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Abstract—Implicit neural representations (INRs) have emerged as a transformative paradigm for time-varying volumetric data
compression and representation, owing to their ability to model high-dimensional signals effectively. INRs represent scalar fields based
on sampled coordinates, typically using either a single network for the entire field or multiple networks across different spatial domains.
However, these approaches often face challenges in modeling complex patterns and introducing boundary artifacts. To address these
limitations, we propose MoE-INR, an INR architecture based on a mixture-of-experts (MoE) framework. MoE-INR automates irregular
subdivisions of spatiotemporal fields and dynamically assigns them to different expert networks. The architecture comprises three
key components: a policy network, a shared encoder, and multiple expert decoders. The policy network subdivides the field and
determines which expert decoder is responsible for a given input coordinate. The shared encoder extracts hidden representations from
the input coordinates, and the expert decoders transform these high-dimensional features into scalar values. This design results in a
unified framework accommodating diverse INR types, including conventional, grid-based, and ensemble. We evaluate the effectiveness
of MoE-INR on multiple time-varying datasets with varying characteristics. Experimental results demonstrate that MoE-INR significantly
outperforms existing non-MoE and MoE-based INRs and traditional lossy compression methods across quantitative and qualitative
metrics under various compression ratios.

Index Terms—Time-varying data compression, implicit neural representation, volume visualization, mixture-of-experts

1 INTRODUCTION

Implicit neural representations (INRs) are a class of neural networks
that encode a set of coordinates into high-dimensional signals. INRs
have gained popularity and attention in scientific visualization because
they can effectively fit volumetric fields for data representation and
compression [22, 35, 38]. However, existing INRs for scientific data
compression, while powerful, are often limited by their architectures.
Conventional INRs [10, 22] utilize a single network to model the en-
tire field, making it difficult to preserve complex features. Grid-based
INRs [12,32] manually decompose the field into multiple spatial blocks
and apply multiple neural networks to represent each block, causing
boundary discontinuity and lacking the capability to compress with few
parameters. In this paper, we aim to develop a unified INR architec-
ture that can automatically subdivide the field and represent complex
patterns in each subdivision.

Several challenges remain in developing a unified INR. First, it is
difficult to unify both regular and irregular partitions without incurring
additional storage costs. While existing methods focus on regular subdi-
visions—such as in space [11] or time [12]—irregular decompositions
typically require extensive storage to record grouping results, making
them impractical for compression. Second, avoiding boundary discon-
tinuity across the partition remains a challenge. Partitioning disrupts
the assumption of cross-boundary continuity, often resulting in visible
artifacts along subdivision edges. Third, an effective INR must indepen-
dently capture diverse and complex features without compromising its
ability to model other regions. Achieving this is essential to maintain
consistent, high-quality results across all subdivisions, especially in
domains with heterogeneous characteristics.

Recent advances in large language models (LLMs) [16, 33] have
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leveraged the mixture-of-experts (MoE) paradigm to partition inputs
and allow the network to focus on distinct regions or features, enabling
more effective and specialized learning. In MoE, a classifier groups
signals and routes those within the same class to a dedicated decoder for
prediction. Inspired by this, we propose MoE-INR, an INR enhanced
with a novel MoE framework for compressing time-varying volumet-
ric data. By incorporating MoE into INR, the field is decomposed
into multiple regular or irregular subdivisions, enabling each expert
to specialize in a particular feature or group of similar features. This
specialization reduces the learning burden on individual models and
improves their capacity to capture fine-grained details. The modular
structure of MoE-INR promotes both efficiency and adaptability in
representing complex, time-varying scientific data. Moreover, its flexi-
ble design accommodates various existing INR structures, including:
single encoder-decoder models (e.g., CoordNet [10], NeurComp [22]);
grid-based models that partition the field into multiple subregions (e.g.,
DCINR [11], ECNR [32]); and ensemble-based models using multiple
decoders for uncertainty quantification (e.g., RMDSRN [39]). A sum-
mary comparing MoE-INR with these representative INR architectures
is provided in Table 1.
Table 1: Properties of mainstream INR techniques for time-varying scien-
tific data compression and representation.

INR data boundary compression compression uncertainty temporal inference
architecture partition discontinuity quality speed estimation coherence time

MoE-INR (ours) arbitrary no high middle yes high slow
CoordNet [10] no no middle slow no high slow

NeurComp [22] no no middle slow no high slow
Devkota et al. [7] no no middle fast no low fast
RMDSRN [39] no no low fast yes low fast
fV-SRN [35] no no low fast no low fast

APMGSRN [38] no no low fast no low fast
KD-INR [12] time no middle slow no high slow
DCINR [11] space yes high fast no high fast
ECNR [32] space yes low middle no middle fast

Wu et al. [37] space yes low fast no low fast

The effectiveness of MoE-INR is demonstrated on a variety of time-
varying datasets. Data-, image-, and isosurface-level metrics are applied
to evaluate MoE-INR. Both visual quality and quantitative values show
that our approach significantly outperforms different types of state-
of-the-art INRs and traditional lossy compression methods for time-
varying data compression under various compression ratios, ranging
from thousands to tens of thousands. Our work takes an important step
towards making neural representations more flexible and effective for
scientific data compression.

The key contributions of this work are summarized below:
• We propose a unified INR that accommodates various types of
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INRs, including conventional, grid-based, and ensemble ones.
• We develop a novel MoE with a pre-training scheme that improves

learning capability and compression effectiveness.
• We thoroughly evaluate MoE-INR under different ablations and

show its superior performance under various compression ratios.

2 RELATED WORK

This section overviews related works on lossy compression, deep learn-
ing for scalar field reduction, and MoE.

Lossy compression. Lossy compression is a critical solution for
scientific data management and compression due to the increasing
capability of running large-scale simulations on high-performance com-
puting platforms. Lindstrom developed ZFP [21], a data reduction
algorithm designed to enhance input/output performance through block
segmentation. Soler et al. [30] crafted a compression technique with
topological oversight, imposing constraints on the discrepancy between
the persistence diagrams of the original and compressed data. Ballester
et al. developed TTHRESH [3], a tensor decomposition-based com-
pressor that achieves state-of-the-art performance among existing lossy
compressors. Ainsworth et al. [1] proposed a compression framework
for adaptive data representation that ensures user-specified tolerance.
Xin et al. proposed SZ3 [20], a modular compression framework that
automatically selects the best-fit predictor for each spatial block given a
user-specified error. Yan et al. introduced TopoSZ [40], which preserves
topological features for scalar field compression.

