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ABSTRACT

Implicit Neural Representations (INRs) are widely used to encode
data as continuous functions, enabling the visualization of large-
scale multivariate scientific simulation data with reduced memory
usage. However, existing INR-based methods face three main lim-
itations: (1) inflexible representation of complex structures, (2)
primarily focusing on single-variable data, and (3) dependence
on structured grids. Thus, their performance degrades when ap-
plied to complex real-world datasets. To address these limitations,
we propose a novel neural network-based framework, MC-INR,
which handles multivariate data on unstructured grids. It com-
bines meta-learning and clustering to enable flexible encoding of
complex structures. To further improve performance, we introduce
a residual-based dynamic re-clustering mechanism that adaptively
partitions clusters based on local error. We also propose a branched
layer to leverage multivariate data through independent branches si-
multaneously. Experimental results demonstrate that MC-INR out-
performs existing methods on scientific data encoding tasks.

Index Terms: Implicit neural representation, meta-learning, clus-
tering, multivariate data encoding.

1 INTRODUCTION

Scientific simulations numerically model spatiotemporal variations
to capture complex physical phenomena. The resulting data typi-
cally consists of multiple variables or features, such as temperature,
pressure, velocity, etc., that vary continuously over spatiotemporal
coordinates. Visualizing such multivariate scientific data is essen-
tial to recognize patterns and outliers at particular spatial or tempo-
ral locations, which has a long-standing history of research [4]. Tra-
ditionally, multivariate scientific data have been represented using
grids or polygonal meshes [10, 13, 20, 24]. However, recent neu-
ral network-based methods, such as implicit neural representations
(INRs) [2, 3, 7, 8, 17, 18], have demonstrated remarkable perfor-
mance, particularly in data compression and super-resolution, ef-
fectively reducing data size. Notably, INRs are well-suited for sci-
entific visualization, as they approximate values at given spatiotem-
poral coordinates and represent them as continuous functions.

However, conventional INRs face several limitations in repre-
senting multivariate scientific simulation data. First, most existing
INR methods rely on a single network to represent the entire do-
main, which restricts their ability to capture complex spatial struc-
tures and shapes. Second, they are primarily designed to handle
single-variable data, limiting their ability to represent multivariate
scientific simulations effectively. In real-world scientific simulation
data, multiple physical variables interact within the same spatial do-
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main, making it challenging for traditional representations to cap-
ture such complexity, often resulting in poor performance. Lastly,
INRs for representing time-varying scientific data are generally bi-
ased toward structured grids, making it challenging to represent
complex geometric structures in unstructured grids. As a result,
they often fail to capture intricate spatial structures accurately.

To address these limitations, we propose MC-INR (i.e., meta-
learning and clustered INR), a novel neural network-based repre-
sentation that extends CoordNet [2] for efficient encoding of multi-
variate data defined on unstructured grids. Our contributions are as
follows: First, we combine meta-learning [22] and spatial cluster-
ing to enable efficient encoding of local patterns and flexible adap-
tation to complex structures. MC-INR partitions the data into spa-
tial clusters and learns cluster-specific meta-knowledge. We also
introduce a residual-based dynamic re-clustering mechanism that
adaptively partitions clusters to more accurately capture structural
variations with reduced error. Second, we propose a branched net-
work architecture inspired by multi-task learning, in which each
variable is assigned a dedicated branch to capture fine-grained
structures, thereby improving the representation accuracy of mul-
tivariate data. Notably, the proposed network and spatial domain
decomposition make our method particularly well-suited for rep-
resenting multivariate data on unstructured grids. We demonstrate
the effectiveness of MC-INR both quantitatively and qualitatively
using our in-house small modular reactor simulation datasets.

2 RELATED WORK

2.1 Meta Learning
Meta-learning [1] is a training framework designed to enable mod-
els to quickly adapt to new tasks and complex structures. In partic-
ular, it has been widely applied in INRs to reduce training time and
improve generalization performance. Sitzmann et al. [14] proposed
a gradient-based meta-learning approach, and Tancik et al. [16] in-
troduced a method that adaptively targets classes of signals, lever-
aging the benefits of meta-learning. Yang et al. [22] proposed
Meta-INR, which improves the generalization and representation
of time-varying data by interval-selecting points for training the
meta-learner. Inspired by these strategies, we adopt meta-learning
to enable efficient training and represent complex structures.

2.2 Clustering
Several scientific simulation datasets are large in scale, making it
difficult to fully encode and utilize their complex features due to
high computational memory requirements. To mitigate this lim-
itation, various methods employed tree-based [9, 23] or Lapla-
cian pyramid-based [12, 17] approaches to partition the data into
smaller, more manageable clusters. Liu et al. [6] used k-means
clustering to apply unstructured grids, addressing cases that previ-
ous methods find challenging to handle. Inspired by this, we em-
ploy the k-means clustering to treat unstructured grids; furthermore,
each cluster is processed on a separate GPU to improve training
speed and computational efficiency.

