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Abstract— Accurate 3D aortic construction is crucial for clinical diagnosis, preoperative planning, and computational fluid dynamics
(CFD) simulations, as it enables the estimation of critical hemodynamic parameters such as blood flow velocity, pressure distribution,
and wall shear stress. Existing construction methods often rely on large annotated training datasets and extensive manual intervention.
While the resulting meshes can serve for visualization purposes, they struggle to produce geometrically consistent, well-constructed
surfaces suitable for downstream CFD analysis. To address these challenges, we introduce AortaDiff, a diffusion-based framework that
generates smooth aortic surfaces directly from CT/MRI volumes. AortaDiff first employs a volume-guided conditional diffusion model
(CDM) to iteratively generate aortic centerlines conditioned on volumetric medical images. Each centerline point is then automatically
used as a prompt to extract the corresponding vessel contour, ensuring accurate boundary delineation. Finally, the extracted contours
are fitted into a smooth 3D surface, yielding a continuous, CFD-compatible mesh representation. AortaDiff offers distinct advantages
over existing methods, including an end-to-end workflow, minimal dependency on large labeled datasets, and the ability to generate
CFD-compatible aorta meshes with high geometric fidelity. Experimental results demonstrate that AortaDiff performs effectively
even with limited training data, successfully constructing both normal and pathologically altered aorta meshes, including cases with
aneurysms or coarctation. This capability enables the generation of high-quality visualizations and positions AortaDiff as a practical
solution for cardiovascular research.

Index Terms—Conditional diffusion model, volume-guided surface generation, multi-branch vessel modeling

1 INTRODUCTION

The aorta is the largest blood vessel in the human body, originating
from the heart and branching out to deliver oxygenated blood through-
out the body. Like other blood vessels, it is susceptible to various
pathological conditions, such as coarctation and aneurysm [58]. Coarc-
tation arises from congenital defects causing aortic narrowing, while
aneurysm results from chronic stress or atherosclerosis, leading to lo-
calized dilation and wall weakening. Anatomically, the aorta exhibits a
multi-branch topology with complex surface features, encompassing
significant variations in shape and scale. Although aortic modeling has
been extensively studied, the characterization and analysis of multiscale
aortic structures—particularly those with branching (e.g., the supra-
aortic branches at the arch)—remains a nontrivial challenge [26, 44].
In the context of human anatomy, particularly the aortic arch, the major
supra-aortic branches include the right subclavian artery (RSA), left
subclavian artery (LSA), right common carotid artery (RCCA), and
left common carotid artery (LCCA). As illustrated in Figure 1, these
vessels emerge from the aortic arch and supply blood to the head and
upper extremities. Given the aorta’s vital role, hemodynamic analysis
is essential for clinical diagnosis and treatment planning to assess blood
flow dynamics and identify potential abnormalities.

Computational fluid dynamics (CFD) simulations are a powerful
tool for understanding aortic disease development and rupture risk. By
computing critical hemodynamic parameters such as blood flow veloc-
ity, pressure distribution, and wall shear stress (WSS), CFD analysis
provides valuable insights for medical professionals. However, the ac-
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curacy and reliability of CFD simulations are highly dependent on the
quality of the underlying 3D aorta meshes. These meshes are typically
manually extracted from computed tomography (CT) or magnetic reso-
nance imaging (MRI) volumes using tools like SimVascular [60]. This
manual process is labor-intensive and time-consuming, requiring the
annotation of contours across hundreds or even thousands of CT/MRI
slices, making it a significant bottleneck in clinical workflows.
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Fig. 1: Extraction of 3D aorta meshes from a CT/MRI volume.

To minimize manual intervention, researchers have developed vari-
ous segmentation methods [17, 20, 71]. While these methods, typically
trained on large annotated CT/MRI datasets, achieve high segmentation
accuracy, they fall short in directly constructing 3D aorta meshes. Point
clouds offer a more accurate approximation of 3D aortic structures
than semantic segmentation. Advances in computer vision have led
to point cloud-based methods [35, 72] that perform well in generating
general 3D objects, such as chairs, aircraft, and cars. However, these
methods rely on large-scale training datasets, which are significantly
harder to obtain for aortic data. A more direct approach is to generate
3D surfaces. Studies [6,69] have shown that using statistical shapes and
deformable models can effectively construct specific organs, such as
the heart, due to their relatively simple structure. For modeling complex
vascular structures, recent studies [11,30,65] have combined generative
models (e.g., VAEs, GANs, diffusion models) with statistical shape
modeling to synthesize multi-branch vessel geometries. However, these
methods primarily focus on small-scale vasculatures and branching
topology, often lacking detailed surface representations. Moreover,
they serve purely as geometry synthesizers without leveraging medical
imaging data. Mistelbauer et al. [42] employed elliptic Fourier de-
scriptors (EFDs) to generate surface meshes for aortic dissections with
separated lumens. However, creating CFD-ready meshes for healthy
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aortas and other pathologies—featuring multiple branches and varying
diameters—remains a significant challenge, demanding more flexible
and generalizable modeling techniques.

In summary, existing solutions face three major challenges in fully
automating aorta mesh extraction from CT/MRI volumes:

• Limited availability of aortic data: Publicly accessible datasets
primarily provide segmentation labels rather than detailed 3D
mesh annotations, restricting the development of fully automated
construction methods.

• High reliance on manual intervention: Generating high-quality
aorta meshes still requires considerable manual effort, including
mesh smoothing, hole filling, and geometric refinement, making
the process labor-intensive and time-consuming.

• Lack of an end-to-end solution: Existing methods cannot di-
rectly generate meshes from medical images that are suitable for
both visualization and hemodynamic simulation of the main aorta
and supra-aortic branches, necessitating post-processing to obtain
a complete and usable 3D representation.

To address these challenges, we propose AortaDiff, an automatic
framework for aorta mesh construction conditioned on CT/MRI vol-
umes. AortaDiff integrates both point cloud and segmentation-based
approaches and consists of three key stages: (1) A volume-guided con-
ditional diffusion model (CDM) generates the aortic centerline from
the input CT/MRI volume. (2) A contour extraction technique uses the
generated centerline points as priors to guide a semi-automated seg-
mentation method, transforming it into a fully automated process. (3)
A surface construction method constructs the final aorta mesh by fitting
a 3D non-uniform rational B-spline (NURBS) surface to the extracted
contours. These stages are designed to address the limitations of exist-
ing approaches. In the first stage, inspired by the success of denoising
diffusion probabilistic models (DDPM) [25], we employ a CDM [57]
to generate centerline points rather than the entire aortic point cloud.
This approach provides a compact yet morphologically informative rep-
resentation of the aorta, significantly reducing computational overhead
and enabling effective training on limited aortic datasets. In the second
stage, the generated centerline points serve as prompts for a prompt-
dependent semi-automated segmentation model, eliminating manual
intervention in the segmentation process. The third stage completes the
construction by generating a CFD-ready aorta mesh, making AortaDiff
a fully end-to-end solution for aorta mesh construction.

The primary contributions of AortaDiff are as follows:
• Fully automatic aorta mesh extraction: AortaDiff offers an

end-to-end solution for generating 3D aorta meshes directly from
CT/MRI volumes, covering normal, aneurysmal, and coarctation
cases, and removing the need for extensive manual intervention.

• Minimal training data requirements: Unlike deep learning-
based segmentation and point cloud generation methods, AortaD-
iff operates effectively without requiring large annotated training
datasets, making it practical for real-world applications.

• High-quality mesh generation: Parameterized NURBS-based
meshes produced by AortaDiff are directly compatible with CFD
solvers without additional post-processing, enabling efficient
hemodynamic analysis, including the estimation of flow-derived
biomarkers critical for diagnosis and treatment planning.

• Support for parametric anatomical modification: The flexible
geometry construction framework enables customizable anatomi-
cal adjustments, facilitating in silico experimentation for device
optimization and surgical planning.

By addressing key limitations of existing methods, AortaDiff provides
a structured, fully automated approach to aorta mesh construction that
renders manual contour annotation and post-processing unnecessary,
thereby streamlining the workflow and enhancing the efficiency and
consistency of hemodynamic analysis in clinical applications.