Deep learning for scalar field reduction. Due to the remarkable
achievements in deep learning-based data representation, the scientific
visualization community has explored such techniques for data reduc-
tion in recent years [34]. Lu et al. developed NeurComp [22], an INR-
based compressor with weight quantization, to represent a single scalar
field. Han and Wang introduced CoordNet [10], a coordinate-based
neural network for handling scientific data generation and visualization
generation tasks. Weiss et al. presented fV-SRN [35], using GPU tensor
cores to integrate the INR reconstruction into raytracing kernels for
fast volume visualization. Wurster et al. developed APMGSRN [38],
leveraging adaptive feature grids in INR to fit regions of high com-
plexity, which helps INR perform better at complex regions. Han et al.
established KD-INR [12], a two-stage compression pipeline, enabling
sequential compression through knowledge distillation. Tang and Wang
presented ECNR [32], incorporating the Laplacian pyramid into INRs
for compressing time-varying data through hierarchical representation.
Devkota et al. [7] introduced an INR with hash encoding for compress-
ing a single scalar field. Wu et al. [37] proposed an INR framework
that decomposed a field into multiple spatial domains, applied INRs
to model each domain, and utilized lossy compression to reduce the
size of INRs. Xiong et al. designed RMDSRN [39], an ensemble INR
for scalar field representation with uncertainty estimation. In the above
INRs, the data is either represented by a single INR or modeled by
multiple INRs across spatial regions. However, our work provides a
unified framework that supports automatic data partition and better
pattern preservation learned by MoE for time-varying volumetric data
compression.

Mixture-of-experts. MoE was proposed by Nowlan and Hinton [26],
which applied supervision for a system composed of separate networks.
In MoE, each network handles a subset of the training samples and
specializes in a different part of the data space. Due to its effectiveness,
MoE has been widely used in different tasks. For example, Fedus et
al. [8] simplified the MoE routing algorithm and incorporated it into an
LLM for natural language processing tasks. Mustafa et al. presented
LIMoE [25], a language-image MoE, enabled to understand multimodal
information for better data representation. Cao et al. [6] designed a
mixture of local experts and a mixture of global experts to learn local
and global information from images for image fusion tasks. Zhao et
al. [43] proposed a MoE INR to compress a single medical volume. Mi
and Xu proposed Switch-NeRF [23], a neural radiance field (NeRF)
with MoE, to automatically decompose a scene into multiple parts for
scene rendering. Ben et al. introduced Neural Experts [5], an INR
equipped with MoE, to model image, audio, and mesh by offering
supervision for expert assignment. Yu et al. [41] leveraged MoE to

boost the performance of continual learning in vision-language models.
Unlike the aforementioned works, which apply MoE to images, medical
data, or language, our work introduces a novel MoE framework within
an INR architecture specifically designed to represent and compress
time-varying volumetric data.

3 MOE-INR
In this section, we provide an overview of MoE-INR. Then, detailed
model design rationale and architecture are offered. Finally, the opti-
mization procedure is described.

3.1 Overview
Figure 1 illustrates the MoE-INR framework, which consists of three
key modules: a policy network, a shared encoder, and multiple expert
decoders. The policy network automatically subdivides the field and
stores the grouping results, reducing the need for explicitly recording
the mapping between coordinates and their clusters, particularly benefi-
cial for irregular decompositions. This subdivision can be optimized in
either a supervised or unsupervised manner. A shared encoder processes
all coordinates (x,y,z, t) across subfields to learn high-dimensional rep-
resentations, preserving boundary continuity and eliminating artifacts
during decompression. Each expert decoder is responsible for a dis-
tinct, non-overlapping subdomain of the voxel space, as determined
by the classification output of the policy network. By assigning each
decoder to independently learn a specific region, the learning burden is
distributed, allowing for more effective modeling of complex features
within each subdomain.
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Fig. 1: The overview of our MoE-INR framework. Given a coordinate,
the policy network decides which expert decoder will process accord-
ing to the predicted probabilities. A shared encoder will learn a high-
dimensional representation of the coordinate and feed it to the corre-
sponding expert decoder for decompression.

3.2 Network Design Exploration
We provide the detailed design and function of each module in MoE-
INR and offer the design and hyperparameter choice through ablation
and hyperparameter studies for MoE-INR.

Policy network. The policy network is designed to accurately and
automatically classify coordinates into different expert decoders, with
each expert decoder specializing in handling one or more specific
patterns. Drawing inspiration from the design of MoE in scene ren-
dering [23] and image representation [5], our policy network consists
of several fully connected layers with a sin(·) activation function [29]
and one fully connected layer with a softmax activation function. The
softmax function can convert the feature representation into a set of
probabilities, which can be used for determining the decoder assign-
ment. The concatenated representation, derived from the outputs of the
policy network and the shared encoder, will be fed into the last fully-
connected layer. The decoder corresponding to the highest probability
is then selected and activated to decompress the input coordinate.

Shared encoder. The shared encoder has two primary purposes.
First, the representation learned by the encoder is injected into the



Table 2: Average PSNR, average LPIPS, compression time (CT), and memory usage (MU) under different parameter allocations using the vortex
dataset. The compression ratio (CR) is 5,065. The best one is highlighted in bold.

allocation type shared encoder expert decoders policy network PSNR (dB) ↑ LPIPS ↓ CT (hours) ↓ MU (MB) ↓
larger encoder 96.90% 0.82% 2.28% 47.13 0.023 8.72 17,845
larger decoder 7.71% 90.22% 2.07% 31.71 0.188 8.79 17,921

balanced allocation 49.34% 48.43% 2.23% 41.44 0.054 8.74 17,663

Table 3: Average PSNR, average LPIPS, CT, and MU under different
numbers of experts using the ionization (PD) dataset. The CR is 10,078.
The best one is highlighted in bold.

