaroa, vortex,
and combustion datasets. While VolSegGS delivers the best generation
quality within the GS methods, it also produces competitive results
compared to ViSNeRF for the five jets and mantle datasets.

Rendering framerate. The GS methods offer real-time framer-
ates, thanks to their rasterization-based rendering pipeline. Other
methods evaluated in our experiments fail to meet the performance
requirements for real-time exploration of dynamic scenes. Among
the Gaussian-based approaches, 4DGS achieves the highest FPS. This
is due to 4DGS directly utilizing fully explicit 4D Gaussians to rep-



resent dynamic scenes, making it more efficient in rendering than
D3DGS and VolSegGS, which rely on deformation networks. However,
4DGS requires several regularization terms during optimization to en-
sure training stability, significantly increasing the overall training cost.
Specifically, the regularization process involves computationally ex-
pensive k-nearest-neighbor calculations to enhance consistency among
neighboring Gaussians. In contrast, D3DGS and VolSegGS employ
deformation networks with an MLP that takes Gaussian means and time
as inputs, naturally providing spatial smoothness without additional
regularization.

Despite having the second-highest FPS, VolSegGS still comfortably
meets real-time requirements, with a minimum of 87 FPS. In con-
trast, D3DGS achieves only about 36 FPS, making it less ideal than
VolSegGS for typical 60Hz displays. The lower FPS of D3DGS is pri-
marily due to its reliance on a large MLP-based deformation network
for predicting the deformation of 3D Gaussians. VolSegGS, on the
other hand, employs a hybrid deformation network consisting of an
explicit feature grid combined with a lightweight MLP. This architec-
tural difference allows VolSegGS to achieve faster training speeds than
D3DGS, although it slightly increases the model size.

Table 3: Render performance comparison: DVR vs. VolSegGS.
DVR VolSegGS

CPU/GPU loading rendering CPU/GPU preparation+training rendering
dataset memory (GB) time (s) time (ms) memory (GB) time (min) time (ms)
five jets 1.23/0.91 0.68 191 2.46/1.53 1.38+16.07 11

Tangaroa 1.72/0.90 1.84 247 2.51/1.54 3.08+16.80 11
mantle 2.54/0.88 3.33 212 2.50/1.56 2.52+15.98 11
vortex 3.20/1.42 4.55 342 2.53/1.53 5.70+15.90 11

combustion 5.14/1.88 9.07 761 2.51/1.47 15.96+16.92 11

Comparison with DVR. VolSegGS achieves a rendering speedup of
17× to 69× compared with DVR using ParaView, as shown in Table 3.
In the table, loading time refers to the average time needed to load the
volume data of a single timestep into memory, and rendering time is
the average time required to render a test view. For VolSegGS, the
preparation time includes the full duration required to load data into
ParaView and render all training views across the sampled timesteps
listed in Table 1. At the cost of the upfront preparation and training time,
VolSegGS eliminates data loading overhead when switching timesteps
during inference. In contrast, DVR methods incur significant data
loading costs, which prevent them from reaching the real-time rendering
speeds demonstrated by VolSegGS. This makes VolSegGS particularly
promising for real-time exploratory visualization of dynamic scenes and
provides a reliable foundation for subsequent interactive segmentation
and tracking tasks.

Summary. VolSegGS offers the best balance of generation quality,
rendering efficiency, and training cost among all the methods compared.
While VolSegGS does not significantly outperform existing deformable
Gaussian methods in rendering quality, it provides a solid foundation
for subsequent segmentation and tracking in exploratory visualization.
4.2 3D Segmentation for Static Scenes
In this section, we assess the 3D segmentation quality of VolSegGS on
static scenes, comparing it against baseline 3D segmentation methods.

Datasets. To compare segmentation methods specifically on static
scenes, we select a representative timestep from each dataset listed in
Table 1, as indicated in Table 4. For each selected timestep, we render
30 views at a resolution of 800×800, which serve as input images for
training a 3DGS model. These training images are also segmented
using SAM to provide 2D mask supervision for VolSegGS and baseline
3D segmentation methods. We use the same view sampling method
described in Section 4.1 to generate 30 training and 181 test views.
To quantitatively evaluate segmentation quality, we render manually
segmented volumes using DVR as the GT and compute PSNR, SSIM,
and LPIPS scores across 181 test views. Additionally, we generate
corresponding 2D masks for these test views and use intersection over
union (IoU) for comparison.