2 BACKGROUND AND RELATED WORK

Background. Hemodynamic analysis is essential for understanding car-
diovascular conditions and guiding diagnosis and treatment decisions.
It enables the estimation of biomarkers and flow characteristics linked
to disease progression, such as regions of elevated WSS associated with

thrombus formation and aneurysm rupture risk, and abnormal pressure
gradients or flow acceleration that help assess aortic coarctation sever-
ity and plan interventions. These analyses, typically based on CFD
simulations of cardiovascular geometries, provide quantitative insights
into vessel morphology, flow velocity, pressure, and WSS distributions,
offering biomarkers beyond vessel diameter to better predict compli-
cations and evaluate the impact of surgical or endovascular treatments.
Parametric geometry models further support in silico experimentation
for optimizing device designs and planning procedures.

Numerous studies have explored visualizing and analyzing hemody-
namic data for clinical applications. Lawonn et al. [31] developed a tool
for occlusion-free blood flow animation to enhance visualization clar-
ity. Oeltze-Jafra et al. [48] introduced a clustering-based approach for
visualizing vortical flows in CFD simulations. Tao et al. [59] designed
a web-based interface to visualize 4D hemodynamic data. Combining
patient-specific hemodynamics with wall deformation, Meuschke et
al. [41] developed a visualization tool integrating 2.5D and 3D repre-
sentations. To support the exploration of multi-field aneurysm data,
they also proposed an interactive tool to identify regions of interest on
vessel walls [38]. Other notable contributions include CAVOCLA [40],
which facilitates blood flow classification for cerebral aneurysms, and
GUCCI [39], which identifies cohort-specific characteristics of the
aorta using glyph-based depictions.

Despite these advancements, a significant gap remains in obtaining
high-quality vascular geometries, which are fundamental for CFD
simulations [14,15]. The aorta, the largest blood vessel originating from
the heart, has a complex structure, including the main and supra-aortic
branches. Accurate 3D representations of aortic geometries are critical
for clinical applications. However, constructing these geometries poses
several challenges, including the complexity of multi-branch structures,
the limited availability of medical imaging data, and the demand for
high geometric fidelity.

Surface construction. Recent advancements in computer vision and
deep learning have demonstrated significant potential in medical image
processing and 3D surface construction. Most approaches primarily
concentrate on image or volume segmentation to extract 3D surfaces,
while others focus on the 3D construction of specific organs, such
as the heart and liver. More recently, diffusion models have been
utilized to generate 3D point clouds [35, 67]. Existing methods for
3D surface construction can be broadly classified into three categories:
segmentation, point cloud, and geometry techniques.

Segmentation methods are used to identify vascular regions in
3D medical images, generating segmented volumes of specific organs.
Techniques such as marching cubes [34] or surface nets [18], are then
employed to extract 3D surfaces. Advanced 3D segmentation models,
like DenseUNet [73], utilize densely connected layers to improve fea-
ture propagation, particularly for complex structures. UNetR++ [55],
which incorporates transformer architectures to capture long-range
dependencies, achieves state-of-the-art performance. Numerous stud-
ies have applied segmentation to vascular analysis. For instance, Lin
et al. [33] introduced a geometry-constrained deformable attention
network to enhance aortic structure segmentation. Montalt-Tordera
et al. [45] trained a U-Net model for thoracic aorta hemodynamics
analysis, tackling patient-specific blood flow assessment challenges.
Myronenko et al. [46] developed an automated method for aorta seg-
mentation using 3D CT images. Vagenas et al. [61] combined tradi-
tional image processing and machine learning techniques for precise
aorta segmentation and construction. While these methods effectively
capture detailed anatomical features, they rely on extensive annotated
data and are susceptible to error propagation, limiting their utility in
aortic surface construction. Although region-growing [23] methods
have advanced aortic segmentation, they require seed point specifica-
tion and are highly sensitive to intensity thresholds, affecting accuracy
and consistency. Segment anything model (SAM)-based methods [28]
rely on precise input prompts to achieve accurate segmentation, still
requiring substantial human intervention.

Point cloud methods construct 3D objects by approximating sur-
faces using sampled points. Generative models, particularly diffusion-
based approaches, enhance the fidelity of these constructed geometries.
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Fig. 2: The framework of AortaDiff: (a) A volume-guided CDM generates a centerline by extracting a feature volume using a ViT encoder, retrieving
feature vectors at the centerline points, and concatenating them with the 1D centerline image. (b) ScribblePrompt extracts contours for centerline
points. (c) A 3D NURBS mesh is constructed from the contours representing the geometry. (d) The aorta mesh is then used in CFD simulations.

For example, Erler et al. [16] developed Points2Surf, which learns im-
plicit surface representations from point cloud patches for high-quality
construction. Zhou et al. [72] introduced the point-voxel diffusion
(PVD) model, combining denoising diffusion models with point-voxel
representations to achieve high-fidelity construction. Luo and Hu [35]
approached point cloud generation as a thermodynamic process, im-
proving robustness against noise. Li et al. [32] proposed a disentangled
refinement method for point cloud upsampling, resulting in higher reso-
lution and accuracy. Wu et al. [67] introduced point straight flow (PSF),
simplifying the diffusion process into a single step, significantly ac-
celerating generation while preserving quality. Despite their strengths,
these methods require extensive training data and face challenges to en-
sure continuity and smoothness in constructed surfaces, particularly for
complex geometries like the main aorta and its supra-aortic branches.

Geometry methods bypass intermediate steps like segmentation or
point cloud creation, directly generating 3D geometries. For example,
Selle et al. [54] and Hahn et al. [21] proposed pipelines for vascular
analysis and visualization that combine region-growing-based segmen-
tation with skeletonization and graph-based structural analysis. These
methods produce effective visualizations of vessel branching patterns
and diameters; however, their performance is limited by factors such
as low image resolution, partial volume effects, and discontinuities in
vessel diameter estimation. Kretschmer et al. [29] generated and refined
smooth vascular models using centerline-based descriptions. Recent
advancements in deep learning have further enhanced the capabilities
of geometry methods. Lyu et al. [36] utilized GAN-based models to
generate geometries for the aorta and carotid arteries. Xiong et al. [68]
leveraged cascaded GANs for high-fidelity aortic geometry construc-
tion. Black et al. [9] constructed arterial geometries using 4D flow-MRI
data to validate hemodynamic simulations. Although these methods
offer end-to-end solutions, they often require extensive datasets, rely
on structural assumptions, and lack flexibility for adjustments.

To address the challenges of aortic surface construction, we pro-
pose AortaDiff, a volume-guided CDM that decomposes the aorta into
centerlines and contours for precise modeling. Diffusion models have
shown significant success in image generation, with DDPM [25] serv-
ing as a foundational framework. Nichol and Dhariwal [47] improved
DDPM by modeling reverse diffusion variances, while Chen et al. [10]
introduced dynamic resolution image generation using neural fields.
Beyond images, diffusion models have been applied to text-to-image
generation [70] and video synthesis [56]. In visualization, tools like
GAN Lab [27] have been used to interpret deep generative models.
While diffusion models have shown promise in image generation, their
application to vessel modeling and visualization remains underexplored.

Traditional aorta modeling methods, such as voxel-based reconstruction
or manual parameterization, often introduce surface defects or require
intensive manual effort, hindering scalability. AortaDiff integrates a
volume-guided CDM for centerline generation with SAM-based con-
tour extraction. By combining diffusion modeling with automated
parameterization, it generates smooth, simulation-ready meshes with
minimal manual intervention, enabling scalable geometry construction
for CFD and surgical planning.
3 AORTADIFF

Figure 2 illustrates the AortaDiff framework, which consists of four
key stages: (a) extracting the aortic centerline from CT/MRI volumes
using a CDM, (b) obtaining vessel contours from cross-sections through
image segmentation and edge detection, (c) constructing the 3D aorta
mesh using NURBS, and (d) conducting downstream CFD simulation
tasks with the generated aorta meshes. The algorithm description is
provided in Section 1 of the appendix.