# experts PSNR (dB) ↑ LPIPS ↓ CT (hours) ↓ MU (MB) ↓
2 54.05 0.046 11.83 8,177
3 54.34 0.045 12.86 10,067
4 55.01 0.041 17.25 12,085
5 55.52 0.039 18.09 13,945
6 56.31 0.038 20.78 15,929
7 58.76 0.024 21.59 17,913
8 58.75 0.024 24.23 19,901
9 58.42 0.025 25.36 21,745

policy network to assist the decoder assignment. Second, this represen-
tation serves as the input to the experts, enabling accurate decoding of
voxel values. Inspired by recent advances in NeRFs [24,31,44], we em-
ploy a positional encoding (PE) function, i.e., a learnable Fourier trans-
formation, to map low-dimensional coordinates into high-dimensional
representations. These enriched embeddings are then passed through a
series of fully connected layers with sin(·) activation functions, progres-
sively increasing the feature dimensionality within the encoder. Finally,
a residual block with bottleneck [15] is followed to refine the learned
representation into a compact one.

Expert decoders. Expert decoders take the high-dimensional repre-
sentation produced by the shared encoder as input and predict the voxel
values at the corresponding coordinates. Based on the probabilities
predicted by the policy network, only a single expert decoder is acti-
vated to decode the representation into the original data space. While
all expert decoders share the same architecture, they utilize different
parameter sets. Each decoder consists of several fully connected layers
with a sin(·) activation function, followed by a final fully connected
layer without an activation function.

Parameter allocation. Given that MoE-INR consists of three dif-
ferent modules, a key question arises regarding how to allocate the
parameters to each module. To identify the optimal configuration, we
explore three different allocation strategies:

• A larger shared encoder: most parameters are allocated to the
shared encoder.

• Larger expert decoders: most parameters are assigned to the
expert decoders.

• Balanced distribution: parameters are evenly distributed be-
tween the shared encoder and the expert decoders.

Since the reconstruction process is carried out by the encoder and expert
decoders rather than the policy network, we do not consider cases where
the number of parameters in the policy network exceeds that of the
other two modules. Table 2 reports the average PSNR, average LPIPS,
total compression time (CT) in hours, and memory usage (MU) in MB
for each allocation strategy. The compression ratio (CR) equals the
data size divided by the model size. Although these three parameter
allocations share a similar CT and MU, the allocation with a large
encoder achieves the best performance regarding PSNR and LPIPS
values. This performance advantage can be attributed to the encoder’s
dual roles: (1) assisting the policy network in accurately assigning
experts and (2) providing a compact and precise representation to
the decoder for decompression. In contrast, the other two modules
are responsible for only one task. Allocating more parameters to the
encoder ensures it has sufficient learning capacity to handle both roles
effectively. Thus, we chose the architecture with a larger encoder
for MoE-INR. The detailed configuration of MoE-INR is shown in
Figure 2, where M is the number of initial neurons specified by users.
Additionally, the number of parameters, including weights and biases,
in MoE-INR is calculated as

# params = 4M+M+M2 +M+9M× k+ k︸ ︷︷ ︸
# params in the policy network

+4M+M+8M2 +4M+32M2 +8M+36M2 +12M︸ ︷︷ ︸
# params in the shared encoder

+ k× (8M+1)︸ ︷︷ ︸
# params in k expert decoders

(1)
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Fig. 2: Architecture details of MoE-INR. (·, ·) denotes the input dimension
and output dimension in each layer.

Number of experts. An important hyperparameter in MoE-INR is
the number of experts. Increasing the number of experts leads to finer
subdivisions of the data, which can potentially improve compression
quality. However, it also introduces additional complexity in expert
assignment, which may degrade overall performance. To identify the
optimal trade-off between the number of experts and compression qual-
ity, we evaluate MoE-INR with varying numbers of experts, as reported
in Table 3. The study shows that with 7 experts, MoE-INR achieves the
best PSNR and LPIPS values. When the number of experts exceeds 7,
the PSNR value slightly decreases, likely due to the increased difficulty
for the policy network to correctly classify and assign coordinates,
resulting in more misclassifications. Although adding one extra expert
increases CT and MU, the performance improvement is notable, par-
ticularly when increasing the number of experts from 6 to 7. Based on
these observations, we set 7 experts in MoE-INR for all experiments
presented in this paper.
Table 4: Average PSNR and LPIPS values under different pre-training
schemes with 7 experts using the ionization (T) dataset. The CR is 5,033.
The best one is highlighted in bold.

pre-training scheme PSNR (dB) ↑ LPIPS ↓
no 51.35 0.090

random partition 37.92 0.230
spatial partition 53.90 0.071

temporal partition 53.93 0.064
voxel clustering 56.71 0.047
load balancing 39.27 0.213

3.3 Optimization
The optimization process includes two stages: pre-training and training.
At the pre-training stage, we optimize the policy network and shared
encoder, aiming to offer a good initialization for expert assignment
and feature representation. At the training stage, all three modules are
jointly optimized for predicting voxel and refining expert assignments
given a set of coordinates.

Pre-training. It is crucial for initializing the parameters in INRs
for guaranteeing performance [2, 29], and the policy network plays an



Table 5: Relationship between MoE-INR and existing INRs for scientific data compression and representation.
pre-training scheme # experts aggregation INR type exemplar INR

MoE-INR
none 1 none conventional CoordNet [10], NeurComp [22]

spatial partition k none grid-based ECNR [32], DCINR [11]
none k average ensemble RMDSRN [39]

essential role in subdividing the field and identifying which expert will
handle the input coordinate. For that, we investigate different MoE-INR
pre-training schemes. Generally, we consider two types of pre-training:
supervised and unsupervised. For supervised pre-training, we generate
an expert assignment yc for each coordinate c, as ground truth (GT)
and train the policy network through a cross-entropy loss, defined as

− log
epyc

∑
k
i=1 epi

, (2)

where p is a 1D vector with k elements, outputted from the policy
network. p j indicates the probability of assigning the given coordinate
to the j-th expert. We study four different methods to obtain the GT
assignments:

• Random partition: we randomly assign one expert for each
coordinate.

• Spatial partition: we partition the spatial space into k non-
overlapping blocks, and each expert handles one spatial block for
all time steps.