Baselines. We select two state-of-the-art 3D Gaussian segmentation
methods, SAGA [4] and SAGD [23], as baseline methods. To ensure
a fair comparison, we pretrain a single 3DGS model per dataset and
apply VolSegGS and the baseline segmentation methods to the same
pretrained model. Each 3DGS model is trained for 30,000 iterations

(a) SAM 2 (b) SAGD (c) SAGA (d) VolSegGS (e) GT
Fig. 8: 3D segmentation. Top to bottom: selected segmentation results
of five jets, Tangaroa, mantle, vortex, and combustion.

without limiting the number of Gaussians while keeping all other set-
tings at their default values. Additionally, we include SAM 2 [47],
given its capability for 2D video segmentation. Since our test images
are rendered along a predefined camera path, we assemble these images
into a video sequence and apply SAM 2 for video segmentation.

• SAM 2 [47]: A foundation model that provides promptable visual
segmentation for images and videos. It leverages a transformer
architecture combined with streaming memory to enhance the
performance of segment tracking.

• SAGA [4]: An efficient segmentation approach specifically de-
signed for 3DGS. It employs scale-gated affinity features for each
Gaussian to effectively capture inter-Gaussian relationships. The
affinity features are optimized using contrastive learning, guided
by automatically generated 2D masks obtained from SAM.

• SAGD [23]: A training-free segmentation method tailored for
3DGS. It projects 2D masks produced by SAM onto 3D Gaussians
from each view and determines segmentation labels through a
voting strategy that aggregates binary mask labels across all views.

Training. All experiments are conducted on a machine with an
NVIDIA RTX 4090 GPU with 24 GB of video memory. We train
the affinity field network of VolSegGS for 5,000 iterations using a
batch size of 8,192 pixels and the Adam optimizer with a learning
rate of 1e−3. For the baseline methods, we use the publicly available
pretrained checkpoint (sam2.1_hiera_large) for SAM 2. For SAGA,
the affinity features are optimized following the original paper’s settings,
with 10,000 iterations and a batch size of 1,000 pixels. SAGD does
not require training; therefore, we directly apply this method to the
pretrained 3DGS model using SAM masks.

Qualitative results. Figure 8 highlights VolSegGS’s superior seg-
mentation performance compared to SAM 2, SAGD, and SAGA. Due
to minimal occlusions, all methods perform well for the least challeng-
ing mantle dataset. However, VolSegGS excels in preserving the most
accurate shape. Specifically, VolSegGS retains most of the original 3D
Gaussians for the mantle dataset’s cyan segment, whereas SAGA and
SAGD either omit necessary Gaussians or introduce extraneous ones.
This advantage stems from VolSegGS’s MLP-based deformation field
network, which enables smooth and precise spatial segmentation. In
contrast, methods relying entirely on explicit features of 3D Gaussians
tend to introduce significant noise. A similar trend is observed in both
segments of the five jets dataset: although SAGA performs relatively
well, it still misses some Gaussians and introduces unnecessary ones,
ultimately degrading the quality.

All baseline methods struggle to separate segments beneath overly-



Table 4: 3D segmentation for static scenes: average PSNR (dB), SSIM,
LPIPS, and IoU across all 181 synthesized views, training time (TT, in
minutes), and segmentation time (ST, in seconds). Refer to Figure 8 for
the actual segments. The best ones are highlighted in bold.

dataset method PSNR↑ SSIM↑ LPIPS↓ IoU↑ TT↓ ST↓
SAM 2 26.49 0.983 0.032 66.99 – 0.05

five jets SAGD 25.70 0.982 0.032 74.91 – 1.26
t = 61 SAGA 32.62 0.990 0.022 86.76 8.67 0.14

blue segment VolSegGS 37.49 0.995 0.007 96.88 1.53 0.15
SAM 2 20.88 0.967 0.064 44.78 – 0.05

five jets SAGD 20.09 0.971 0.054 46.38 – 5.13
t = 61 SAGA 29.94 0.983 0.024 91.95 8.67 0.14

red segment VolSegGS 37.06 0.995 0.005 94.21 1.53 0.16
SAM 2 29.89 0.993 0.029 20.34 – 0.05

Tangaroa SAGD 18.14 0.946 0.098 2.50 – 7.44
t = 1 SAGA 23.68 0.969 0.067 4.69 9.81 0.15

yellow segment VolSegGS 46.94 0.999 0.005 62.45 1.85 0.15
SAM 2 29.19 0.988 0.024 90.91 – 0.05