3.1 Centerline Representation
Point cloud methods are commonly used for 3D object construction
but typically require large training datasets, often numbering in the
thousands. In contrast, aortic datasets are generally limited (e.g., only
tens of samples in our experiment), making direct learning from aor-
tic point clouds challenging. To address this, we adopt a simple yet
effective representation: centerlines and their corresponding contours.
The centerline represents the central trajectory of the aorta as a 1D
approximation of its 3D structure. It consists of a sequence of ordered
points, each corresponding to a specific location along the vessel. This
representation captures the global shape and topology of the aorta while
significantly reducing data complexity. Compared to point clouds, the
centerline is more compact, easier to process, and requires fewer com-
putational resources. Additionally, it integrates seamlessly with other
geometric features, such as cross-sectional contours, offering a more
efficient and informative vessel representation. Empirically, we se-
lect 16 points per centerline for both the main aorta and supra-aortic
branches, striking a balance between accuracy and efficiency. For the
main aorta, this configuration effectively captures its curvature and
branching patterns while avoiding unnecessary complexity or overlap-
ping contours that could arise from overly dense sampling. For the
supra-aortic branches, although they are shorter in length, they exhibit
greater relative radius variation compared to the main aorta. Using 16
points ensures that sufficient detail is preserved while preventing exces-
sive redundancy, which is supported by the study shown in Section 4 of
the appendix. Unlike point clouds, we encode the centerline as a 1D
image—a matrix with three channels corresponding to the centerline



points’ x, y, and z coordinates. This format aligns well with image
processing techniques and deep learning models, such as 1D-UNet, a
variant of the U-Net architecture [52], for centerline generation.

3.2 Volume-Guided CDM
To generate the centerline, we employ a volume-guided CDM that
progressively denoises a sequence of noisy centerline images. The
CDM is trained to estimate the noise added at each timestep of the
diffusion process, enabling it to learn the underlying aortic structure.
Diffusion models, such as DDPM [25], are generative frameworks that
iteratively reverse a noise diffusion process. During training, noise
is incrementally added to the image, and the model is optimized to
predict and remove this noise at each timestep. This process allows the
generation of new samples by starting from a simple prior distribution
(e.g., Gaussian) and iteratively refining them through denoising.

However, clinical applications often require constructing a patient-
specific 3D aortic surface. We incorporate information from the 3D
CT/MRI volume into the diffusion process to ensure the generated
centerline aligns with the underlying anatomical structure. As shown
in Figure 2 (a), a vision transformer (ViT) [13] encoder extracts a
feature volume from the input CT/MRI volume, encoding high-level,
voxel-wise semantic information. This ViT, adapted from MONAI
for 3D medical imaging, consists of 12 layers, 8 attention heads, a
hidden size of 16, and a multi-layer perceptron dimension of 3072. We
aim to integrate this feature information for the centerline points as
conditional inputs to guide the diffusion process. A naïve approach
would associate the entire feature volume with each centerline point. In
contrast, for efficiency and effectiveness, we look up the corresponding
feature vector for each centerline point from the feature volume and
concatenate it with the noisy centerline image’s latent vector.

CDM training. AortaDiff integrates volumetric features with cen-
terline points at each timestep of the diffusion process:

• Input representation: The 1D ground-truth (GT) centerline im-
age, CI0, is encoded into a latent vector, L0. Noise is progres-
sively added to Lt at each timestep t, producing a noisy sequence
(L0, . . . ,Lt , . . . ,LT ). The model input consists of Lt concatenated
with feature vectors, f, extracted from the feature volume, FV.

• Noise prediction: The model is trained to predict the noise,
εθ (CIt , t, f), added at t, facilitating the denoising process.

• Optimization objective: The training aims to minimize the dif-
ference between the predicted and actual noise using the loss

LCDM = ECI0,ε,t

[
∥ε− εθ (CIt , t, f)∥2

]
, (1)

where CI0 and CIt denote the clean and noisy centerline images,
ε is the added noise, and εθ is the noise predicted by the model.

Inference with CDM. During inference, the input consists of LT
(the fully noisy latent vector) and the feature volume, FV. The process
follows the reverse of the training paradigm: at each timestep t, the
noisy latent vector, Lt , determines voxel locations, and relevant feature
vectors, f, are retrieved as conditional inputs. The model then iteratively
denoises the latent vector. Eventually, at timestep 0, the final output,
CI0, is constructed via a decoder.

3.3 Contour Extraction
Extracting contours around centerline points enables the construction
of a 3D surface that accurately captures the detailed geometry of the
vessel lumen. We utilize ScribblePrompt [66], a segmentation model
that requires minimal user input (e.g., scribbles, clicks, and bounding
boxes) to achieve precise segmentation.

Orthogonal slice extraction. For each centerline point p, we com-
pute its tangent vector tp using adjacent points. To maintain computa-
tional consistency, the last centerline point shares the tangent vector of
its preceding one. Based on tp, we define a slicing plane Πp orthogonal
to tp. The plane’s orientation is determined by a local coordinate frame
(tp,np,bp), where np and bp are the normal and binormal vectors
spanning Πp. We construct the rotation matrix Rp =

[
bp np tp

]
,

which aligns Πp with the global coordinate system. To extract a cross-
sectional image Sp containing the vessel, we resample the input volume
V onto Πp using trilinear interpolation

Sp = V(Rp · lq +gp), (2)

where gp and lq denote the coordinates of p in the global coordinate
system and any point q on Πp in the local coordinate frame.

Segmentation with ScribblePrompt. The extracted slice Sp is
segmented using ScribblePrompt, a SAM-based model trained on large-
scale medical datasets with simulated scribbles, clicks, and bounding
boxes to mimic realistic user interactions. We chose ScribblePrompt
for its high segmentation accuracy and robustness to slight variations in
input prompts. While ScribblePrompt typically relies on scribble-based
input, we automate this step by directly using the centerline points
generated from AortaDiff as prompts. This results in precise lumen
segmentation, effectively adapting to anatomical variations, including
geometric transitions like bifurcation. Examples of the segmentation
results are shown in Figure 3.
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Fig. 3: Examples of segmentation results using ScribblePrompt. The red
point in the second row denotes the centerline point used as the prompt.

Contour extraction and processing. After obtaining the segmen-
tation mask, we extract strong gradients corresponding to the vessel
boundary by Canny edge detection. The detected edges are then pro-
cessed with OpenCV’s findContours function [2], which retrieves
the outermost contour C 2D

p in a topologically consistent manner. Since
NURBS requires a consistent number of control points across cross-
sections, we uniformly resample C 2D

p to 32 points. This conservative
choice exceeds the typical range used in manual segmentation (5 to
20 points), ensuring sufficient geometric accuracy for reliable hemo-
dynamic analysis. It also maintains smooth, watertight surfaces, even
when handling low-resolution or imperfect inputs.

Mapping contour back to 3D. Each 2D contour C 2D
p extracted

from Πp must be mapped back to 3D. Since Πp is defined by the local
coordinate frame (tp,np,bp) and centered at p, we transform each
2D contour point C 2D

pi
back to C 3D

pi
in the original 3D space using

the inverse of Rp, i.e., R−1
p · lc +gp, where lc denotes the coordinate

of any contour point c in the local coordinate frame. This process
ensures that the constructed contours align accurately with the input
volume V, preserving the anatomical vessel structure while maintaining
a consistent contour representation for NURBS-based construction.
3.4 Aortic Surface Construction
After obtaining the aortic centerline and corresponding contours, we
construct the 3D aortic surface using NURBS, achieving a smooth and
anatomically accurate representation of the vessel.

Contour alignment. To ensure consistency across adjacent contours,
we establish point-to-point correspondence using the iterative closest
point (ICP) algorithm [8], which preserves spatial coherence along the
vessel and provides a reliable foundation for surface construction.

Surface fitting. We implement a curve-fitting algorithm [50] to fit a
cubic spline curve from the aligned contour points {C 3D

pi
}, which gives

the control points pi, j ∈Rm×n×3 and weights wi, j ∈Rm×n

wi, j,pi, j = CurveFitting
(
{C 3D

pi
}
)
, (3)



where m and n represent the resolutions along the longitudinal (stream-
wise) and circumferential directions, respectively. i denotes the longitu-
dinal position along the centerline, while j represents the circumferen-
tial position around each cross-section. The estimated control points
and weights can be directly used to create a 3D NURBS surface

S(u,v) =
∑

n
i=0 ∑

m
j=0 Ni,p(u)N j,q(v)wi, jpi, j

∑
n
i=0 ∑

m
j=0 Ni,p(u)N j,q(v)wi, j

, (4)

where u represents the parametric direction along the aortic centerline,
capturing the longitudinal dimension, and v represents the circum-
ferential direction around each cross-sectional contour. Ni,p(u) and
N j,q(v) are B-spline basis functions, while wi, j and pi, j represent the
corresponding weights and control points. p and q denote the spline
orders on u and v directions. The surface fitting process interpolates
control points along u (centerline) and v (contours), generating a contin-
uous parametric surface. This ensures the constructed aorta maintains
geometric accuracy, effectively capturing subtle variations in vessel
curvature, diameter, and morphology.