• Temporal partition: we divide the temporal sequence into k time
intervals without overlap, and each expert processes one of these
intervals for all spatial coordinates.

• Voxel clustering: we use the k-means algorithm to group the
voxels into k clusters, and each expert is responsible for one
cluster.

For unsupervised pre-training, we utilize load balancing [19, 23]
as the criterion for grouping coordinates. The rationale behind load
balancing is that it encourages evenly distributed assignments to each
expert. This ensures that each expert processes a similar number of
coordinates, rather than allowing a few experts to handle most of the
coordinates. The load balancing loss is formulated as

k
N2

k

∑
j=1

c js j, (3)

where c j is the number of coordinates assigned to the j-th expert
decoder, s j is the sum of assignment probabilities to the j-th expert
decoder for all coordinates, and N is the total number of coordinates.

The pre-training process offers two benefits. First, it guides the
policy network on how to group coordinates, rather than guessing from
scratch. Second, it balances the assignments among the experts, as it
helps prevent favoring some experts while neglecting others.

Table 4 reports the average PSNR and LPIPS values under different
pre-training schemes. Clearly, using voxel clustering-based pre-training
achieves the best performance. However, random partition and load
balancing fail to produce a meaningful assignment to different de-
coders, leading to inferior performance compared to no pre-training.
Thus, we chose voxel clustering as our pre-training scheme. Refer
to the Appendix for the statistics and visualization regarding expert
assignments.

Training. After pre-training, we jointly optimize the policy network,
shared encoder, and expert decoders. This training process allows the
policy network to refine expert assignments and updates the shared
encoder and expert decoders for reconstruction by measuring the dif-
ference between the predicted and GT voxel values. The loss for each
voxel value is calculated as

k

∑
j=1

p j||v j − v||2, (4)

where v j is the predicted value from the j-th expert decoder and v is
the GT voxel value.

4 RELATIONSHIP WITH EXISTING INRS

Existing INRs for scientific data representation and compression can
be broadly classified into three categories: conventional [10, 12, 22],

grid-based [32, 35, 38], and ensemble [39]. MoE-INR unifies these
INRs by offering various data partition schemes and controlling the
number of experts, as summarized in Table 5. When a single expert is
set in MoE-INR, it reduces to a conventional INR, such as CoordNet
and NeurComp, which utilizes a single encoder and decoder to learn
the entire field. By leveraging more than two experts in MoE-INR and a
spatial-based pre-training scheme, it functions as a grid-based INR, sim-
ilar to fV-SRN and APMGSRN, which models the field across different
spatial domains. However, unlike existing grid-based INRs, which
optimize each spatial or spatiotemporal block independently (i.e., each
block has one encoder and one decoder) and introduce block artifacts,
MoE-INR avoids these artifacts by employing a shared encoder for all
blocks. Furthermore, by applying multiple experts to decode a single
coordinate and aggregating the results through an average operation,
MoE-INR becomes an ensemble INR, such as RMDSRN. In terms of
computational cost for visualization, grid-based INRs, such as fV-SRN
and APMGSRN, achieve the fastest volume decompression, as their
primary operations involve efficient feature interpolation. In contrast,
conventional INRs incur the highest computational cost, since volume
generation relies entirely on matrix multiplications throughout the net-
work. The design of MoE-INR offers both generalization and flexibility,
allowing it to accommodate various INR architecture choices. Refer to
Section 5 for detailed quantitative and qualitative comparisons.

Table 6: Summary of each dataset.
dataset variable dimension (x× y× z× t) data size (GB)

argon bubble [9] intensity 640×256×256×150 23.44
combustion [14] CHI, HR, MF, VORT 480×720×120×100 15.45
ionization [36] H+, H2, PD, T 600×248×248×100 13.74
Tangaroa [28] vorticity magnitude 600×360×240×150 28.97

vortex [13] vorticity 256×256×256×90 5.63

5 RESULTS

In this section, we provide the configurations at both training and
inference stages as well as the quantitative metrics for assessing the
quality of decompressed data. Then we compare MoE-INR against
various state-of-the-art compressors, including learning-based and lossy
compression, illustrate the capability of uncertainty estimation, and
evaluate the performance under various CRs.
5.1 Configurations, Metrics, and Baselines
Training and inference configurations. Time-varying volumetric
datasets from various domains (e.g., chemistry and physics) and with
different characteristics (e.g., turbulence and feature tracking) are con-
sidered for evaluation. This broad selection demonstrates the versatility
and general applicability of our approach across a wide range of sce-
narios. Table 6 lists the datasets used for evaluation. For multivariate
datasets, each variable is individually compressed. MoE-INR was im-
plemented by PyTorch [27]. The compression and decompression were
conducted on an NVIDIA GeForce RTX 4090 GPU. We normalized the
coordinates and values into [−1,1] to fit the output range of the sin(·)
activation function. We initialized all parameters in MoE-INR follow-
ing Sitzmann et al. [29]. For optimization, the Adam optimizer [17] was
applied. We set the initial learning rate to 2×10−5 with β1 = 0.9 and
β2 = 0.999. The learning rate decayed by half with a multistep sched-
uler. We pre-trained MoE-INR with 30 epochs and trained with 270
epochs. The 32-bit floating point was used for training and inference,
while the 16-bit floating point was used for model storage. The batch
size is set to 16,000. Refer to the Appendix for model configurations
and the total CT of each dataset under different CRs.

Evaluation metrics. We calculate the error between the decom-
pressed and GT volumes using data-level peak signal-to-noise (PSNR),
image-level learned perceptual image patch similarity (LPIPS) [42],
and isosurface-level chamfer distance (CD) [4]. LPIPS measures the



(a) CoordNet (b) NeurComp (c) SIREN (d) MoE-INR (e) GT
Fig. 3: Comparison of volume rendering results between MoE-INR and conventional INRs using the combustion (CHI) dataset. The CR is 5,053.