Tangaroa SAGD 29.76 0.984 0.027 92.95 – 11.52
t = 1 SAGA 29.16 0.980 0.020 97.64 9.81 0.14

blue segment VolSegGS 37.60 0.996 0.006 97.71 1.85 0.15
SAM 2 34.28 0.996 0.019 36.67 – 0.05

mantle SAGD 42.14 0.999 0.002 89.59 – 1.05
t = 1 SAGA 38.25 0.996 0.043 61.27 9.21 0.14

pink segment VolSegGS 42.59 0.999 0.001 90.39 1.67 0.15
SAM 2 32.93 0.995 0.016 72.34 – 0.04

mantle SAGD 33.84 0.995 0.016 78.54 – 3.27
t = 1 SAGA 32.31 0.992 0.057 62.89 9.21 0.14

cyan segment VolSegGS 39.08 0.998 0.003 87.75 1.67 0.15
SAM 2 29.50 0.994 0.033 40.79 – 0.05

vortex SAGD 35.02 0.996 0.008 68.60 – 1.41
t = 31 SAGA 31.98 0.991 0.019 54.75 10.72 0.14

red segment VolSegGS 41.03 0.999 0.003 83.56 1.78 0.15
SAM 2 31.74 0.994 0.012 84.35 – 0.05

vortex SAGD 33.04 0.994 0.009 88.67 – 4.37
t = 31 SAGA 32.90 0.992 0.048 81.59 10.72 0.14

blue segment VolSegGS 39.05 0.997 0.005 95.76 1.78 0.15
SAM 2 30.92 0.996 0.017 34.77 – 0.05

combustion SAGD 33.92 0.998 0.005 84.45 – 2.21
t = 100 SAGA 36.99 0.998 0.007 77.60 10.01 0.14

green segment VolSegGS 45.74 0.999 0.001 91.30 1.55 0.15
SAM 2 19.80 0.964 0.087 35.98 – 0.05

combustion SAGD 28.08 0.977 0.025 90.41 – 7.55
t = 100 SAGA 23.45 0.942 0.098 65.33 10.01 0.15

yellow segment VolSegGS 32.02 0.984 0.015 92.65 1.55 0.15

ing layers for the yellow segment of the Tangaroa dataset. VolSegGS,
however, successfully splits segments beneath thin, semi-transparent
layers by leveraging its two-level segmentation strategy. Despite veri-
fying the correctness of input prompts using SAM masks, SAM 2 and
SAGD still fail to produce accurate segmentation. SAM 2 fails due to
inherent ambiguity in segment tracking, while SAGD’s voting strategy
proves ineffective in resolving segmentation under such conditions.
SAGA tries to segment occluded parts but is significantly impacted by
noisy affinity features on Gaussians, leading to suboptimal results.

The two-level segmentation strategy of VolSegGS also effectively re-
moves inner parts of different colors within semi-transparent segments
in other datasets. SAM 2 and SAGD struggle to remove the red part for
the blue segment of the vortex dataset because they rely on 2D input
prompts. If users manually exclude the red part, the resulting mask re-
mains incomplete and fails to fully capture the blue segment, leading to
suboptimal segmentation. SAGA, on the other hand, leverages affinity
features that effectively distinguish the blue part from the red. How-
ever, the red part is not entirely removed due to noise, leaving behind
residual artifacts. Similar phenomena can also be observed from the
blue segments of the five jets and the Tangaroa datasets. For the yellow
segment of the combustion dataset, the close proximity of the green
and yellow parts causes segmentation errors when using 2D masks for
supervision. During projection onto 3D Gaussians, this overlap results
in unintended blending, hindering SAGD and SAGA from extracting
the yellow segment cleanly without interference from the green part.

Quantitative results. Table 4 presents the quantitative evaluation
of 3D segmentation quality across all datasets. VolSegGS consistently
outperforms baseline methods across all datasets in terms of PSNR,
SSIM, LPIPS, and IoU, aligning with the qualitative results. From an
efficiency standpoint, SAGA and VolSegGS optimize affinity features
for segmenting 3D Gaussians. However, VolSegGS achieves faster
training times than SAGA due to its affinity field network, which en-
sures smoothness and consistency among neighboring Gaussians. In
contrast, SAGA explicitly optimizes affinity features for individual
Gaussians, requiring more iterations to achieve the same level of con-
sistency. Although SAGD does not require training, it is less efficient
than VolSegGS in segmentation speed. Each time users provide a point
prompt, SAGD introduces noticeable delays compared to SAGA and
VolSegGS, making real-time interaction less responsive.