Multi-branch integration. We separately model the main aorta
and supra-aortic branches and seamlessly integrate them into a unified
surface. Overlapping regions are refined to eliminate discontinuities.
NURBS provides a robust framework for vascular modeling, capa-
ble of capturing complex branching structures and detailed geometric
variations with high precision.

3.5 CFD Simulation
To validate the feasibility of the constructed aorta meshes for down-
stream CFD simulations, we employ OpenFOAM [3], a widely used
solver for simulating fluid dynamics in complex geometries. The simu-
lation process consists of the following steps:

• Geometry and mesh generation: The constructed aorta geom-
etry is remeshed into a high-quality triangulated surface using
PyACVD [62], followed by volumetric tetrahedral meshing via
VMTK’s TetGen-based algorithm [5]. The mesh is compatible
with OpenFOAM and dense enough to capture key flow character-
istics. The mesh comprises polyhedral elements with appropriate
boundary definitions for the inlet, outlets, and vessel walls.

• Governing equations and numerical discretization: Each simu-
lation solves steady-state incompressible Navier-Stokes equations

∇ ·uuu = 0,

(uuu ·∇)uuu =−∇p+ν∇
2uuu,

(5)

where u is the velocity field, p is the pressure, ν is the kine-
matic viscosity. We solve those equations using SimpleFoam on
multiple GPUs in parallel via OpenMPI [19].

• Boundary conditions: Physiological boundary conditions are
applied to replicate realistic aortic flow dynamics, including inlet
(a prescribed velocity profile simulating either pulsatile or steady
inflow conditions), outlets (either zero-gradient conditions or
specified pressure values to allow natural flow development),
and vessel walls (a no-slip boundary condition enforcing fluid
adherence to the vessel wall).

• Solver configuration: The simulation employs the semi-implicit
method for pressure-linked equations (SIMPLE) algorithm [49]
in a steady-state formulation. To enhance computational effi-
ciency, parallel domain decomposition is applied, distributing the
computational workload across multiple processors.

• Post-processing and flow analysis: Once the simulation con-
verges, key hemodynamic parameters, such as velocity magnitude
and pressure distribution, are extracted to quantify fluid behavior.
WSS is particularly important for assessing the risk of aneurysm
rupture, thrombus formation, and disease progression, making it
essential for CFD analysis to ensure the clinical relevance of the
computational model.

4 RESULTS AND DISCUSSION

We conducted experiments on aortic data to evaluate AortaDiff’s per-
formance and validate the design of our framework. Our evaluation

compares AortaDiff against state-of-the-art methods for centerline gen-
eration and contour extraction. The resulting aorta meshes are assessed
through both quantitative metrics and qualitative analysis. To further
demonstrate the practical applicability of AortaDiff, we performed
CFD simulations on the generated meshes and compared the results
with those obtained from GT meshes.

4.1 Experimental Setup
To train a 3D mesh model of the aorta, the dataset must meet the
following criteria: (1) It should contain a sufficient number of aorta
models with diverse morphologies. (2) It should include a variety of
aortic structures, such as the main aorta and supra-aortic branches.
(3) It should provide mesh labels for the aorta or, at the very least,
segmentation labels. However, datasets containing aorta models are
limited. Most available datasets provide only segmentation labels for
the main aorta, while mesh labels are rare.

To facilitate the training of our AortaDiff model, we used the vas-
cular model repository (VMR) dataset [64], which includes 3D aorta
meshes along with corresponding MRI volumes. This dataset features
various blood vessels, such as the aorta, cerebral arteries, pulmonary ar-
teries, and coronary arteries. In total, it contains 275 blood vessel cases,
including 91 aortas from both animals and humans. Since the dataset
includes non-human aortas, we specifically selected 22 human aorta
cases for our study, with 18 used for training and four for inference.

To evaluate the generalizability of AortaDiff, we additionally incor-
porated several cases from the aortic vessel tree (AVT) dataset [51],
which consists of CT volumes. This dataset exclusively contains human
aorta models, with a total of 56 cases. We selected eight cases with
diverse aortic morphologies to ensure a more comprehensive evalua-
tion. Since the AVT dataset does not provide preexisting aorta meshes,
we generated them by converting the segmentation labels into surface
meshes using the marching cubes algorithm [34]. We then performed
manual post-processing to ensure surface smoothness and to eliminate
topological artifacts such as holes.

All CT/MRI volumes were resampled with an isotropic spacing of
0.8×0.8×0.3 mm, resized to 128×128×128, and normalized to an
intensity range of [0,1] while retaining the full volume. Data augmenta-
tion was applied using MONAI’s RandFlipd and RandRotate90d [1],
each with a probability of 0.1. Model training was performed on a sin-
gle NVIDIA A40 GPU with 48 GB of memory. We used the Adam
optimizer with hyperparameters β1 = 0.9 and β2 = 0.99. The learning
rate was initialized at 1×10−3 with a batch size of 16. The training
process was run for a total of 100,000 iterations.

In the paper, the tables give quantitative results for all twelve test
cases (four from the VMR dataset and eight from the AVT dataset),
while the figures showcase qualitative results for six selected cases.
The remaining six cases are included in Section 3 of the appendix.

Table 1: Average CD, HD, and EMD for centerline generation on all test
cases from the VMR and AVT datasets. For all tables in this paper,
values are in millimeters (mm) as mean ± standard deviation, with the
best results highlighted in bold.

VMR AVT

metric DPM PVD Dit-3D AortaDiff DPM PVD Dit-3D AortaDiff
supra-aortic branches

CD ↓ 2.68±0.05 2.46±0.06 2.25±0.09 0.37±0.02 3.05±0.25 2.80±0.13 2.33±0.25 0.55±0.02
HD ↓ 3.90±0.20 3.62±0.15 3.12±0.10 0.35±0.01 3.93±0.15 3.87±0.25 4.05±0.10 0.37±0.01

EMD ↓ 1.82±0.05 1.75±0.05 1.54±0.09 0.19±0.02 1.57±0.12 1.63±0.08 1.60±0.15 0.29±0.00
main aorta

CD ↓ 2.09±0.03 1.97±0.05 1.71±0.06 0.29±0.01 1.85±0.20 1.88±0.12 1.89±0.25 0.44±0.02
HD ↓ 3.49±0.15 3.11±0.15 2.60±0.10 0.26±0.00 3.30±0.10 3.39±0.22 3.55±0.10 0.32±0.01

EMD ↓ 1.40±0.03 1.34±0.05 1.15±0.05 0.14±0.01 1.30±0.13 1.30±0.05 1.30±0.13 0.23±0.02
overall

CD ↓ 2.39±0.05 2.22±0.06 1.98±0.08 0.33±0.02 2.45±0.23 2.34±0.13 2.11±0.25 0.50±0.02
HD ↓ 3.70±0.18 3.37±0.15 2.85±0.10 0.31±0.01 3.62±0.13 3.63±0.24 3.75±0.10 0.35±0.01

EMD ↓ 1.60±0.05 1.52±0.05 1.32±0.07 0.17±0.02 1.45±0.13 1.46±0.06 1.45±0.14 0.26±0.03

4.2 Centerline Generation
AortaDiff decomposes the aorta into a centerline and its corresponding
orthogonal contours, with the centerline serving as the foundation for
mesh construction. Following Section 3.1, we use a 1D-UNet to process
the 1D image representation of the centerline. Alternatively, a point
cloud generation model could be employed since the centerline can be
viewed as a 3D point cloud. To validate our design choice, we com-
pare AortaDiff against three baseline models: diffusion probabilistic
model (DPM) [35], point-voxel diffusion (PVD) [72], and Dit-3D [43].
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Fig. 4: Comparison of centerline generation methods on the selected test cases from the VMR and AVT datasets.