(a) CoordNet (b) NeurComp (c) SIREN (d) MoE-INR (e) GT
Fig. 4: Comparison of isosurface rendering results between MoE-INR and conventional INRs using the ionization (H+) dataset. The CR is 2,862. The
chosen isovalue is −0.98.

distance between deep features in a deep convolutional neural network
extracted from two input images. AlexNet [18] is leveraged for extract-
ing image representation. For CD, it measures the minimum distance
of the isosurfaces extracted from the decompressed and GT volumes.
The distance is computed by L2 norm. When considering the PSNR
metric, a higher value denotes a superior quality. In contrast, for both
LPIPS and CD metrics, superior quality is indicated by a lower score.

Baselines. Our comparison consists of two categories: learning-
based compressors and traditional lossy compressors. We compare
three conventional INR architectures (i.e., CoordNet [10], Neur-
Comp [22], and SIREN [29]), three grid-based INRs (i.e., ECNR [32],
fV-SRN [35], and AMPGSRN [38]), and other INRs, including one
ensemble INR (i.e., RMDSRN [39]) and two INRs with MoE (i.e.,
Switch-NeRF [23] and Neural Experts [5]). The grid size for feature in-
terpolation of fV-SRN and APMGSRN is set to 4×4×4 and 2×2×2,
respectively. The number of neurons in fV-SRN and AMPGSRN is
identified by a user-specific CR. Switch-NeRF was originally designed
as an MoE-based INR for scene rendering, while Neural Experts is
for image and mesh representation. We adopt both solutions for time-
varying volumetric data compression as MoE-based INR baselines. For
traditional lossy compressors, we choose three state-of-the-art solutions,
i.e., ZFP [21], SZ3 [20], and TTHRESH [3].

In terms of visualization, we decompress the data from the compres-
sor for each solution and render it via the traditional rendering pipeline.
We apply the same rendering setting, i.e., transfer function, lighting
condition, and viewpoint, to each dataset for a fair comparison. Refer
to the accompanying video for frame-to-frame comparison.

5.2 Comparison against Learning-Based Compressors

Visual comparison against conventional INRs. We compare MoE-
INR with three conventional INR-based compressors, i.e., CoordNet,
SIREN, and NeurComp, under the same CR. Figure 3 presents the

volume rendering images using the combustion (CHI) dataset. As
highlighted in the purple box, CoordNet and SIREN fail to recover
the tiny cyan structure with a tail shape, while NeurComp incorrectly
splits a single feature into two separate ones. Additionally, Figure 4
illustrates the isosurface rendering images using the ionization (H+)
dataset. Similarly, conventional INRs struggle to preserve high-quality
geometric patterns in the extracted isosurfaces, highlighted by the blue
box. This limitation stems from the reliance of conventional INRs on
a single network to learn complex and simple patterns from a field.
Consequently, the network prioritizes memorizing simple structures
over complex ones, as simple patterns contribute more significantly to
reducing the overall loss.

Visual comparison against grid-based INRs. We compare MoE-
INR with three grid-based INRs, i.e., APMGSRN, ECNR, and fV-SRN,
under the same CR. The volume rendering and isosurface rendering
images are displayed in Figures 5 and 6, respectively. It is evident that
ECNR exhibits boundary artifacts (i.e., the discontinuity across the
boundary edge between two partitioned blocks) and fails to maintain
high-quality structures in the rendered images, even under a small
CR. The boundary discontinuity is caused by the training strategy (i.e.,
each partitioned block is independently modeled by an INR encoder)
in ECNR, which disrupts the boundary continuity. In contrast, the
results from MoE-INR are free from boundary discontinuity. This
is attributed to the design of a single encoder in MoE-INR to learn
all input coordinates, ensuring continuity across partitioned regions.
Although fV-SRN and APMGSRN are free of boundary discontinuity,
they require a large feature map to construct a hybrid representation
from coordinates and lack the capability to recover volume under few
parameters.

Visual comparison against other INRs. We evaluate the perfor-
mance of MoE-INR by comparing it against one ensemble INR (i.e.,
RMDSRN) and two INRs with MoE (i.e., Switch-NeRF and Neural



(a) ECNR (b) fV-SRN (c) APMGSRN (d) MoE-INR (e) GT
Fig. 5: Comparison of volume rendering results between MoE-INR and grid-based INRs using the combustion (MF) dataset. The CR is 1,951.

(a) ECNR (b) fV-SRN (c) APMGSRN (d) MoE-INR (e) GT
Fig. 6: Comparison of isosurface rendering results between MoE-INR and grid-based INRs using the argon bubble dataset. The CR is 3,470. The
chosen isovalue is −0.45.

(a) RMDSRN (b) Switch-NeRF (c) Neural Experts (d) MoE-INR (e) GT
Fig. 7: Comparison of volume rendering results between MoE-INR and other INRs using the vortex dataset. The CR is 2,510.

(a) RMDSRN (b) Switch-NeRF (c) Neural Experts (d) MoE-INR (e) GT
Fig. 8: Comparison of isosurface rendering results between MoE-INR and other INRs using the Tangaroa dataset. The CR is 7,510. The chosen
isovalue is −0.72.

Experts) under the same CR. Figure 7 shows the volume rendering im-
ages using the vortex dataset. RMDSRN produces patterns with jagged
artifacts, while Switch-NeRF and Neural Experts display noticeable
artifacts along the partition boundaries. These issues arise because the
policy network in both Switch-NeRF and Neural Experts is designed

for a single dataset and lacks the capability to assign coordinates to
different experts for time-varying data. Additionally, Figure 8 presents
the isosurface rendering images using the Tangaroa dataset. RMDSRN
completely fails to extract the isosurface with a coherent shape, while
the isosurfaces from Switch-NeRF and Neural Experts capture fewer



Table 7: Comparison of average PSNR, LPIPS, total CT in hours, and total inference time (IT) in minutes under the same CR. The best result is
highlighted in bold.

dataset CR method PSNR (dB) ↑ LPIPS ↓ CT ↓ IT ↓ dataset CR method PSNR (dB) ↑ LPIPS ↓ CT ↓ IT ↓

argon bubble 3,470

CoordNet 46.90 0.016 91.63 30.05

combustion (MF) 1,951

CoordNet 47.32 0.078 61.78 18.33
NeurComp 43.12 0.012 105.67 32.16 NeurComp 51.77 0.030 74.03 20.04

