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ABSTRACT

Domain scientists often face I/O and storage challenges when keep-
ing raw data from large-scale simulations. Saving visualization
images, albeit practical, is limited to preselected viewpoints, transfer
functions, and simulation parameters. Recent advances in scientific
visualization leverage deep learning techniques for visualization syn-
thesis by offering effective ways to infer unseen visualizations when
only image samples are given during training. However, due to the
lack of 3D geometry awareness, existing methods typically require
many training images and significant learning time to generate novel
visualizations faithfully. To address these limitations, we propose
ViSNeRF, a novel 3D-aware approach for visualization synthesis us-
ing neural radiance fields. Leveraging a multidimensional radiance
field representation, ViSNeRF efficiently reconstructs visualizations
of dynamic volumetric scenes from a sparse set of labeled image
samples with flexible parameter exploration over transfer functions,
isovalues, timesteps, or simulation parameters. Through qualitative
and quantitative comparative evaluation, we demonstrate ViSNeRF’s
superior performance over several representative baseline methods,
positioning it as the state-of-the-art solution. The code is available
at https://github.com/JCBreath/ViSNeRF.

1 INTRODUCTION

In scientific research, large-scale simulations are essential for mod-
eling complex phenomena across diverse science and engineering
fields. However, huge raw data generated from these simulations, es-
pecially those involving time sequences and ensemble runs, presents
significant challenges for domain scientists. Specifically, I/O op-
erations and storage capacity limitations can lead to cumbersome
and inefficient data retrieval and visualization processes, hindering
timely analysis and slowing the overall scientific discovery.

A common practice to mitigate these challenges is preserving
visualization images rendered from simulation data. While this ap-
proach offers a practical solution by reducing the data footprint,
it has inherent limitations. Saving visualization images restricts
scientists to preselected viewpoints, transfer functions (TFs), and
simulation parameters. Such constraints limit the flexibility required
for exploratory data analysis, where researchers often need to investi-
gate multiple perspectives and vary visualization settings to uncover
hidden patterns or anomalies.

Over the past few years, deep learning has become viable
for addressing diverse generation tasks in scientific visualiza-
tion [55]. Most studies are dedicated to data generation for scalar
fields [17, 19, 49, 50, 66] and vector fields [12–16] across various
tasks such as super-resolution generation, data translation, recon-
struction, and completion. In contrast, only a few have focused
on visualization generation [3, 18, 20, 22]. Examples such as InSi-
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tuNet [20] and CoordNet [18] support post hoc analysis on scientific
simulations without accessing raw simulation data. However, these
existing methods do not develop 3D awareness of dynamic volumet-
ric scenes from 2D visualization images. As a result, they constrain
the viewpoints to interpolated positions between fixed camera angles,
inhibiting the ability to freely rotate and scale the scene or utilize the
full six degrees of freedom for camera movement. This limitation is
significant because freely navigating visualizations in 3D is essential
for thoroughly exploring complex data, identifying intricate struc-
tures, and gaining deeper scientific insights. Moreover, although
these methods eliminate the need to handle simulation data, they
still require over a hundred views of each scene frame and numerous
intermediate timesteps and ensemble runs to achieve smooth interpo-
lation. Additionally, the training can take from hours to days, further
complicating their usability. These dilemmas not only amplify the
costs of preparing training data but also constrain the practicality of
these techniques for real-world scientific applications.

To address the limitations of existing methods, we present ViS-
NeRF, a deep learning framework for Visualization Synthesis using
Neural Radiance Fields. ViSNeRF introduces an innovative fac-
torization approach that allows a single NeRF model to represent
dynamic scenes with multiple controllable parameters. By incorpo-
rating this multidimensional NeRF representation, ViSNeRF enables
us to explore dynamic volumetric scenes interactively. This includes
adjusting parameters such as TFs for direct volume rendering (DVR),
isovalues for isosurface rendering (IR), timesteps, and simulation
parameters, as well as examining the scene from any desired view-
point with confidence. Moreover, combining an explicit feature grid
and a pair of multilayer perceptron (MLP) decoders for color and
density, the hybrid NeRF representation allows ViSNeRF to acceler-
ate training while improving generation quality. The contributions
of ViSNeRF are as follows:

• ViSNeRF efficiently synthesizes high-resolution and high-
quality visualizations from novel viewpoints via a hybrid radi-
ance field representation.

• Leveraging a generalized factorization strategy, ViSNeRF ac-
complishes dynamic scene generation with plausible inter-
polation over the parameter space, including TFs, isovalues,
timesteps, or simulation parameters.