Table 2: Average Dice, ASD, and HD for segmentation on all test cases from the VMR and AVT datasets.
VMR AVT

metric SAM MedSAM TotalSeg LoGB-Net AortaDiff SAM MedSAM TotalSeg LoGB-Net AortaDiff
supra-aortic branches

Dice ↑ 0.575±0.078 0.757±0.024 0.800±0.007 0.890±0.006 0.967±0.020 0.553±0.075 0.736±0.019 0.782±0.020 0.870±0.018 0.947±0.012
ASD ↓ 1.720±0.350 0.960±0.148 0.715±0.160 0.705±0.170 0.502±0.035 1.638±0.315 0.875±0.170 0.635±0.150 0.620±0.160 0.457±0.055
HD ↓ 9.150±2.880 8.790±3.000 6.580±0.330 6.470±0.340 5.752±0.200 8.420±2.860 8.060±2.990 6.100±0.360 6.000±0.370 5.312±0.230

main aorta
Dice ↑ 0.605±0.078 0.787±0.024 0.910±0.007 0.918±0.006 0.972±0.020 0.565±0.075 0.746±0.019 0.882±0.020 0.880±0.018 0.952±0.012
ASD ↓ 1.690±0.350 0.938±0.148 0.705±0.160 0.693±0.170 0.490±0.035 1.628±0.315 0.868±0.170 0.625±0.150 0.608±0.160 0.450±0.055
HD ↓ 9.110±2.880 8.740±3.000 6.520±0.330 6.410±0.340 5.720±0.200 8.390±2.860 8.030±2.990 6.050±0.360 5.950±0.370 5.280±0.230

overall
Dice ↑ 0.590±0.078 0.772±0.022 0.885±0.007 0.904±0.010 0.970±0.016 0.559±0.075 0.741±0.019 0.860±0.020 0.880±0.018 0.950±0.012
ASD ↓ 1.705±0.340 0.949±0.160 0.710±0.160 0.699±0.170 0.496±0.045 1.633±0.315 0.872±0.170 0.630±0.150 0.614±0.160 0.454±0.055
HD ↓ 9.130±2.880 8.765±3.000 6.550±0.330 6.440±0.340 5.736±0.215 8.405±2.860 8.045±2.990 6.075±0.360 5.975±0.370 5.296±0.230

These state-of-the-art baselines are chosen as their implementations
are publicly available. However, because these models are inherently
generative, the shape of their generated centerlines varies stochastically.
To ensure a fair comparison, we adapt them into conditional generative
models by following AortaDiff’s conditioning strategy. Specifically, we
use a ViT [13] encoder to extract features from the input volume, align
them with the centerline points, and concatenate them with the point
cloud input at each diffusion step. The qualitative evaluation results are
presented in Figure 4. We can see that AortaDiff is the clear winner
across the selected cases from the VMR and AVT datasets.

To assess the similarity between the generated and GT point clouds
across different methods, we employ three metrics: chamfer distance
(CD) [7], Hausdorff distance (HD) [22], and Earth mover’s distance
(EMD) [53]. CD measures the overall quality of the generated point
clouds by computing the average nearest-neighbor distance. HD cap-
tures the worst-case discrepancy by quantifying the greatest minimum
distance between two sets of points, providing insight into the max-
imum bias in the generated centerlines. EMD evaluates the global
structural alignment between the generated and reference point clouds.

The quantitative evaluation results across all test cases are presented
in Table 1. AortaDiff consistently outperforms all baselines. On the
VMR dataset, AortaDiff achieves a CD of 0.33 mm, an HD of 0.31
mm, and an EMD of 0.17 mm, demonstrating significantly improved
accuracy over the baseline models. Even on the AVT dataset, despite
differences in image acquisition (CT modality), AortaDiff maintains
superior performance, highlighting its robustness and generalization
capability. These results confirm that AortaDiff produces more accu-
rate and structurally consistent centerlines than baseline models. The
centerline diffusion process is presented in Section 2 of the appendix.
4.3 Contour Extraction
The centerline generated in Section 3.1 does not form a perfectly
smooth curve, leading to intersections between adjacent cross-sectional
planes defined by normal vectors from neighboring centerline points.
These intersections negatively impact contour extraction, potentially
compromising the subsequent NURBS mesh construction. We apply
NURBS curve fitting to address this issue, using the original centerline
points as control points for a B-spline curve. A suitable knot vector
is defined, and the fitted curve is uniformly resampled to produce a
smooth and continuous centerline representation.

Building on the refined centerlines, AortaDiff uses ScribblePrompt
to extract aortic contours on each cross-sectional plane of the input
volume. This step is crucial for constructing the aorta mesh using the
NURBS method. We compare AortaDiff with state-of-the-art segmen-
tation approaches, including SAM-based methods—SAM and Med-
SAM [37]—as well as the supervised learning-based TotalSegmen-

tator [63] (TotalSeg) and LoGB-Net [4]. Multiple prompt formats,
such as bounding boxes and points, can guide segmentation for SAM-
based models. Here, we use the generated centerline points as point
prompts to facilitate segmentation, ensuring spatial alignment between
the extracted contours and the centerline. In contrast to TotalSeg and
LoGB-Net’s direct volume-to-segmentation approach, which processes
the entire CT volume as input, AortaDiff operates on orthogonal cross-
sections, leveraging localized structural cues to enhance segmentation
accuracy. To quantitatively evaluate segmentation performance, we
employ three metrics: the Dice coefficient (Dice) [12], average surface
distance (ASD) [24], and HD. The results are summarized in Table 2.

The results show that compared to SAM, MedSAM and AortaD-
iff significantly enhance segmentation performance, thanks to their
training using large-scale medical imaging data, which strengthens
their ability to capture anatomical structures. However, despite utiliz-
ing centerline-based prompts, MedSAM still struggles to accurately
delineate the aortic region, particularly in the supra-aortic branches.
LoGB-Net, a fully supervised model specifically designed for aorta
segmentation, outperforms both SAM and MedSAM across all metrics.
TotalSeg also achieves strong performance on the main aorta but detects
only fragmented segments of the supra-aortic branches, as it is a general-
purpose model not optimized for these structures. Nevertheless, both
LoGB-Net and TotalSeg remain inferior to AortaDiff, likely because
they cannot incorporate structural information from centerline point
prompts. In contrast, AortaDiff benefits from ScribblePrompt’s strong
prior knowledge gained through large-scale self-supervised pretraining,
enabling it to generalize better to unseen vessel structures.

To further evaluate segmentation performance, we visualize the
results of different methods in Figure 5. The results indicate that SAM-
based methods struggle to accurately segment the aorta, particularly in
the supra-aortic branches. For example, in the third and fourth rows of
Figure 5, the segmentation results of SAM and MedSAM show signif-
icant deviations from the GT in the AVT dataset. In contrast, for the
VMR dataset, these methods occasionally produce segmentations that
approximate the GT in the supra-aortic branches. This inconsistency
suggests that SAM-based methods lack the robustness needed for aorta
segmentation across different datasets, likely due to their reliance on
prompts that fail to fully capture the complex anatomical variations.
Meanwhile, TotalSeg, LoGB-Net, and AortaDiff demonstrate superior
segmentation performance. However, TotalSeg and LoGB-Net still
fall short of AortaDiff. In particular, TotalSeg sometimes detects only
fragments of the supra-aortic branches, resulting in discontinuous or
incomplete segmentation in these regions. Compared to the fully su-
pervised methods that directly extract contours for mesh construction,
AortaDiff benefits from ScribblePrompt’s pretraining on large-scale
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Fig. 5: Comparison of segmentation methods on the selected test cases from the VMR and AVT datasets. Each case includes segmentation results
for both the main aorta and supra-aortic branches. Cross-sections are resampled on planes orthogonal to the centerline, with each plane centered
on a corresponding centerline point.
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Fig. 6: Comparison of contours extracted from different segmentation methods on the selected test cases from the VMR and AVT datasets.

medical imaging data and integrates centerline-based prompts, enhanc-
ing its robustness and adaptability to anatomical variability.

In Figure 6, we visualize the extracted aortic contours on each
cross-sectional plane of the input volume. The results indicate that
segmentation inaccuracies often produce highly distorted vessel con-
tours, particularly in the supra-aortic branches. Notably, when SAM
and MedSAM fail to recognize the aorta, they frequently generate ex-
cessively large contours that span most of the image, leading to severe
segmentation artifacts. Refer to Figure 5. In the VMR dataset, the
cross-sections exhibit relatively low noise, allowing SAM and Med-
SAM to precisely segment. However, the AVT dataset contains noisier
cross-sections with additional tissues and organs, which adversely af-
fect the segmentation performance of SAM and MedSAM, resulting
in suboptimal outcomes. This explains the irregular and fragmented
contours observed in their segmentation outputs. TotalSeg exhibits
difficulty in detecting the supra-aortic branches, leading to the loss of
their corresponding contours. In contrast, AortaDiff extracts contours
with significantly greater accuracy and consistency across both the main
aorta and supra-aortic branches. To further validate this observation,
we conduct a quantitative analysis of contour extraction across different
segmentation methods. As shown in Table 3, AortaDiff consistently
produces contours that more closely align with the GT.