2.3 INR for Scientific Simulation Data
Traditionally, spatial data structures, such as rectilinear grids and
polygonal meshes, have been used for scientific data visualiza-
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Figure 1: The overview of MC-INR: (a) The input data is spatially partitioned using k-means clustering, and random sampling is performed within
each cluster for meta-learning. (b) The sampled data are passed through positional encoding and used to train an initial network via meta-
learning. (c) The meta-learned model is then fine-tuned using the full data of each cluster. Re-clustering is performed if the residual exceeds a
threshold. (d) The proposed CoordNetB is the backbone DNN model, consisting of global and local structure feature extractors (GFE and LFE).
Finally, the outputs from all clusters are merged to produce the final encoding result.

tion [10, 13, 20, 24]. Recently, numerous studies have emerged
using INR [15], representing data as continuous functions. A pi-
oneering work by Han and Wang [2] proposed coordinate-based
data encoding using a neural network, CoordNet, improving the
model’s representation performance on time-varying data. Wurster
et al. [21] suggested adaptively placed feature grids in the encoder
to effectively capture spatial characteristics. Tang and Wang [18]
and Jiao et al. [3] introduced the INR methods based on deep neu-
ral networks (DNN) to handle the spatial and temporal variables.
Wang et al. [19] proposed a hash encoder [11]-based method com-
bined with finite differences to capture global and local information
and improve boundary conditions. While prior works mainly focus
on single-variable data in structured grids, limiting fine structure
representation, we address this by exploring multivariate data on
unstructured grids using a branched layer.

3 PROPOSED METHOD: MC-INR
MC-INR applies k-means clustering to partition the data and per-
forms meta-learning using sampled points from each cluster. Each
cluster is then trained using all its data points, guided by the ac-
quired meta-knowledge. To handle multivariate data, MC-INR em-
ploys a branched network layer. The overview of MC-INR is shown
in Fig. 1, and the detailed methodology is described below.

3.1 Meta Learning and Clustering
Directly training on large datasets can make it difficult to effectively
encode the data, as the underlying characteristics may be complex
and hard to capture. To address this, we adopt the k-means clus-
tering strategy inspired by Liu et al. [6]. This method partitions
the dataset, spatially coherent sub-regions based on spatial coordi-
nates, preserving local structures and enabling the model to capture
localized temporal variations. The cluster partition is defined as:

C = argmin
C

K

∑
i=1

∑
x∈Ci

||x−µ i||2, (1)

where C = {C1,C2, . . . ,CK} represents the set of K clusters, x de-
notes a data point which is spatial coordinate, and µ i is the cen-

troid of cluster Ci. The number of clusters, denoted as K, is set
to 20. Each cluster is assigned an independent DNN and process,
enabling concurrent execution across multiple GPUs for efficient
resource utilization and improved training throughput.

To enhance the model’s performance, we further introduce a
residual-based dynamic re-clustering mechanism. After training the
initial cluster, we compute the residual by the mean squared error
(MSE). If the residual of the cluster exceeds a threshold τ = 5e-
4, the cluster is subdivided into two sub-clusters to preserve local
temporal variations. Otherwise, the training process is terminated.
Each sub-cluster inherits the model parameters from the cluster be-
fore division, preserving learned knowledge while refining repre-
sentations in high-error regions. Note that each cluster is trained
by an independent DNN. With this strategy, our model effectively
captures localized temporal variations.

INRs typically struggle to represent complex structures accu-
rately ; to mitigate this, we employ meta-learning [1], aiming to
adapt to the complexities of scientific data. Inspired by Meta-
INR [22], which performs sub-sampling by selecting points at reg-
ular intervals along each axis in structured grids, we extend this
idea to unstructured grids. However, since unstructured data lacks
regularity, interval-based sampling is not feasible. Therefore, we
adopt a random sampling strategy, selecting points across the do-
main without relying on fixed intervals. This approach allows us
to efficiently construct representative sub-sampled datasets suitable
for meta-learning in unstructured grids. These meta-learning and
clustering approaches are illustrated in Fig. 1 (a), (b), and (c).