• Our comprehensive study validates the effectiveness of ViS-
NeRF and demonstrates its superior performance compared to
state-of-the-art methods.

2 RELATED WORK

Deep learning for visualization generation. Deep learning has
been applied in scientific visualization to solve data generation,
visualization generation, prediction, objection detection and segmen-
tation, and feature learning and extraction tasks [55]. We restrict our
attention to works that have succeeded in visualization generation.

Berger et al. [3] designed GAN-VR, a generative adversarial
network (GAN) framework to synthesize DVR and allow users to
explore the space of viewpoints and TFs. Hong et al. [22] introduced
DNN-VolVis, which applies the rendering effects of the user-defined
goal image to the original DVR image without knowing the explicit
TFs. He et al. [20] proposed InSituNet that generates visualization
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at simulation time and enables post hoc exploration of ensemble
simulations. Shi et al. [47] leveraged a view-dependent surrogate
model named VDL-Surrogate to infer volume data and generate vi-
sualizations with user-defined visual mappings for parameter-space
exploration. Han and Wang [18] built CoordNet, which leverages
implicit neural representation (INR) to solve various scientific visu-
alization tasks, including view synthesis.

To achieve super-resolution of IR images while maintaining con-
sistent geometric properties, Weiss et al. [59] proposed a fully con-
volutional neural network (CNN) trained with depth and normal
maps. Weiss et al. [61] presented a neural rendering approach that
employs low-resolution rendering images to predict the density dis-
tribution of the volume data and adaptively samples it to produce
high-resolution images. Weiss and Navab [58] developed DeepDVR
to model the DVR process by learning the implicit semantics for fea-
ture extraction, classification, and visual mapping. To save rendering
time, Bauer et al. [2] designed the FoVolNet, which reconstructs
full-frame renderings from foveated renderings.

Scene representation networks (SRNs) represent volumetric data
for neural volume rendering without requiring direct access to the
original volume data. Weiss et al. [60] introduced a technique using
a volumetric grid of latent features that allows for effective rendering
by encoding essential volumetric information. Further advancing
this direction, Wurster et al. [64] developed an adaptive multi-grid
SRN that enhances rendering efficiency by representing large-scale
data across various resolutions. Wu et al. [63] proposed a com-
pressive neural representation that employs multi-resolution hash
encoding, achieving rapid training speeds and optimized memory
usage for large-scale volumetric data. Recently, Tang and Wang [51]
introduced StyleRF-VolVis, a method leveraging NeRF to perform
geometry-aware stylization with only 2D images.

ViSNeRF is designed for visualization synthesis of dynamic volu-
metric scenes and is benchmarked exclusively against methods that
can natively accomplish this task. GAN-VR [3] requires 200,000
rendering images for training dynamic scenes. DNN-VolVis [22] and
InSituNet [20] only work with low-resolution (256×256) images.
VDL-Surrogate [47] needs access to the raw data during training
and incurs a long training time (50 hours). While CoordNet [18]
supports high-resolution (1024×1024) image synthesis, it requires
up to five days to train with 200 images. In contrast, our ViSNeRF
requires only 42 rendering images for training a static scene and sev-
eral hundred to a few thousand images for training a dynamic scene.
It works with high-resolution (1024×1024) images, achieving fast
training (up to 35 minutes for a static scene and up to 2.5 hours for a
dynamic scene) and superior quality for synthesized images.

3D-aware image synthesis. Recent works of novel-view image
synthesis have moved on to incorporate camera information to en-
hance the 3D consistency of generated views. Early approaches,
such as PrGAN [10], VON [73], PlatonicGAN [21], HoloGAN [37],
and BlockGAN [38], use voxels to represent the scene and gener-
ate images based on the voxel shape. However, due to the limited
voxel resolution, these methods fail to reconstruct fine details of the
original scenes. Liao et al. [31] suggested using 3D primitives to
represent the scene for 3D-aware view synthesis. While this scheme
allows for 3D control, it may be inadequate when reconstructing
complex scenes, as primitives provide only limited information.
Consequently, the resulting image synthesis may be suboptimal or
of low quality. Unlike the above approaches, neural field representa-
tions are more popular and effective for 3D-aware image synthesis.
NeRF [35] is the seminal work demonstrating the great potential of
neural scene representations. Numerous variants of NeRF have suc-
cessfully produced remarkable synthesis results [6,11,26,34,45,71],
improved the capability of NeRF in many scenarios, and extended its
applications from image synthesis to 3D reconstruction [40, 56, 68],
3D content generation [5, 25, 39, 54], and dynamic scene representa-
tions [4, 41, 42, 48].