4.4 Aorta Mesh Construction
We construct the aorta mesh from the extracted contours using the
NURBS method. Other segmentation methods produce suboptimal
contours that fail to meet the requirements for NURBS interpolation
and perform worse than those generated by AortaDiff. Therefore, we
only compare the NURBS-constructed meshes from AortaDiff with
the marching cubes [34] and surface nets [18] generated meshes from
LoGB-Net [4], a state-of-the-art model for aorta segmentation. We

also compared with marching cubes-generated meshes from the EFDs-
based signed distance field [42]. For the VMR dataset, GT meshes are
provided, allowing direct comparison. In contrast, for the AVT dataset,
we manually constructed the GT meshes from the segmentation results
using SimVascular to ensure anatomical consistency. The marching
cubes-generated meshes are obtained by converting segmentation labels
into mesh representations. To ensure a fair comparison, only basic
smoothing techniques are applied to reduce noise and eliminate small
holes while preserving overall geometry. Each supra-aortic branch is
constructed separately and assembled into a complete aorta mesh via
NURBS. The quantitative results in Table 4 demonstrate that AortaDiff
outperforms other methods in terms of CD, HD, and EMD.

As shown in Figure 7, the NURBS-constructed meshes from AortaD-
iff exhibit significantly greater smoothness and structural consistency
than the marching cubes-constructed meshes from other methods.

While LoGB-Net produces segmentation results that closely resem-
ble the GT, its marching cubes-generated meshes suffer from severe
artifacts, particularly in the supra-aortic branches. Meshes from LoGB-
Net+surface nets show slight improvements in smoothness and struc-
tural continuity compared to those from LoGB-Net+marching cubes,
but still exhibit noticeable artifacts. These artifacts include missing
sections, jagged surfaces, and structural discontinuities, especially in
regions with complex vessel bifurcations. Furthermore, the marching
cubes method applied to the LoGB-Net output often causes shrinkage or
even complete disappearance of supra-aortic branches with small radii.
As a result, its accuracy is highly dependent on the resolution of the
input volume. In contrast, AortaDiff demonstrates robustness against
such artifacts, generating meshes that are complete, smooth, and topo-
logically consistent. Although EFDs leverage smoothed curves to gen-
erate a better implicit field, the resulting meshes are still derived from



Table 3: Average CD, HD, and EMD for contour point clouds on all test cases from the VMR and AVT datasets.
VMR AVT

metric SAM MedSAM TotalSeg LoGB-Net AortaDiff SAM MedSAM TotalSeg LoGB-Net AortaDiff
supra-aortic branches

CD ↓ 3.40±0.55 2.85±0.50 3.00±0.52 1.95±0.35 1.30±0.18 3.65±0.58 3.00±0.52 3.10±0.55 2.10±0.38 1.40±0.20
HD ↓ 9.80±3.10 9.10±3.15 9.20±3.20 6.80±0.55 6.00±0.35 10.20±3.25 9.40±3.20 9.50±3.30 7.10±0.58 6.20±0.38

EMD ↓ 1.85±0.45 1.30±0.35 1.35±0.38 1.00±0.25 0.68±0.12 2.00±0.48 1.40±0.38 1.45±0.40 1.10±0.28 0.72±0.14
main aorta

CD ↓ 3.20±0.50 2.70±0.45 1.95±0.32 1.85±0.30 1.20±0.12 3.45±0.52 2.80±0.48 2.10±0.35 1.98±0.32 1.30±0.14
HD ↓ 9.60±3.00 8.90±3.05 6.80±0.52 6.60±0.45 5.90±0.27 10.00±3.20 9.20±3.15 7.20±0.55 6.90±0.50 6.05±0.32

EMD ↓ 1.82±0.40 1.28±0.32 1.00±0.22 0.92±0.19 0.61±0.09 1.95±0.42 1.35±0.35 1.10±0.24 1.02±0.22 0.66±0.11
overall

CD ↓ 3.28±0.52 2.78±0.47 2.30±0.40 1.90±0.33 1.25±0.15 3.55±0.55 2.90±0.50 2.45±0.42 2.00±0.35 1.35±0.17
HD ↓ 9.70±3.05 9.00±3.10 7.50±0.55 6.70±0.48 5.95±0.30 10.10±3.23 9.30±3.18 7.40±0.58 7.00±0.52 6.10±0.34

EMD ↓ 1.84±0.42 1.29±0.34 1.10±0.23 0.96±0.20 0.64±0.10 1.98±0.44 1.38±0.36 1.20±0.25 1.05±0.23 0.69±0.12

G
T

VMR AVT

supra-aortic branch
m

ain aorta

an
eu

ry
sm

 c
as

e

Lo
G

B-
Ne

t
+

m
ar

ch
ing

 c
ub

es
Ao

rta
Di

ff
EF

Ds +
m

ar
ch

ing
 c

ub
es

Lo
G

B-
Ne

t
+

su
rfa

ce
 n

et
s

an
eu

ry
sm

 c
as

e

co
ar

ct
at

io
n 

ca
se

EFDs+
marching cubes AortaDiff

AortaDiff
LoGB-Net+
surface nets

Fig. 7: Comparison of mesh construction methods on the selected test cases from the VMR and AVT datasets. For each case, we overlay the
opaque constructed mesh with the semi-transparent GT mesh to facilitate visual comparison. For the aneurysm case from the VMR dataset, we show
a zoomed-in comparison of the mesh constructed by EFDs+marching cubes, LoGB-Net+surface nets, and AortaDiff. We also provide a zoomed-in
view of the cross-sections of the main aorta and a supra-aortic branch. In these cross-sections, the red, gray, pink, blue, and green curves represent
the meshes from GT, LoGB-Net+marching cubes, LoGB-Net+surface nets, EFDs+marching cubes, and AortaDiff, respectively.

Table 4: Average CD, HD, and EMD for the constructed aorta meshes on
all test cases from the VMR and AVT datasets.

VMR AVT

metric
LoGB-Net+

marching cubes
LoGB-Net+
surface nets

EFDs+
marching cubes AortaDiff

LoGB-Net+
marching cubes

LoGB-Net+
surface nets

EFDs+
marching cubes AortaDiff

supra-aortic branches
CD ↓ 0.65±0.09 0.62±0.08 0.58±0.07 0.31±0.04 0.80±0.11 0.76±0.10 0.72±0.09 0.43±0.06
HD ↓ 2.30±0.27 2.25±0.25 2.10±0.23 1.30±0.22 2.60±0.32 2.55±0.30 2.40±0.28 1.75±0.45

EMD ↓ 1.25±0.28 1.20±0.26 1.12±0.24 0.80±0.20 1.35±0.32 1.30±0.30 1.22±0.28 0.92±0.30
main aorta

CD ↓ 0.55±0.07 0.52±0.06 0.48±0.06 0.26±0.03 0.70±0.09 0.67±0.08 0.63±0.08 0.36±0.05
HD ↓ 2.10±0.23 2.05±0.22 1.95±0.20 1.18±0.18 2.40±0.28 2.35±0.27 2.25±0.25 1.58±0.42

EMD ↓ 1.15±0.23 1.12±0.22 1.08±0.21 0.72±0.18 1.25±0.28 1.22±0.27 1.18±0.25 0.84±0.28
overall

CD ↓ 0.60±0.08 0.57±0.07 0.53±0.07 0.28±0.04 0.75±0.10 0.72±0.09 0.68±0.09 0.39±0.06
HD ↓ 2.20±0.25 2.15±0.24 2.05±0.22 1.23±0.20 2.50±0.30 2.45±0.29 2.35±0.27 1.66±0.44

EMD ↓ 1.20±0.25 1.17±0.24 1.12±0.22 0.76±0.19 1.30±0.30 1.27±0.29 1.22±0.27 0.88±0.29

marching cubes and exhibit artifacts and poor smoothness—though
less pronounced than those from LoGB-Net—making them unsuitable
for CFD simulations. Additionally, the evaluation includes three chal-
lenging cases—two aneurysm cases and one coarctation case—from
the VMR and AVT datasets, further validating AortaDiff’s capability to
construct aorta meshes with complex geometries. Notably, AortaDiff
was trained solely on the VMR dataset, while the AVT dataset was used
exclusively for testing. Despite this, AortaDiff successfully constructs
aorta meshes from the AVT dataset, producing smooth, complete sur-
faces that align with the vascular structures observed in CT images.
The constructed meshes preserve anatomical details while maintaining
structural continuity, even for previously unseen datasets.