SIREN 41.83 0.030 78.23 28.75 SIREN 42.76 0.126 53.12 17.56
ECNR 34.68 0.107 22.24 4.05 ECNR 30.79 0.271 30.07 2.64

fV-SRN 35.11 0.095 3.83 3.84 fV-SRN 34.55 0.257 2.51 2.43
APMGSRN 30.75 0.200 6.82 3.95 APMGSRN 30.17 0.285 6.45 2.47
RMDSRN 35.32 0.093 4.02 3.87 RMDSRN 34.21 0.260 2.76 2.44

Switch-NeRF 40.40 0.042 40.83 24.49 Switch-NeRF 38.34 0.162 27.06 12.76
Neural Experts 39.38 0.044 60.50 25.34 Neural Experts 37.02 0.180 43.99 12.69

MoE-INR 48.97 0.012 42.67 24.85 MoE-INR 54.26 0.030 29.09 13.78

ionization (H+) 2,862

CoordNet 55.29 0.014 50.89 17.56

vortex 2,510

CoordNet 40.97 0.057 14.12 6.34
NeurComp 49.00 0.017 64.56 19.24 NeurComp 46.80 0.024 16.82 6.78

SIREN 50.87 0.024 44.56 16.78 SIREN 38.63 0.082 10.83 5.89
ECNR 33.54 0.201 15.99 2.11 ECNR 23.23 0.440 10.99 1.05

fV-SRN 40.06 0.123 1.43 1.96 fV-SRN 30.07 0.288 0.57 0.86
APMGSRN 33.27 0.195 6.02 2.01 APMGSRN 25.93 0.344 0.68 0.93
RMDSRN 40.20 0.120 1.50 1.97 RMDSRN 29.37 0.292 0.61 0.89

Switch-NeRF 43.26 0.092 24.02 12.48 Switch-NeRF 33.67 0.201 8.45 4.46
Neural Experts 44.88 0.061 38.56 13.65 Neural Experts 31.25 0.196 14.04 4.92

MoE-INR 60.24 0.007 24.22 13.11 MoE-INR 52.37 0.011 8.96 4.68

Table 8: Comparison of average CD values under the same CR. The best result is highlighted in bold.
dataset CR method isovalues dataset CR method isovalues

argon bubble 3,470

v =−0.82 v =−0.68 v =−0.45

combustion (MF) 1,951

v =−0.15 v = 0 v = 0.25
CoordNet 0.53 0.55 0.72 CoordNet 0.59 0.61 0.61
NeurComp 0.56 0.53 0.76 NeurComp 0.36 0.38 0.38

SIREN 1.05 0.98 1.18 SIREN 0.91 0.94 0.96
ECNR 4.07 3.09 4.09 ECNR 3.84 3.88 3.97

fV-SRN 3.46 2.86 3.71 fV-SRN 2.51 2.52 2.59
APMGSRN 30.61 14.73 19.30 APMGSRN 4.40 4.46 4.67
RMDSRN 3.38 2.73 3.59 RMDSRN 2.62 2.65 2.74

Switch-NeRF 1.19 1.22 1.48 Switch-NeRF 1.57 1.62 1.64
Neural Experts 1.53 1.53 1.95 Neural Experts 1.89 1.92 1.96

MoE-INR 0.41 0.44 0.62 MoE-INR 0.30 0.31 0.31

ionization (H+) 2,862

v =−0.98 v =−0.75 v =−0.4

vortex 2,510

v =−0.32 v =−0.05 v = 0.17
CoordNet 1.23 0.21 0.13 CoordNet 0.74 0.72 0.73
NeurComp 2.24 0.36 0.21 NeurComp 0.53 0.55 0.61

SIREN 1.79 0.31 0.18 SIREN 0.93 0.87 0.88
ECNR 11.14 2.89 1.67 ECNR 6.97 9.87 15.12

fV-SRN 6.96 1.41 0.75 fV-SRN 2.55 2.46 2.72
APMGSRN 17.27 3.34 1.97 APMGSRN 4.80 5.83 8.97
RMDSRN 6.49 1.39 0.71 RMDSRN 2.75 2.64 2.92

Switch-NeRF 2.58 0.71 0.52 Switch-NeRF 1.70 1.59 1.71
Neural Experts 3.43 0.72 0.43 Neural Experts 2.30 2.18 2.40

MoE-INR 0.76 0.13 0.08 MoE-INR 0.27 0.26 0.26

details compared to those produced by MoE-INR.
Quantitative Analysis. Table 7 reports the average PSNR and

LPIPS values. In terms of PSNR, MoE-INR demonstrates superior
performance compared to all baselines. For image-level evaluation,
MoE-INR achieves the best quality in most cases, except for the argon
bubble and combustion (MF) datasets, where MoE-INR and NeurComp
achieve the same performance. Additionally, the total CT and infer-
ence time for each approach is listed in Table 7. While RMDSRN,
APMGSRN, and fV-SRN require the shortest time for compression,
they exhibit the worst performance in terms of PSNR and LPIPS. Fol-
lowing Xiong et al. [39], fV-SRN is used as the backbone model in
RMDSRN, which explains why RMDSRN also requires a short time
to model a field. Conversely, ECNR requires significant training time
due to its multiscale design, which is optimized sequentially from the
coarsest scale to the finest scale. Compared to conventional INRs,
NeurComp requires more time for optimization, as it computes an addi-
tional gradient loss and performs an extra step for weight quantization.
Table 8 reports the average CD values under three different isovalues.
Evidently, MoE-INR outperforms all state-of-the-art INRs across all
cases, demonstrating its superior capability in preserving geometric
information. Refer to Section 5.5 for the evaluation under different
CRs.