Summary. Across all static visualization scenes, VolSegGS con-
sistently outperforms baseline segmentation methods in terms of seg-
mentation quality. It offers a reliable solution for 3D segmentation in
static scenes and establishes a strong foundation for enabling interactive
segmentation and tracking in exploratory visualization.
4.3 Segment Tracking for Dynamic Scenes
In this section, we present the tracking results of VolSegGS on dynamic
scenes. While we acknowledge a few unpublished concurrent works
on 4D segmentation with Gaussians [27, 34], we cannot directly com-
pare them due to their lack of open-source code. Instead, we present
three use-case scenarios to illustrate the accuracy and robustness of
VolSegGS in segment-tracking tasks.

Single-segment tracking. In this scenario, we select three segments
at timestep 20 from the combustion dataset and track each segment
individually until timestep 100. Figure 9 presents the masked results
of the full scene and individually tracked segments across five selected
timesteps. The results in Table 5 indicate robust tracking performance,
with all individual segments maintaining an IoU above 80 throughout
the sequence. By focusing on single-segment tracking, users can ana-
lyze the evolution of specific segments without distractions from the
surrounding scene.

(a) t = 20 (b) t = 40 (c) t = 60 (d) t = 80 (e) t = 100
Fig. 9: Single-segment tracking with combustion. Top row: the full scene.
Rest rows: tracking results of individual segments.

Table 5: Single-segment tracking with combustion: average PSNR (dB),
SSIM, LPIPS, and IoU across 181 synthesized views.

segment timestep PSNR↑ SSIM↑ LPIPS↓ IoU↑
20 29.46 0.963 0.045 86.86
40 29.23 0.960 0.049 85.77

purple 60 29.07 0.964 0.045 88.08
80 28.42 0.960 0.042 88.46

100 29.04 0.959 0.048 86.96
20 33.13 0.989 0.015 88.01
40 34.55 0.992 0.011 87.55

yellow 60 35.05 0.992 0.011 88.46
80 33.60 0.992 0.011 83.59

100 36.61 0.995 0.011 86.63
20 33.81 0.986 0.014 91.51
40 32.86 0.986 0.013 88.87

green 60 32.34 0.986 0.013 87.53
80 30.33 0.982 0.012 86.08

100 33.53 0.989 0.011 83.77

Grouped segment tracking. In this scenario, we select multiple
segments at timestep 50 from the vortex dataset and group them for
tracking as a whole over time. As shown in the top row of Figure 10, for
the forward tracking, we observe the segment on the top-right corner
splitting into two segments at timestep 80. In fact, if we start with
four segments at timestep 90 and do backward tracking, the results will
be the same as shown in (d) to (a), and the two segments on the right
join into one segment at timestep 70. For the backward tracking, the
segment in the middle disappears at timestep 20. VolSegGS maintains
the group as a whole, ensuring that the segmentation is not disrupted
by individual segments’ split, join, or disappearance. Changes in the
rest of the scene also do not affect the tracked group. Table 6 shows
that the grouped segment consistently achieves an IoU above 80 in both
directions, reflecting reliable and robust tracking performance. With
grouped segment tracking, users can perform a comparative analysis of
multiple segments and study their collective behaviors over time.

Edited segment tracking. In this scenario, we demonstrate that
VolSegGS enables versatile editing of segments while effectively track-
ing the edited segments across multiple timesteps. To illustrate this



(b) t = 60 (c) t = 70 (d) t = 80 (e) t = 90

(a) t = 50
(f) t = 40 (g) t = 30 (h) t = 20 (i) t = 10

Fig. 10: Grouped segment tracking with vortex. (a) shows segmentation
processed at timestep 50. (b) to (e) are forward tracking results, and (f)
to (i) are backward tracking results.

Table 6: Grouped segment tracking with vortex: average PSNR (dB),
SSIM, LPIPS, and IoU across 181 synthesized views.

timestep PSNR↑ SSIM↑ LPIPS↓ IoU↑
10 37.04 0.996 0.008 82.07
20 36.28 0.996 0.007 84.01
30 34.12 0.994 0.009 82.15
40 33.87 0.994 0.009 82.42
50 33.99 0.994 0.009 82.09
60 35.28 0.995 0.009 83.09
70 34.93 0.995 0.009 82.28
80 34.81 0.995 0.009 81.65
90 34.96 0.995 0.009 80.35

capability, we select several segments from the five jets dataset at
timestep 60. As shown in Figure 11, we first (1) divide the red region
into five segments, assigning each a unique color. Next, we (2) in-
crease the opacity of a specific segment within the blue region. Finally,
we (3) transform a segment from the green region, repositioning it
away from the center and scaling it up. The backward tracking results
from timestep 60 reveal that these edited segments remain consistent
throughout the dynamic scene. For instance, the recolored segments
remain visually distinguishable even when merging at the top and split-
ting vertically at timestep 20. The segment with increased opacity
clearly maintains its opacity over time. Additionally, the transformed
segment is consistently visible at an enlarged scale and remains sepa-
rate from the main structure. This demonstrates that VolSegGS allows
users to conveniently edit segments of interest at any timestep, with
modifications seamlessly propagated across all other timesteps.