4.5 Hemodynamic Simulation
Using OpenFOAM, we performed hemodynamic simulations on aorta
meshes constructed with AortaDiff and compared them to GT meshes.

CFD simulations require smooth, watertight surface meshes with
anatomically accurate features and sufficiently high resolution to ensure
reliable flow field computation, though they do not impose a strict lower
bound on angular discretization. This flexibility is a key advantage
of our NURBS-based parameterization, which produces simulation-
ready geometries that remain smooth and watertight even from sparse
or noisy cross-sectional inputs, enabling robust integration with CFD
workflows. To ensure simulation reliability, we conducted a mesh inde-
pendence study, confirming that our chosen resolution—approximately
1 million cells—yields mesh-converged results. Each simulation was
run until velocity and pressure residuals fell below 1× 10−6, with
continuity errors well controlled at approximately 1×10−5, ensuring
numerical accuracy. These simulations capture blood flow velocity,
pressure fields, and WSS distributions. To ensure a fair comparison,
identical boundary conditions were applied to both GT and AortaDiff
meshes. Meshes constructed from LoGB-Net segmentations were ex-
cluded from this experiment due to insufficient geometric fidelity and
structural discontinuities, making them unsuitable for CFD analysis.

As shown in Figure 8, the visualization results demonstrate a high
degree of consistency in flow dynamics and stress patterns between Aor-
taDiff and GT meshes. In particular, the spatial distribution of velocity,
pressure, and WSS indicates that AortaDiff constructions accurately
preserve key anatomical features critical for precise hemodynamic
modeling. For both the VMR and AVT datasets, velocity streamlines
exhibit similar flow paths and magnitudes, with characteristic accel-
eration near the ascending aorta and arch, followed by deceleration
toward the descending segment. Flow direction and lumen confine-
ment remain consistent, with no noticeable divergence or dispersion
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Fig. 8: Comparison of hemodynamic simulation results on the selected test cases from the VMR and AVT datasets between aorta meshes
constructed using AortaDiff and GT meshes. The visualization includes velocity fields, pressure distributions, and WSS magnitudes.

artifacts. Pressure distributions show smooth gradients from the inlet to
the distal outlets, with no abrupt discontinuities or localized anomalies
in the AortaDiff meshes, closely matching the patterns observed in GT
meshes. WSS visualizations reveal similar spatial variations between
AortaDiff and GT results. Elevated WSS values consistently appear on
the inner curvature of the arch and branch origins, while lower WSS
zones are observed on outer walls and downstream regions. Such spa-
tial patterns are preserved across all test cases and datasets, including
high-curvature and bifurcation areas. These findings suggest that the
geometric properties influencing local hemodynamic conditions—such
as surface smoothness, curvature continuity, and vessel tapering—are
well preserved in AortaDiff constructions. As a result, the simulations
produce comparable flow, pressure, and WSS characteristics across all
anatomical regions evaluated.

5 AD-HOC EXPERT FEEDBACK

AortaDiff was tested and evaluated by a CFD and cardiovascular flow
expert with over ten years of research experience, who provided the
following feedback: “AortaDiff offers an efficient and accurate method
for generating meshes for hemodynamic simulations, a critical compo-
nent of image-based CFD in clinical diagnosis and treatment planning.
Unlike traditional machine learning-based segmentation models, which
typically produce binary voxel images, AortaDiff directly generates
simulation-ready meshes that can be seamlessly integrated into any
downstream fluid solver. To verify this capability, I used AortaDiff to
generate three distinct aortic geometries from three CT images. The re-
sulting geometries closely aligned with the raw images—an impressive
outcome given the speed and full automation of the process.”

The expert further noted “To assess the feasibility of these meshes
for CFD, I employed OpenFOAM to conduct fluid simulations. The sim-
ulation solved the steady-state incompressible Navier-Stokes equations
using a parabolic velocity profile at the inlet and a fixed pressure at the
outlet. The simulation ran successfully, demonstrating a smooth transi-
tion from image processing to hemodynamic analysis. The flow solution
revealed a reasonable pressure drop along the streamwise direction,
with the highest pressure observed in the ascending aorta and the aortic
arch, and the lowest pressure near the descending aorta. As expected,
the pressure remained consistently high at junctions between the main
aorta and its branches due to vortex formation and flow separation
in these geometrically complex regions. Similarly, higher WSS values
were observed near the branching points of the aortic arch, where flow
acceleration and bifurcations occur. This suggests a potential risk of
wall deterioration, which may contribute to cardiovascular conditions
such as aneurysms and coarctations.”

The expert continued “This experiment confirms that AortaDiff pro-
duces high-quality, accurate, and CFD-compatible meshes that inte-
grate seamlessly into CFD workflows. These meshes enable advanced
simulations with higher-fidelity settings, such as fluid-structure interac-
tions and Windkessel boundary conditions. Additionally, since the gen-
erated surface is a NURBS surface, alternative CFD approaches—such
as isogeometric analysis—can further refine flow hemodynamics, ex-
panding AortaDiff’s applicability in computational hemodynamics
research. The parameterized NURBS surfaces also facilitate statistical

shape analysis when sufficient patient-specific data is available. This
enables systematic quantification of anatomical variations, identifi-
cation of shape-based risk factors, and development of personalized
diagnostic and prognostic models.

Finally, the expert concluded “In conclusion, I highly recommend
AortaDiff to researchers and engineers working on image-based CFD
tasks, as it provides accurate, reliable, and highly efficient meshes.”

6 CONCLUSIONS AND FUTURE WORK

We have introduced AortaDiff, a novel framework for generating 3D
aorta meshes directly from volumetric CT/MRI data. Constructing
aortic geometries presents several challenges, including the scarcity
of annotated data, the heavy reliance on manual intervention, and the
absence of a complete end-to-end solution. To address these issues,
AortaDiff employs a volume-guided CDM to generate aortic center-
lines—a particularly effective approach given the limited training data
available for point cloud generation. The generated centerline points
serve as prompts for semi-automatic segmentation, enabling precise
contour extraction from cross-sectional images and significantly reduc-
ing manual effort. We use these contours to construct a smooth 3D
mesh via the NURBS method, ensuring an automated pipeline.

AortaDiff is designed as a modular framework, where each compo-
nent, such as point cloud generation, contour segmentation, and mesh
construction, can be independently improved or replaced to further
enhance the overall mesh quality as new methods emerge. Our experi-
ments show that AortaDiff produces high-quality aorta meshes to sup-
port hemodynamic simulations comparable to those derived from GT
meshes, outperforming conventional marching cubes approaches. Fur-
thermore, image-based CFD results generated from our meshes provide
clinically valuable insights, including biomarkers derived from WSS
and pressure drop analyses in aortic coarctation, supporting both diag-
nosis and treatment planning. The parametric, NURBS-based model en-
ables flexible hemodynamic recomputation under customized anatomi-
cal modifications, enabling in silico experimentation for surgical plan-
ning and device design. Unlike traditional voxel- or parameterization-
based manual methods, AortaDiff automates segmentation, acceler-
ates mesh generation, and delivers higher-resolution surfaces without
increasing manual effort—capabilities that are essential for scalable
clinical integration.

However, AortaDiff still has some remaining limitations. In certain
cases, the CDM-generated centerlines are not perfectly centered, though
they still reside within the aortic region. While the robustness of the
segmentation module mitigates the major impact on performance, this
highlights an opportunity for improvement. Generating CFD-ready
meshes for more complex aortic anatomies, such as aortic dissection,
remains an open challenge and will be investigated through structural
reasoning and lumen-aware modeling.
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APPENDIX

1 ALGORITHM DESCRIPTION

As outlined in Algorithm 1, AortaDiff starts with centerline generation
through a volume-guided CDM, where Gaussian noise is progressively
denoised across timesteps. The equation that computes CIt−1 involves
αt , which balances the noisy centerline and the predicted noise, while
σt scales the Gaussian noise z added during the reverse diffusion pro-
cess. This ensures the final centerline, CI0, accurately aligns with
the anatomical structure. We use orthogonal slicing planes along the
aorta to extract lumen contours via SAM-based ScribblePrompt. These
contours are then resampled, mapped to 3D, and fitted with NURBS to
produce a smooth aortic surface construction.