3.2 Branched CoordNet
Scientific simulation data typically includes multiple physical vari-
ables; however, most existing methods are designed to handle only
a single variable, limiting to represent multivariate datasets effec-
tively. To address this issue, we propose a branched layer network
based on CoordNet [2]. It consists of SIREN [15] network with
residual blocks, which has deeper network depth for accurate en-
coding.Our network architecture is an extension of CoordNet, re-
ferred to as Branched CoordNet (CoordNetB), consisting of global
and local structure feature extractors (GFE and LFE). The GFE cap-



tures global structural features, such as overall patterns, while the
LFE is designed to learn local features specific to each physical
variable, including fine-grained details. Furthermore, to facilitate
stable training and enhance the learning of fine-grained details, we
leverage sine activation functions [15] along with skip connections
within the network architecture. It is illustrated in Fig. 1 (d) and is
formulated as follows:

h0 = PE([x,y,z, t ]),
y j = LFE j(GFE(h0)), j ∈ {1,2, · · · ,M},

(2)

where h0 and PE denote the input and positional encoding, respec-
tively. x,y,z, t refers to the coordinate at time step t. GFE represents
the GFE and LFE j denotes the j-th LFE, where M is the total num-
ber of variables (e.g., temperature, pressure, etc), and y j is the j-th
output variable from the network. The feature extractor is formu-
lated as follows:

FEl = ψ(Wl hl−1 +bl), l ∈ {1,2, · · · ,N}, (3)

where FEl represents the l-th feature extractor layer consisting of
the GFE and LFE j, where N is number of layers. hl−1,ψ,Wl and
bl correspond to feature map, sine activation function, weight, and
bias at the l-th layer, respectively. Training is conducted indepen-
dently for each cluster Ci, and to optimize each cluster, we employ
MSE as a loss function. By leveraging branched layers within the
network, this approach further facilitates efficient joint learning of
multiple variables within a single model.

4 EXPERIMENTS

4.1 Implementation Details
Datasets. We used a variety of multivariate scientific simulation
datasets, including in-house datasets, ROCOM, CUPID, and syn-
thetic datasets provided by our collaborator. Each dataset is defined
on an unstructured tetrahedron mesh. The dataset information, used
in our experiments, is presented in Tab. 1.
Implementation. We conducted experiments using PyTorch 2.1.0
on four NVIDIA RTX A6000 GPUs. The meta-learning training
hyperparameters are set to be the same as those used in Meta-
INR [22]. The network consists of a total of 11 layers, compris-
ing 5 layers in the GFE and 6 layers in the LFE, where each layer
is implemented using the residual block design introduced in Co-
ordNet [2]. The width of the network was adjusted to the size and
characteristics of each dataset. We performed the main training un-
til convergence using the Adam optimizer with an initial learning
rate of 5e-5. The convergence condition is defined as no decrease
in training loss over 30 epochs. A learning rate scheduler is applied,
reducing the learning rate by a factor of 0.92 every 30 epochs. Note
that we used 30% of the total points that were randomly sampled
in each epoch during the main training. We used peak signal-to-
noise ratio (PSNR), normalized root mean squared error (NRMSE),
and coefficient determination (R2) for quantitative evaluation. For
the quantitative comparison, we average the result values across all
variables and timesteps. The bold text indicates the best result.

4.2 Results
Quantitative results. Tab. 2 presents the experimental results com-
paring with previous methods across various datasets. We selected
baseline methods that are independent of grid structure and can be
adapted to support multivariate outputs, ensuring a fair compari-
son with our approach. MC-INR consistently outperforms prior
methods, demonstrating superior accuracy. Specifically, without
meta-learning and clustering, our network architecture, CoordNetB,
achieves better performance than SIREN [15] and CoordNet across
all three metrics, highlighting the effectiveness of the branched
layer for multivariate data. By integrating meta-learning and clus-
tering, MC-INR further improves performance, achieving superior

Table 1: Experimental datasets overview. ρ and t denote the num-
ber of spatial coordinates per timestep and the number of timesteps,
respectively.

Dataset # of points (ρ × t) # of variables
ROCOM 12,440,366 × 5 8
CUPID 1,279,375 × 30 11
Synthetic 5,253,750 × 30 4

Table 2: Quantitative comparison of data encoding results. Size indi-
cates the model’s weight, and for our method, it refers to the total size
summed over all clusters. CoordNetB means our branched network,
which is without meta-learning and clustering.

Dataset Method PSNR↑ NRMSE↓ R2↑ Size (KB)

ROCOM

SIREN [15] 38.59 0.0161 0.8756 530
CoordNet [2] 39.51 0.0129 0.8133 23215
CoordNetB 47.65 0.0073 0.9765 10372
MC-INR 54.10 0.0042 0.9923 33600

CUPID

SIREN 21.63 0.1656 0.5659 304
CoordNet 20.51 0.1732 0.4733 13095
CoordNetB 36.99 0.0160 0.8294 6231
MC-INR 51.55 0.0033 0.9975 27240