(1)
(2)

(3)

(a) t = 60 (b) t = 40 (c) t = 20 (d) t = 1
Fig. 11: Edited segment tracking with five jets. Each edited segment is
modified with a different (1) color, (2) opacity, or (3) transformation.

Summary. We show the tracking capability of VolSegGS through
three use-case scenarios: single, grouped, and edited segment tracking.
VolSegGS effectively tracks individual, group, and edited segments over
time, establishing a reliable foundation for the interactive exploration
of dynamic scenes. Furthermore, VolSegGS enables real-time segment
tracking throughout the dynamic scene by following the deformation
of 3D Gaussians. This real-time tracking capability greatly enhances
the user experience, facilitating segment evolution analysis in dynamic

scenes and enabling comparative studies across multiple segments.

4.4 Limitations
While VolSegGS learns dynamic visualization scenes from DVR im-
ages and enables real-time scene exploration and segmentation, its
reliance on DVR images rather than volume data introduces three key
limitations. First, the surrogate-level segmentation labels generated by
VolSegGS are derived from rendered visualizations and are not directly
transferable to the original volumetric data. While these labels are
sufficient to support exploratory visualization tasks, such as interactive
segmentation, object tracking, and downstream editing, for broader
applicability, future work could investigate robust methods for mapping
these labels back to volume data. Second, the DVR images used to
train VolSegGS are rendered using a single TF. As a result, the overall
effectiveness of segmentation and tracking is highly dependent on the
chosen TF. This may limit the flexibility of VolSegGS in handling
complex scenes with intricate geometries and heavy occlusions, where
multiple TFs are often required to comprehensively capture structural
details. A potential solution is to train multiple sets of deformable
Gaussians on scenes rendered with different TFs, providing users with
greater flexibility for segmentation and tracking across varying TFs.
This is feasible because the Gaussians are relatively independent of
one another, making merging them relatively straightforward. We view
multi-TF support as a natural extension and future improvement. Third,
as shown in Tables 1 and 3, both preparation time and storage require-
ment for generating training images tend to increase with the increasing
volume size. Few-shot learning should offer a potential future direction
to reduce the required training data.

Another limitation of VolSegGS is its potential difficulty with long-
term tracking. For extended sequences, the deformation field network
may struggle to capture the changes in the entire scene over time,
especially if there are large intervals between frames or significant
overall deformations. This issue could be mitigated by increasing the
number of 3D Gaussians and concatenating multiple deformation field
networks to handle longer sequences. However, this would increase the
model size and training cost, which could reduce its overall usability.

5 CONCLUSIONS AND FUTURE WORK

We introduced VolSegGS, a novel dynamic volumetric scene segmenta-
tion framework that enables real-time rendering using deformable Gaus-
sian representations trained on volume rendering images. Our method
employs a robust two-level segmentation strategy: (1) coarse-level
segmentation partitions the scene based on estimated view-independent
colors of Gaussians, and (2) fine-level segmentation refines these re-
sults through an affinity field network optimized with automatically
generated 2D mask supervision. Furthermore, we utilize Gaussian
deformation to track segments over time while maintaining real-time
performance. Our evaluations on multiple time-varying datasets show
that VolSegGS outperforms state-of-the-art methods in dynamic scene
representation and 3D segmentation. VolSegGS provides a practical
solution for exploratory visualization of large-scale volumetric datasets
by enabling interactive segmentation, tracking, and editing.

Our future work will focus on addressing the current limitations of
VolSegGS and further enhancing its capabilities for dynamic volume
visualization and analysis. First, we plan to investigate reliable methods
for mapping image-based segmentation labels back to the original volu-
metric data, enabling more fundamental analysis tasks. We also aim to
improve the flexibility of VolSegGS by introducing multi-TF support,
allowing users to seamlessly switch between different TFs. To reduce
data preparation time and storage costs, we will explore few-shot learn-
ing techniques to minimize the number of required training images.
We also intend to develop efficient methods for concatenating multiple
dynamic scene clips, enabling VolSegGS to handle longer and more
complex temporal sequences. Additionally, given the reliance on SAM
masks, a promising direction is to fine-tune the SAM model on volu-
metric datasets and evaluate its impact on segmentation accuracy and
robustness. Finally, we envision VolSegGS as a platform for broader
innovation in scientific visualization. Future research may incorporate
language-guided interaction [1] or enable complex operations such as
relighting, inpainting, and spatiotemporal enhancement.
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APPENDIX

1 ABLATION STUDY

We conduct an ablation study on two key components of VolSegGS:
dynamic scene representation learning and segmentation. First, to train
deformable 3D Gaussians, we analyze the impact of several factors,
including the choice of loss function, the initialization of canonical
3D Gaussians, Gaussian opacity deformation, and the structure of the
deformation field network. Next, we examine how the proposed two-
level segmentation strategy contributes to overall segmentation quality
improvement.