Algorithm 1: Constructing 3D aorta mesh
Input: CT/MRI volume V
Output: Constructed aorta mesh
Step 1: centerline generation
Initialize Gaussian noise Lt ∼N (0,I), where I is the identity

matrix
Extract feature volume FV from V using ViT
for each training sample (V,CI) do

Sample t ∼U (1,T )
Generate noise ε ∼N (0,I)
Compute noisy centerline CIt ←

√
αtCI+

√
1−αtε

Minimize loss function (Equation 1)
end
for t = T to 0 do

Predict noise εt ← εθ (CIt , t, f)

Compute CIt−1← 1√
αt

(
CIt − 1−αt√

1−α2
t

εt

)
+σtz, where

z∼N (0,I) if t > 1, otherwise z = 0
end
Obtain centerline points from CI0
Step 2: contour extraction
for each centerline point p do

Compute tangent vector tp and define slicing plane Πp
Extract orthogonal slice Sp from V (Equation 2)
Segment Sp via ScribblePrompt to obtain lumen mask
Extract lumen boundary
Resample contour from C 2D

p
Map C 2D

p back to C 3D
p

end
Step 3: aortic surface construction
Align adjacent contours to maintain consistency
Fit NURBS surfaces to centerline’s contours (Equations 3 and 4)
Repeat Steps 1 to 3 for each supra-aortic branch
Integrate supra-aortic branches with the main aorta
Return constructed aorta mesh

2 CENTERLINE DIFFUSION PROCESS

To further evaluate AortaDiff’s centerline generation, Figure 1 visual-
izes intermediate steps of the diffusion process on the six selected cases
from the VMR and AVT datasets. The figure illustrates how centerline
points progressively emerge from Gaussian noise and are refined un-
der the guidance of features extracted from the input volume. These
results highlight AortaDiff’s ability to handle diverse aortic centerline
morphologies. Notably, the test set includes two aneurysm cases and
one coarctation case, further demonstrating AortaDiff’s effectiveness
in modeling complex vascular structures.

3 ADDITIONAL RESULTS

We present additional results, including the remaining one test case
from the VMR dataset and five test cases from the AVT dataset. The
results are centerline generation, contour extraction, mesh construction,
and hemodynamic simulation, corresponding to Figures 4, 6, 7, and 8
in the paper.

Centerline generation. Figure 2 presents the centerline generation
results for the remaining test cases, further highlighting the challenges
point cloud-based methods face in reliably capturing aortic structures
from volumetric inputs under limited data conditions. Despite these
difficulties, AortaDiff successfully generates anatomically plausible
centerlines that accurately reflect the overall vessel morphology, even
on the AVT dataset, which differs in source and modality from the
training VMR dataset.

Contour extraction. Figure 3 presents the contour extraction re-
sults for the remaining test cases. Performance differences between
methods are particularly evident in regions with high anatomical vari-
ability, such as bifurcations and narrow supra-aortic branches. SAM
and MedSAM exhibit inconsistent contour quality, often generating
fragmented or excessively large regions, likely due to their sensitivity
to prompt position and limited adaptability across imaging domains.
TotalSeg detects only fragments of the supra-aortic branches, leading
to incomplete contour extraction, which is consistent with the results
presented in Figure 6 of the paper. While LoGB-Net provides more
stable segmentation, its results sometimes deviate from vessel lumen
boundaries. In contrast, AortaDiff consistently produces smooth, well-
localized contours by leveraging diffusion-based structural priors and
prompt-driven segmentation.

Mesh construction. Figure 4 visualizes the mesh construction re-
sults for the remaining test cases. While LoGB-Net combined with
marching cubes can generate coarse surface approximations, the result-
ing meshes often exhibit aliasing artifacts, surface discontinuities, or
missing small branches. EFDs+marching cubes and LoGB-Net+surface
nets produce meshes with improved smoothness and topological consis-
tency compared to LoGB-Net+marching cubes, but the results still ex-
hibit artifacts and incorrect topologies, particularly in regions with com-
plex branching structures. In contrast, AortaDiff produces smooth, topo-
logically consistent meshes closely aligned with the GT surfaces. Its
geometry-preserving properties stem from utilizing cross-sectional con-
tours aligned with the centerline trajectory, enabling smooth NURBS
surface interpolation. This automated, modular pipeline eliminates
manual post-processing, significantly reducing the time and effort re-
quired for mesh preparation.

Hemodynamic simulation. We perform hemodynamic simulations
on the remaining VMR and AVT meshes generated by AortaDiff. The
visualization results are presented in Figure 5. Consistent with the cases
presented in the paper, the resulting velocity, pressure, and WSS fields
exhibit physiologically meaningful distributions. Flow streamlines
remain coherent, pressure gradients are smoothly distributed, and WSS
concentrations appear in expected regions, such as bifurcation points
and inner curvature zones. These results further validate that AortaDiff
meshes are suitable for CFD analysis, providing a practical alternative
to manual mesh generation while maintaining simulation quality.

4 PARAMETER STUDY ON NUMBER OF CENTERLINE POINTS

To evaluate the impact of the number of centerline points on the final
mesh quality using NURBS-based construction, we conducted a pa-
rameter study on all test cases from the VMR and AVT datasets. The
quantitative results are reported in Table 1. A selected example of the
main aorta and supra-aortic branch is illustrated in Figure 6. The quali-
tative results demonstrate that when the number of centerline points is
fewer than 16, the reconstructed meshes lose substantial geometric de-
tail, resulting in large errors. Conversely, when the point count exceeds
16, overly dense contours—especially in regions with frequent aortic
bends—lead to mesh construction failures or artifacts. For example, in
the main aorta with 25 points, contour interference caused by excessive
density resulted in the failure of the NURBS surface fitting. These find-
ings indicate that using 16 centerline points achieves the best tradeoff
between detail preservation and geometric stability for the AortaDiff’s
design.
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Fig. 1: Visualization of the AortaDiff’s centerline diffusion process on the selected test cases from the VMR and AVT datasets, illustrating the
progressive refinement of centerline points as the diffusion process transitions from Gaussian noise (t = 1000) to the final prediction (t = 0).

Table 1: Parameter study on the impact of the number of centerline points on final mesh quality.
VMR AVT

metric 8 pts 12 pts 16 pts 20 pts 25 pts 8 pts 12 pts 16 pts 20 pts 25 pts
supra-aortic branches

CD ↓ 0.50±0.07 0.38±0.06 0.31±0.04 0.35±0.05 0.45±0.07 0.60±0.08 0.48±0.07 0.43±0.06 0.45±0.08 0.52±0.08
HD ↓ 2.10±0.30 1.65±0.25 1.30±0.22 1.50±0.25 1.90±0.30 2.40±0.32 1.85±0.28 1.75±0.45 1.77±0.28 2.10±0.32

EMD ↓ 1.10±0.22 0.90±0.20 0.80±0.20 0.85±0.20 1.00±0.22 1.25±0.25 1.00±0.22 0.92±0.30 0.92±0.52 1.10±0.24
main aorta

CD ↓ 0.40±0.06 0.32±0.05 0.26±0.03 0.29±0.04 0.35±0.06 0.50±0.07 0.40±0.06 0.36±0.05 0.37±0.05 0.42±0.06
HD ↓ 1.70±0.25 1.35±0.22 1.18±0.18 1.25±0.20 1.50±0.25 2.10±0.28 1.65±0.24 1.58±0.42 1.60±0.24 1.80±0.28

EMD ↓ 1.00±0.20 0.80±0.18 0.72±0.18 0.78±0.18 0.88±0.20 1.10±0.23 0.90±0.20 0.84±0.28 0.85±0.20 0.96±0.22
overall

CD ↓ 0.45±0.07 0.35±0.06 0.28±0.04 0.32±0.05 0.40±0.07 0.55±0.08 0.42±0.06 0.39±0.06 0.39±0.08 0.47±0.07
HD ↓ 1.90±0.28 1.50±0.24 1.23±0.20 1.38±0.23 1.70±0.28 2.25±0.30 1.75±0.26 1.66±0.44 1.68±0.26 1.95±0.30

EMD ↓ 1.05±0.21 0.85±0.19 0.76±0.19 0.82±0.19 0.94±0.21 1.18±0.24 0.95±0.21 0.88±0.29 0.89±0.21 1.03±0.23
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Fig. 4: Comparison of mesh construction methods on the remaining test cases from the VMR and AVT datasets. For each case, we overlay the
opaque constructed mesh with the semi-transparent GT mesh to facilitate visual comparison.
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