Efficient NeRFs. Although NeRF can generate realistic results
with a compact MLP, slow convergence and long training and infer-
ence are common issues among most pure implicit methods. Later
efforts of efficiency improvement [9, 32, 70] focus on space-time
tradeoff, which sacrifice memory space to accelerate the render-
ing process of radiance field methods. By factorizing the complex
voxel-based feature grid of radiance fields, emerging decomposed
hybrid NeRF architectures express exceptionally high efficiency in
both computation and memory usage. Generative scene network
(GSN) [8] is the first plane-based work that uses 2D representa-
tions of the radiance fields. Efficient geometry-aware 3D GAN
(EG3D) [5] enables style-mixing and latent-space interpolation by
leveraging StyleGAN2 [29] to generate features of the triplane rep-
resentation. Instant-NGP [36] integrates a multiresolution hash table
of trainable feature vectors with a compact network, illustrating a
hybrid representation approach known for its efficiency in training
and inference. 3D Gaussian splatting (3DGS) [30], which represents
3D scenes with 3D Gaussians, offers an efficient explicit approach
that eliminates the need for neural networks, significantly speeding
up training and inference. iVR-GS [52] designs editable 3DGS to
achieve inverse volume rendering for explorable visualization of
color, opacity, and lighting parameters. Tensorial radiance field
(TensoRF) [7] introduces a tensor-based architecture to obtain pho-
torealistic quality with high computational and memory efficiency.

Factorized NeRFs. Recent advancements like K-Planes [43]
and HexPlane [4], inspired by TensoRF, extend to factorized 4D
NeRF representations to reconstruct dynamic scenes. We also ac-
knowledge works, such as Tensor4D [46], which factorize signed
distance fields to represent 3D geometry. Yet, those works do not
perform factorization on radiance fields, so they do not fit our scope.
ViSNeRF adopts a generalized factorization strategy for multidimen-
sional NeRF representations to address the demands of visualization
synthesis of dynamic volumetric scenes.

3 VISNERF

ViSNeRF leverages a NeRF model to learn a volumetric representa-
tion of a scene from a set of DVR or IR images, along with camera
pose information, which can be provided directly by users or esti-
mated using tools like COLMAP [44]. This NeRF representation al-
lows us to produce 3D-consistent visualizations from any viewpoint.
ViSNeRF uses a hybrid NeRF model combining explicit feature
grids and implicit feature decoders to improve speed and quality.
To handle the dynamic scenes efficiently, ViSNeRF incorporates a
generalized factorization strategy on the NeRF to achieve a multidi-
mensional representation with minimal increase in model size and
GPU memory cost. This strategy allows us to efficiently represent
dynamic scenes with an arbitrary number of adjustable parameters,
such as TFs, isovalues, timesteps, and simulation parameters.

As shown in Figure 1, to synthesize a visualization of a dynamic
volumetric scene, we first cast rays from screen pixels toward the
scene, originating from the camera locations. For every point sam-
pled along a ray, we provide ViSNeRF with the sampling point
location (x,y,z) and the parameters (p0, p1, ...) defining a scene
frame. ViSNeRF then retrieves features from spatial matrices and
vectors as well as parameter vectors, decoding them into color and
density values. It finally composes a visualization of the scene frame
from the camera view by collecting sampled points on the rays.

3.1 Volume Rendering with Radiance Fields

Following the classical volume rendering [27] as NeRF [35] sug-
gested, we formulate the rendering function as

C(r) =
∫ t f

tn
T (t)σ(r(t))c(r(t),d)dt,

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
.

(1)
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Figure 1: Overview of ViSNeRF using the Nyx dataset as an example of a dynamic volumetric scene. Features are sampled from spatial and
parameter feature grids based on the camera ray’s sampling position and scene parameters. These features are processed by the decoder to
generate density and color values, which are then used in volume rendering to visualize the scene frame from the chosen camera view.

In Equation 1, C(r) denotes the color sampled through the ray
r(t) = o+ td from the camera, where o is the origin, d is the viewing
direction, and tn and t f are near and far bounds. The accumulated
transmittance function T (t) determines the probability that no par-
ticle is present along the ray between tn and t. The volume density
function σ(x) is the probability that the ray is stopped at location x
by a particle. The view-dependent color term c(x,d) belongs to the
particle that terminates the ray at location x with d.

We use stratified sampling along the ray to estimate the integral.
Following the quadrature rule [33], the resulting color of the ray,
C(r), is estimated using n samples along the ray by

Ĉ(r) =
n

∑
i=1

Ti(1− exp(−σiδi))ci,

where Ti = exp
(
−

i−1

∑
j=1

σ jδ j

)
.