Table 1: Comparison of training VolSegGS on different loss combinations
using the mantle dataset: average PSNR (dB), SSIM, and LPIPS across
all 181 synthesized views. Training time (TT, in minutes) is also reported.
The best ones are highlighted in bold.

loss PSNR↑ SSIM↑ LPIPS↓ TT↓
L1 27.94 0.974 0.036 15.70
L2 29.18 0.974 0.032 15.52

L2+SSIM 29.02 0.979 0.030 15.98

(a) L1 (b) L2

(c) L2 + DSSIM (d) GT
Fig. 1: Comparison of training VolSegGS on different loss combinations
using the mantle dataset.

Table 2: Comparison of VolSegGS on the TV loss using the combustion
dataset: average PSNR (dB), SSIM, and LPIPS across all 181 synthe-
sized views. Training time (TT, in minutes) is also reported. The best
ones are highlighted in bold.

TV loss PSNR↑ SSIM↑ LPIPS↓ TT↓
without 18.90 0.759 0.296 16.87

with 25.76 0.897 0.092 16.92

Loss function. From Table 1, we observe that the L2 loss function
achieves the highest PSNR, while the combination of L2 and SSIM
losses yields the best performance in terms of SSIM and LPIPS. As
illustrated in Figure 1, the L1 loss results in smooth outputs with miss-
ing fine structures, whereas the L2 loss better preserves subtle details
but introduces noticeable artifacts. The L2+SSIM loss produces the
most visually appealing results, retaining fine details while effectively
reducing artifacts. Moreover, we find that TV loss plays a critical
role in the convergence of the deformation field network, as evidenced
by the results in Table 2 and Figure 2. Without TV loss, the model
fails to learn a coherent deformation field, likely due to the lack of
spatiotemporal neighborhood consistency.

Initialization of Canonical 3D Gaussians. As shown in Table 3,
initializing the canonical 3D Gaussians for 3,000 iterations provides

(a) w/o TV loss (b) w/ TV loss (c) GT
Fig. 2: Comparison of VolSegGS on the TV loss using the combustion
dataset.

Table 3: Comparison of VolSegGS on initializing the canonical 3D Gaus-
sians using the five jets dataset: average PSNR (dB), SSIM, LPIPS, and
rendering framerate (FPS) across all 181 synthesized views. Training
time (TT, in minutes) is also reported. The best ones are highlighted in
bold.

initialization PSNR↑ SSIM↑ LPIPS↓ FPS↑ TT↓
without 26.17 0.957 0.039 89.36 15.73

with 27.16 0.965 0.030 88.31 16.07

performance improvements with minimal increase in training time. The
gains in PSNR, SSIM, and LPIPS exceed those achieved by an addi-
tional 5,000 iterations of joint training, as shown in Table 9. Figure 3
further illustrates that initialization leads to visibly enhanced detail
reconstruction.

Gaussian opacity deformation. From Table 4, we observe that
incorporating deformable opacity enables VolSegGS to achieve higher
performance across PSNR, SSIM, and LPIPS. As shown in Figure 4,
using fixed opacity leads to visible artifacts caused by small floating
Gaussians, whereas deformable opacity more accurately models the
disappearance, resulting in cleaner renderings.

Structure of deformation field network. Table 5 shows that the hy-
brid design delivers superior performance in PSNR, SSIM, and LPIPS
compared to the fully implicit design. When both are trained for 30,000
iterations jointly with the warmed-up canonical 3D Gaussians, the hy-
brid design converges faster, requiring less training time. Additionally,
it achieves a higher rendering framerate, despite having a slightly larger
model size. Figure 5 further highlights that the fully implicit design
leads to blurred reconstructions, whereas the hybrid design enables
more accurate recovery of details.