5.3 Uncertainty Estimation
Like RMDSRN, MoE-INR can also estimate uncertainty in the pre-
dicted voxel values. Specifically, MoE-INR utilizes more than two
experts to process a single input coordinate for voxel prediction and is
optimized by incorporating an additional variance regularization loss,
following Xiong et al. [39]. The uncertainty for each voxel can be
obtained by calculating the variance across these predictions. Figure 9
compares the renderings of error, variance, and reconstructed volumes
as approximated by MoE-INR and RMDSRN under the same CR. For

(a) error (b) variance (c) reconstructed
Fig. 9: Rendering of (a) error, (b) variance, and (c) reconstructed volumes
of RMDSRN (top) and MoE-INR (bottom) using the combustion (HR)
dataset. The CR is 1,951.

the reconstructed volume, MoE-INR demonstrates superior quality, as
RMDSRN distorts the features in the rendering image. In terms of un-
certainty, both MoE-INR and RMDSRN exhibit a correlation between
the variance and error volumes. Additionally, we leverage Pearson cor-
relation (PC) and Jaccard index with spatial tolerance (JI-ST) [39] to
quantify the relationship between variance and error. The quantitative
scores are shown in Table 10. The results show that under the same CR,
MoE-INR can achieve better PC and JI-ST values compared to RMD-
SRN. These results emphasize that MoE-INR not only achieves better



(a) SZ3 (b) ZFP (c) TTHRESH (d) MoE-INR (e) GT
Fig. 10: Comparison of volume rendering between MoE-INR and traditional lossy compressors using the combustion (VORT) dataset. The average
PSNR is 39.73 (dB).

(a) SZ3 (b) ZFP (c) TTHRESH (d) MoE-INR (e) GT
Fig. 11: Comparison of volume rendering between MoE-INR and traditional lossy compressors using the ionization (PD) dataset. The average PSNR
is 50.73. The chosen isovalue is −0.83.

Table 9: Average CR, LPIPS, and total CT in hours under the same
PSNR. The best result is highlighted in bold.

dataset PSNR (dB) ↑ method CR ↑ LPIPS ↓ CT (hours) ↓

combustion (HR) 42.77

SZ3 38 0.163 0.02
ZFP 64 0.229 0.06

TTHRESH 1,465 0.177 0.22
MoE-INR 10,991 0.075 24.22

combustion (VORT) 39.73

SZ3 47 0.116 0.02
ZFP 64 0.224 0.05

TTHRESH 1,328 0.151 0.21
MoE-INR 5,053 0.075 26.28

ionization (PD) 50.73

SZ3 32 0.092 0.02
ZFP 34 0.123 0.01

TTHRESH 1,562 0.109 0.17
MoE-INR 24,878 0.073 21.25

Tangaroa 44.41

SZ3 101 0.082 0.04
ZFP 79 0.138 0.06

TTHRESH 4,005 0.071 0.36
MoE-INR 50,898 0.057 43.64

Table 10: Comparison of average PC and JI-ST for uncertainty quantifi-
cation using the combustion (HR) dataset. The CR is 1,951. The best
result is highlighted in bold.

method PC ↑ JI-ST ↑
RMDSRN 0.539 0.545
MoE-INR 0.589 0.583

reconstruction performance but also maintains a comparable correlation
between uncertainty and error when compared to RMDSRN.

5.4 Comparison against Traditional Lossy Compressors

We evaluate the performance of MoE-INR by comparing it to three
traditional lossy compressors, i.e., SZ3, ZFP, and TTHRESH, under the
same PSNR. Figure 10 shows volume rendering images for the combus-
tion (VORT) dataset. While all compressors preserve the overall texture,

the images produced by the lossy compressors exhibit noticeable ar-
tifacts and noise. Similarly, Figure 11 presents isosurface rendering
images for the ionization (PD) dataset. Although all methods maintain
geometric shapes, the lossy compressors generate visibly non-smooth
surfaces. Table 9 summarizes the CR, LPIPS, and total CT in hours.
MoE-INR significantly outperforms the lossy compressors in terms of
CR and LPIPS. However, similar to other INR approaches, MoE-INR
incurs higher computational costs, resulting in slower runtimes than the
lossy compressors due to its iterative learning process for compression.
For the comparison between MoE-INR and TTHRESH under different
CRs, refer to Section 5.5.

5.5 Performance Evaluation under Various CRs
To evaluate the performance of different compressors under various
CRs, we compare PSNR and LPIPS values of CoordNet, NeurComp,
SIREN, fV-SRN, APMGSRN, RMDSRN, Switch-NeRF, Neural Ex-
perts, TTHRESH, and MoE-INR across five CRs. We exclude ECNR
as it cannot achieve large CRs due to its multiscale design. Specif-
ically, ECNR learns data representations from coarse to fine, and at
each scale, multiple INRs are utilized to model different spatiotempo-
ral blocks. Similarly, ZFP and SZ3 are excluded due to their limited
compression capabilities. Figure 12 illustrates the performance trends
of these compressors as the CR increases from thousands to tens of
thousands. Clearly, MoE-INR achieves the best performance in both
PSNR and LPIPS across all CRs. Additionally, Figure 13 compares
volume rendering results using the ionization (H2) dataset under a CR
of 50,000. TTHRESH and grid-based INRs totally fail to reconstruct
the volume with meaningful structure. NeurComp can only retain the
bottom part of the ionization (H2), while the patterns at the top of the
ionization (H2) are completely lost. CoordNet, SIREN, Switch-NeRF,
and Neural Experts preserve only some patterns at the top of ionization
(H2). Only MoE-INR can keep features at different regions well under



(a) combustion (CHI) (b) ionization (H2) (c) Tangaroa (d) vortex
Fig. 12: Comparison of average PSNR (top) and LPIPS (bottom) values under various CRs among different compressors.

(a) CoordNet (b) NeurComp (c) SIREN (d) fV-SRN (e) APMGSRN

(f) Switch-NeRF (g) Neural Experts (h) TTHRESH (i) MoE-INR (j) GT
Fig. 13: Comparison of volume rendering among different compressors using the ionization (H2) dataset. The CR is around 50,000.

a large CR. Refer to the Appendix for additional visual comparisons.

6 LIMITATION AND FUTURE WORK

We acknowledge two limitations of MoE-INR and discuss future di-
rections. First, as a MoE architecture, MoE-INR requires optimizing
multiple expert decoders during each epoch. Compared to non-MoE
INRs, such as APMGSRN and fV-SRN, this results in longer training
time. Such a limitation may restrict the application of MoE-INR in
certain data compression scenarios, such as online compression. In
the future, we aim to address this challenge by designing advanced
training techniques, such as data and model parallelism, to significantly
reduce compression time. Second, although MoE-INR outperforms
state-of-the-art compressors, its current expert assignment strategy and
the number of experts are static. This fixed allocation does not account
for the varying prediction difficulty across voxels, as each input is
always processed by a predetermined number of experts. As a future
direction, we aim to explore dynamic MoE architectures in which a
policy network can adaptively select the number of experts to activate
based on the input coordinates. Additionally, the number of experts
could be adjusted during optimization to better reflect the underlying
data complexity. In this work, we leverage MoE to unify various INR
architectures for time-varying volumetric data compression, provid-
ing a flexible framework that supports both regular and irregular field
decomposition. This approach enables more effective grouping of pat-
terns into clusters, allowing expert decoders to focus and specialize on

distinct data regions.