(2)

In Equation 2, the ray marching step size δi is defined by the distance
between the locations of contiguous samples, i.e., δi = ti+1 − ti.

3.2 Factorization of Static Radiance Fields
In a dynamic scene, individual frames can be treated as static scenes
represented by 3D radiance fields. Like TensoRF [7], we use the
block-term tensor decomposition [69] to factorize the 3D volume
V ∈RX×Y×Z of the static radiance fields as the sum of vector-matrix
outer products

V =
R1

∑
r=1

MXY
r ◦vZ

r +
R2

∑
r=1

MXZ
r ◦vY

r +
R3

∑
r=1

MY Z
r ◦vX

r , (3)

where MXY
r , MXZ

r , and MY Z
r are the spatial matrices (refer to Fig-

ure 1) representing the XY , XZ, and Y Z planes. vX
r , vY

r , and vZ
r are

the spatial vectors along the X , Y , and Z axes. MXY
r ◦vZ

r denotes the
outer product of MXY

r and vZ
r . R1, R2, and R3 denote the numbers

of low-rank components, i.e., MXY
r ◦vZ

r , MXZ
r ◦vY

r , and MY Z
r ◦vX

r ,
and the numbers can be updated according to the complexity and
dimensions of the effective volume. By employing factorization, we
can reduce the memory complexity for representing the radiance
field from O(N3) to O(N2) when N ≫ R1 +R2 +R3, where N is
the spatial resolution. For simplicity, we assume the same complex-
ity across all three dimensions. Thus, we use the same number of
components for each dimension in 3D static radiance fields (i.e.,
R = R1 = R2 = R3). The factorization is then expressed as

V =
R

∑
r=1

MXY
r ◦vZ

r +MXZ
r ◦vY

r +MY Z
r ◦vX

r .
(4)

3.3 Factorization of Parameter Space

Allowing NeRF to represent dynamic volumetric scenes is necessary
to synthesize visualizations for time-varying or ensemble simulation
data with different TFs or isovalues. Training multiple NeRF models
for visualizing individual volumes is impractical, as isolating these
models makes effective interpolation between them impossible.

Existing works such as HexPlane [4] and K-Plane [43] have made
strides in factorizing dynamic 4D scenes and achieved commendable
results in dynamic scene reconstruction, they still fall short in our
(3+K)-D scenarios, where K represents the number of changeable
parameters defining different scenes. A key limitation of these meth-
ods is their lack of efficient scalability to multidimensional spaces,
primarily due to excessive reliance on planes. For instance, both
HexPlane and K-Plane necessitate the addition of three extra planes
when transitioning from 3D to 4D. Moreover, while HexPlane is
limited to 4D, K-Plane suggests adding another four planes to move
from 4D to 5D. This requirement increases the complexity exponen-
tially, making these methods impractical for direct application in our
more complex, higher-dimensional scenarios.

To address the scalability challenges in our (3+K)-D scenarios,
shown in Figure 1, we propose to divide the scene into two separate
tensors: a 3D tensor T 3 and a K-D tensor T K , each subjected to a
distinct factorization strategy. While T 3 undergoes vector-matrix
decomposition for enhanced expressiveness, T K is factorized using
the CANDECOMP/PARAFAC (CP) decomposition for higher com-
pactness and scalability. This technique allows us to factorize the
K-D tensor into a series of K vectors, effectively managing the com-
plexity inherent in multidimensional parameter spaces. As a result,
the factorization of our K-D parameter space can be represented as

T K =
R

∑
r=1

v1
r ◦v2

r ◦ · · · ◦vK
r , (5)

where R represents the number of one-rank components in the form
of v1

r ◦v2
r ◦ · · · ◦vK

r . This tensor factorization significantly reduces
the complexity of the parameter space in arbitrary dimensions from
O(MK) to O(M), where M is the parameter-space grid resolution.
Consequently, we can represent the entire (3+K)-D scene in a more
manageable and efficient manner. Written in equation



T 3+K =T 3 ◦T K

=
Rs

∑
r=1

MXY
r ◦vZ

r +MXZ
r ◦vY

r +MY Z
r ◦vX

r

◦
Rp

∑
r=1

v1
r ◦v2

r ◦ · · · ◦vK
r ,

(6)

where T 3+K represents the (3+K)-D tensor encapsulating the entire
dynamic scene, Rs is the number of low-rank components in T 3,
and Rp is the number of one-rank components in T K . This approach
significantly reduces the overall complexity from O(N3MK) to
O(N2M). Provided that Rs ≪ N and Rp ≪ MK , ViSNeRF achieves
ultra-compactness in its representation while retaining the capability
to handle dynamic scenes with an arbitrary number of parameters.