Two-level segmentation. As shown in Table 6 and Figure 6, the
coarse-level segmentation primarily relies on color, making it difficult
to distinguish individual components that share similar colors. Fine-
level segmentation captures structure but ignores color, which can make
it difficult to separate inner and outer parts with different appearances.
Our two-level approach successfully combines both, enabling a clear
separation of regions based on color and structure. This validates its
effectiveness in segmenting volume visualization scenes.

2 HYPERPARAMETER ANALYSIS

For hyperparameter analysis, we investigate three aspects that impact
the rendering quality using deformable 3D Gaussians in VolSegGS: the
number of sampled timesteps for training, the number of sampled views
per timestep for training, and the number of joint training iterations.

(a) w/o initialization (b) w/ initialization (c) GT
Fig. 3: Comparison of VolSegGS on initializing the canonical 3D Gaus-
sians using the five jets dataset.



Table 4: Comparison of VolSegGS on the Gaussian opacity deformation
using the vortex dataset: average PSNR (dB), SSIM, and LPIPS across
all 181 synthesized views. Training time (TT, in minutes) is also reported.
The best ones are highlighted in bold.

opacity PSNR↑ SSIM↑ LPIPS↓ TT↓
fixed 26.02 0.937 0.094 15.95

deformable 26.37 0.947 0.074 15.90

(a) fixed opacity (b) deformable opacity (c) GT
Fig. 4: Comparison of VolSegGS on the Gaussian opacity deformation
using the vortex dataset.

Additionally, we evaluate the effect of the number and diversity of
SAM masks from different views on the performance of the affinity
field network.

Number of sampled timesteps for training. Table 7 shows
that, with an insufficient number of sampled timesteps for training,
VolSegGS may have difficulty reconstructing the scene accurately. Fig-
ure 7, allocating 30 timesteps allows the model to recover most of the
details in the scene of the combustion dataset.

Number of sampled views per timestep for training. According to
Table 8, training VolSegGS with a limited number of views per timestep
reduces reconstruction quality. Figure 8 illustrates that with 30 views
per timestep, the model could recover most details in the Tangaroa
scene.

Number of joint training iterations. Table 9 suggests that 20,000
iterations are sufficient for jointly training the canonical 3D Gaussians
and the deformation field network. As shown in Figure 9, VolSegGS
can reconstruct most of the fine details in the five jets dataset after being
trained for 20,000 iterations.

Number and view distribution of SAM masks. In this analysis,
we investigate the impact of different numbers and spatial distributions
of views on the segmentation performance of VolSegGS. As shown in
Table 10 and Figure 10, our default setting generates SAM masks from
30 views, corresponding to the number of training views per timestep.
We then evaluate reduced configurations using only 10 views, either
evenly distributed or biased in the viewing direction along the x-, y-, or
z-axis, respectively.

The results show that the affinity field network trained with SAM
masks remains largely robust even when the number of views is reduced
from 30 to 10. The performance drop is minimal, indicating that the
network can still effectively leverage limited 2D segmentation input.
However, both the number and spatial distribution of views do influence
segmentation quality, as noise and ambiguity in SAM masks can lead
to localized errors. Interestingly, we observe consistent improvements
when the views are biased toward a specific direction. In these cases,
clustering views spatially enhances the consistency of SAM masks, and
for less occluded regions, such as the yellow segment, this strategy can
even outperform the evenly distributed setting with more views. In
contrast, more heavily occluded regions, such as the green segment,

Table 5: Comparison of VolSegGS on different structures of deformation
field network using the Tangaroa dataset: average PSNR (dB), SSIM,
LPIPS, and rendering framerate (FPS) across all 181 synthesized views,
training time (TT, in minutes), and model size (MS, in MB). The best ones
are highlighted in bold.

structure PSNR↑ SSIM↑ LPIPS↓ FPS↑ TT↓ MS↓
implicit 26.32 0.931 0.067 37.58 23.48 37.36
hybrid 28.15 0.953 0.042 88.65 16.80 43.48

(a) implicit (b) hybrid (c) GT
Fig. 5: Comparison of VolSegGS on different structures of deformation
field network using the Tangaroa dataset.

Table 6: Comparison of VolSegGS on different segmentation methods
using the vortex dataset: average PSNR (dB), SSIM, LPIPS, and IoU
across all 181 synthesized views. The best ones are highlighted in bold.

segment method PSNR↑ SSIM↑ LPIPS↓ IoU↑
coarse only 18.77 0.954 0.223 12.56

red fine only 31.44 0.993 0.017 45.84
coarse+fine 42.01 0.999 0.003 84.22
coarse only 16.32 0.841 0.339 7.62

blue fine only 37.78 0.997 0.007 95.26
coarse+fine 40.51 0.998 0.005 95.21

require a greater number of diverse viewpoints to achieve satisfactory
segmentation results.