Synthetic

SIREN 52.04 0.0039 -0.3349 528
CoordNet 50.39 0.0038 -8.4193 23199
CoordNetB 62.16 0.0010 0.7958 9627
MC-INR 76.54 0.0002 0.9827 30180

results across all metrics. This improvement stems from its ability
to efficiently capture local patterns and complex structures. We ob-
served that SIREN and CoordNet yield negative R2 scores on the
Synthetic dataset, due to an outlier in one of the output channels.
We suspect this is a limitation of multichannel vector regression
using DNN, though further investigation is needed. Although our
method requires the largest model weight size, we observed that
baseline models with similar sizes still show lower performance
compared to ours, making our approach the only viable option for
reducing encoding error.To further demonstrate training efficiency,
we present the PSNR results over training time in Fig. 2. Within
the same training duration, MC-INR has achieved a higher PSNR
than other methods, which indicates that MC-INR is effective and
efficient for multivariate data encoding.
Compression results. To demonstrate the compression perfor-
mance of MC-INR’s, we compare PSNR at different compression
ratios (CR, raw data size / model’s weight size) in Tab. 3. We com-
pared our method to SZ3 [5], commonly used for scientific data
compression that achieves high CR while preserving user-defined
error bounds. For a fair comparison, we evaluate SZ3 and MC-
INR under two aligned conditions: one with similar CRs to assess
differences in PSNRs, and the other with similar PSNRs to assess
differences in CRs.As shown in Tab. 3, MC-INR achieved better
performance in both cases, yielding higher PSNR at similar CRs
and higher CR at similar PSNRs.
Qualitative results. Visual comparison with previous methods is

Table 3: Quantitative comparison of data compression results. We
evaluated under identical PSNR and CR settings to ensure a fair
comparison. CR refers to the compression ratio.

Dataset Method PSNR↑ CR↑

ROCOM
SZ3 [5] 22.83 109
SZ3 54.07 4.89
MC-INR 54.10 110

CUPID
SZ3 16.69 229
SZ3 51.30 2.03
MC-INR 51.55 230

Synthetic
SZ3 36.96 310
SZ3 76.05 14.61
MC-INR 76.54 311
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Figure 2: Comparison of encoding performance over time. PSNR is recorded per epoch, with curves starting at different times due to varying
training durations. Each method is trained until convergence.
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Figure 3: Error map visualization of pressure value. Errors are computed using absolute difference, with lower values shown in blue and higher
values in red. The ground truth (GT) refers to the reconstructed points obtained from the tetrahedral mesh.

Table 4: Ablation study results for residual-based re-clustering. This
experiment is conducted on the ROCOM dataset.

Method PSNR↑ NRMSE↓ R2↑
w/o Re-clustering 51.51 0.0052 0.9886
w/ Re-clustering 54.10 0.0042 0.9923

illustrated in Fig. 3. The ground truth (GT) rendered multivariate
datasets by a tetrahedral mesh, and other methods visualized the
error map illustrating the absolute difference between the GT and
the prediction, with lower errors shown in blue and higher errors
in red, highlighting regions of inaccuracy. SIREN and CoordNet
exhibit high errors on the synthetic data, while CoordNetB exhibits
significantly lower errors compared to them. MC-INR further re-
duces the error of CoordNetB, demonstrating its effectiveness in
encoding multivariate datasets.

Ablation study. We evaluate the effectiveness of the residual-based
dynamic re-clustering mechanism on the ROCOM dataset (Tab. 4).
When re-clustering is applied, the model achieves a 2.59 dB im-
provement in PSNR compared to without re-clustering, along with
slight gains in the other two metrics. This improvement indicates
that re-clustering enables the model to enhance the capture of spe-
cific local structures. Therefore, the re-clustering mechanism is ef-
fective in improving the model’s representational ability.

4.3 Limitations
Due to the use of multiple networks (one per cluster), our method
incurs higher memory consumption compared to approaches using
a single network. Additionally, non-overlapping clusters may intro-
duce boundary artifacts, which can become noticeable when zoom-
ing into local regions near cluster edges. Introducing simple bound-
ary overlaps could mitigate this issue. Despite these limitations, our
method achieves superior encoding performance compared to pre-
vious works.

5 CONCLUSION

In this paper, we introduced MC-INR, a novel neural network-based
framework designed to encode multivariate scientific simulation
data on unstructured grids. MC-INR leverages meta-learning and
clustering strategies to effectively encode data on complex unstruc-
tured grids and capture local patterns. The proposed residual-based
dynamic re-clustering mechanism further contributes to improving
the encoding accuracy. Additionally, we introduced CoordNetB,
which enables joint learning of multivariate data and enhances rep-
resentation quality. As a result, MC-INR achieved superior perfor-
mance in both quantitative and qualitative evaluations, demonstrat-
ing its effectiveness and robustness for scientific data visualization.

For future work, we plan to explore various clustering strate-
gies that leverage both spatial structures and data distributions for
higher encoding performance. Moreover, we intend to conduct in-
depth validation across diverse datasets, including both structured
and unstructured grid data.
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