7 CONCLUSIONS

We have presented MoE-INR, a unified, flexible, and effective INR
framework that leverages a novel MoE architecture to automatically
partition spatiotemporal fields and assign each partition to specialized
experts. By incorporating a policy network, a shared encoder, and
expert decoders, MoE-INR can efficiently handle regular and irregular
subdivisions, avoid boundary artifacts across partition edges, and inde-
pendently learn complex patterns with high fidelity. The pre-training
scheme for the policy network enhances generalization, enabling com-
patibility with diverse data decomposition algorithms. Quantitative
and qualitative evaluations demonstrate that MoE-INR outperforms
state-of-the-art non-MoE INRs, MoE INRs, and lossy compression
methods across diverse time-varying volumetric datasets under varying
CRs. Furthermore, MoE-INR can also function as an error-aware INR
by (1) enabling multiple decoders to process a single input coordinate
and (2) calculating the variance across multiple predictions.
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APPENDIX

1 MODEL CONFIGURATIONS

Table 1 reports each dataset’s model configurations and total CT under
different CRs.

Table 1: Model configurations and total CT under different CRs, where M
is the initial number of neurons in MoE-INR.

dataset M CR CT (hours)
argon bubble 207 3,470 42.67

combustion

234 1,951 29.09
145 5,053 26.28
98 10,991 24.23
72 20,131 23.56
51 39,127 23.17
36 78,858 22.96

ionization

182 2,862 24.22
137 5,033 23.25
96 10,078 21.59
61 24,878 21.25
43 48,741 20.96
29 106,630 20.83

Tangaroa

163 7,510 49.79
115 15,011 46.86
81 30,041 44.64
62 50,898 43.64
43 104,370 43.46

vortex

176 1,252 9.57
124 2,510 8.96
87 5,065 8.72
61 10,205 8.59
43 20,267 8.27

2 VISUALIZATION OF EXPERT ASSIGNMENTS

Figure 1 shows the expert assignment statistics for different pre-training
schemes. Without pre-training, the policy network only favors a single
expert, which becomes a conventional INR architecture. When pre-
training is leveraged, most partitions can enable the policy network to
assign experts in balance. Since k-means clustering produces uneven
allocation to different clusters, an imbalanced expert assignment occurs
when voxel clustering is applied in pre-training.

Figure 2 illustrates the voxel assignment for one expert using the ion-
ization (T) dataset after pre-training and training. Without pre-training,
MoE-INR assigns all coordinates to a single expert for processing all
coordinates. The remaining experts are inactive, leading to no assign-
ment, as shown in Figure 2 (a). Neither random partitioning (Figure 2
(b)) nor load balancing (Figure 2 (d)) successfully divides the field
meaningfully after pre-training. Thus, during training, the policy net-
work fails to fine-tune the subdivision and only assigns all coordinates
to one expert. However, pre-training MoE-INR with voxel clustering
(Figure 2 (c)) yields a semantic partition, leading to the best compres-
sion performance among all investigated subdivisions. In addition, after
voxel clustering pre-training, MoE-INR partitions the field in a finer
structure. For example, the bottom feature, distinguished from the top
feature, is assigned to another expert.

Fig. 1: Expert assignment statistics under different pre-training schemes
using the ionization (T) dataset.

3 PERFORMANCE EVALUATION UNDER DIFFERENT CRS

Figures 3 and 4 show the volume rendering results among different
compressors using the vortex and Tangaroa datasets, respectively. In
addition, Figures 5 and 6 present the isosurface rendering results among
different compressors using the combustion (CHI) and ionization (H2)
datasets, respectively. Since APMGSRN, fV-SRN, and TTHRESH are
unable to reconstruct the combustion (CHI) dataset at a CR of 78,858,
failing to extract isosurfaces from the reconstructed volumes on the
specific isovalue. Similarly, for the ionization (H2) dataset, TTHRESH
cannot extract isosurfaces from the decompressed volume. All those
visual results further demonstrate that MoE-INR can achieve superior
quality compared with state-of-the-art compressors.



(a) no pre-training (b) random partition (c) voxel clustering (d) load balancing
Fig. 2: Visualization of the learned assignments for the 4th expert using the ionization (T) dataset. Top: after pre-training, and bottom: after training.

(a) CoordNet (b) NeurComp (c) SIREN (d) fV-SRN (e) APMGSRN

(f) Switch-NeRF (g) Neural Experts (h) TTHRESH (i) MoE-INR (j) GT
Fig. 3: Comparison of volume rendering among different compressors using the vortex dataset. The CR is around 20,267.

(a) CoordNet (b) NeurComp (c) SIREN (d) fV-SRN (e) APMGSRN

(f) Switch-NeRF (g) Neural Experts (h) TTHRESH (i) MoE-INR (j) GT
Fig. 4: Comparison of volume rendering among different compressors using the Tangaroa dataset. The CR is around 104,370.



(a) CoordNet (b) NeurComp (c) SIREN (d) fV-SRN (e) APMGSRN

(f) Switch-NeRF (g) Neural Experts (h) TTHRESH (i) MoE-INR (j) GT
Fig. 5: Comparison of isosurface rendering among different compressors using the combustion (CHI) dataset. The CR is around 78,858. The chosen
isovalue is −0.7.

(a) CoordNet (b) NeurComp (c) SIREN (d) fV-SRN (e) APMGSRN

(f) Switch-NeRF (g) Neural Experts (h) TTHRESH (i) MoE-INR (j) GT
Fig. 6: Comparison of isosurface rendering among different compressors using the ionization (H2) dataset. The CR is around 106,630. The chosen
isovalue is −0.86.
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