Note that, in the paper, we use evenly distributed views to ensure
fair, consistent, and standardized experimental conditions.

3 METHOD COMPARISON AND ADDITIONAL DISCUSSION

Comparison with segmentation methods. Existing volume segmen-
tation methods [21, 24, 25, 31, 37, 46, 50, 54, 61] primarily rely on TFs
to classify voxels. Earlier methods [24, 25, 37, 46, 54, 61] improved
segmentation quality by incorporating higher-dimensional features and
multi-dimensional TFs. However, they often suffer from increased com-
putational overhead and the complexity of designing multi-dimensional
TFs. More recent methods [21, 31, 50] have shifted toward leveraging
deep learning to assist in TF design, yet this significantly increases
segmentation time.

In contrast, VolSegGS introduces a visual segmentation approach
that achieves 3D segmentation by reconstructing visualizations from
rendered images. Specifically, VolSegGS employs a color-based coarse
segmentation strategy that aligns with TF-based colorization. Addi-
tionally, it offers a flexible, multi-scale fine segmentation capability,
enabling further subdivision of coarse segments based on visual cues.
While fine-level segmentation requires an initial preparation time of
several minutes, it supports immediate inference. By leveraging an
efficient scene representation based on 3D Gaussians instead of raw vol-
umetric data, VolSegGS enables real-time rendering and segmentation
for large-scale datasets.

It is important to note that, unlike the previously mentioned methods,
VolSegGS does not support direct segmentation on raw volume data.
This limitation may restrict its applicability in certain use cases and
hinder direct performance comparisons with volume-based approaches.
Rather than serving as a replacement, VolSegGS can complement
existing methods by leveraging their TFs for coarse-level segmentation
of 3D scenes.

Comparison with feature-tracking methods. Existing feature-
tracking methods [10,26, 41,48,49,52, 66] for time-varying scalar field
data primarily rely on deterministic algorithms. Most prior works [10,
26, 41, 49, 52] track individual features by comparing voxel values or
isosurfaces across adjacent timesteps. Meanwhile, a separate line of
research [48, 66] enables global feature tracking by computing and

(a) coarse only (b) fine only (c) coarse+fine (d) GT
Fig. 6: Comparison of VolSegGS on different segmentation methods
using the vortex dataset.



Table 7: Comparison of training VolSegGS on different numbers of
sampled timesteps using the combustion dataset: average PSNR (dB),
SSIM, and LPIPS across all 181 synthesized views. The best ones are
highlighted in bold.

# timesteps PSNR↑ SSIM↑ LPIPS↓
10 23.91 0.857 0.114
20 25.07 0.881 0.100
30 25.76 0.897 0.092
40 25.98 0.901 0.090

(a) 10 (b) 20 (c) 30 (d) 40 (e) GT
Fig. 7: Comparison of training VolSegGS on different numbers of sampled
timesteps using the combustion dataset.

comparing merge trees.
In contrast, VolSegGS introduces a novel feature-tracking approach

by learning a deformation field from DVR images of time-varying data.
Unlike prior methods, VolSegGS tracks global features without relying
on predefined critical points, isosurfaces, or merge trees. Instead, it
offers greater flexibility by enabling users to track arbitrary segments
without requiring additional recomputation. The time required to train
the 3D Gaussians with the deformation field network is comparable
to the time needed to compute merge trees. However, once trained,
VolSegGS enables real-time tracking and rendering of any arbitrary
segment, even for large-scale datasets. Moreover, as illustrated in
Figure 11, VolSegGS can visualize the global deformation velocity
of the entire scene, providing a comprehensive understanding of the
volumetric scene’s evolution.

Although VolSegGS lacks the capability to directly track features in
raw volume data, it is primarily designed as a visualization tool, em-
phasizing real-time, exploratory interaction with dynamic visualization
scenes.

SAM masks for segmentation. Relying on SAM masks for segmen-
tation may present challenges as well, as SAM has not been fine-tuned
on scientific datasets. When all SAM masks from multiple views fail to
accurately capture a segment, VolSegGS could lead to incomplete seg-
mentation or mistakenly encompass adjacent regions. To mitigate this
issue, our affinity feature network helps smooth segmentation results in
the implicit space, while the multi-scale fine-level segmentation allows
users to select smaller parts to assemble a complete segment. However,
this approach may be suboptimal in certain cases and is intended only
as a workaround. It would be valuable for future work to investigate
fine-tuning SAM on visualization datasets for segmentation quality
improvement.
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