In Table 1 and Figure 2, we demonstrate that ViSNeRF, despite
having the smallest model size among the three methods, surpasses
both K-Planes and HexPlane in visualization generation quality for
4D scenarios, using the five jets dataset with an additional time
dimension. In Figure 2, to help with the comparison, we produce
difference images with respect to the ground-truth (GT) result in
the CIELUV color space. Noticeable pixel differences are mapped
according to the colormap legend as shown in (a). For this compari-
son, K-Plane is configured according to its recommended training
settings, and HexPlane is set up with its suggested configurations but
matched to the same grid resolution as ViSNeRF. All three methods
undergo training for 90,000 iterations. We exclude K-Plane and
HexPlane from further discussion as these methods are not designed
to handle (3+K)-D scenarios.

Table 1: Factorization methods for dynamic scenes using five jets
(timestep) DVR images with 1024×1024 resolution: average PSNR
(dB), SSIM, LPIPS, model size (MS, in MB), training time (TT, in
hours), and inference time (IT, in minutes) across all 181 synthesized
views. The best ones are highlighted in bold.

method PSNR↑ SSIM↑ LPIPS↓ MS↓ TT↓ IT↓
K-Planes 26.67 0.939 0.057 417.40 3.02 22.95
HexPlane 26.54 0.941 0.063 22.23 1.06 18.93
ViSNeRF 27.51 0.945 0.050 15.43 1.43 21.20
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20
48
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(a) K-Planes (b) HexPlane (c) ViSNeRF (d) GT
Figure 2: Inferred five jets (timestep) DVR images generated by
K-Planes, HexPlane, and ViSNeRF using 462 views to train the
dynamic scene with a full 360-degree view.

In our implementation, the combination of features sampled from
spatial matrices and vectors is achieved through element-wise multi-
plications between each vector-matrix pair. This element-wise mul-
tiplication is also applied for combining features sampled from the
parameter vectors. We concatenate the outcomes of these element-
wise multiplications to construct the final feature. This involves
integrating the products derived from the three pairs of spatial ma-
trix and vector as well as the product of the parameter vectors.

3.4 Feature Decoder
Unlike fully explicit methods, such as PlenOctrees [70] and Plenox-
els [9], using spherical harmonics (SH) as the decoder, our hybrid
ViSNeRF model leverages two small MLPs to decode the density
and color features separately. TensoRF [7] and K-Planes [43] com-
pare a fully explicit model and a hybrid model. The results suggest
that, although using SH reduces rendering time, the quality of syn-
thesized images gets worse due to the limited expressiveness of
SH and the difficulty of SH coefficient optimization. Instead of
directly employing SH as the decoder, we utilize SH to encode the
view directions, which are then fed as input into the color MLP de-
coder, denoted as gc. We observe that encoding view directions with
SH slightly enhances network performance compared to positional
encoding (PE) [53].

In TensoRF [7], without an implicit MLP decoder for the density
features, the explicit density features are not sufficiently expressive
to discern the edges of overlapping translucent regions in DVR
images, especially when the training images are scarce (e.g., less
than 50 images for the full 360-degree view). Thus, in addition to
the MLP gc for color features fc, we use an extra small MLP gσ to
decode the density features fσ at a trivial cost of efficiency, which
also helps improve the accuracy of overlapping translucent regions
for DVR images. Both gc and gσ have only one hidden layer. They
map the feature of a coordinate x to density and color values as

σ(x) = gσ ( fσ (x),EP(x)),
c(x) = gc( fc(x),ESH(d)),

(7)

where EP and ESH denote PE and SH encoding. As shown in Fig-
ure 3, the DVR images generated by ViSNeRF exhibit improved
clarity in the translucent regions compared with TensoRF. Both meth-
ods apply the same L1 and TV regularization (refer to Section 3.5)
to ensure fairness.

PSNR=32.27, SSIM=0.975
LPIPS=0.026

PSNR=36.39, SSIM=0.990
LPIPS=0.007

(a) TensoRF (b) ViSNeRF (c) GT
Figure 3: Inferred DVR images of the Tangaroa dataset using 42
views to train the full 360-degree view. Zoom-in and difference
images are provided for better comparison.

3.5 Loss Functions
To optimize ViSNeRF, a straightforward approach utilizes a loss
function that measures the difference between the generated visu-
alization and the GT, known as reconstruction loss. However, as
shown in Figure 4, without any regularization, excessive noises
and film grains are apparent in the visualized spatial matrices of
ViSNeRF and the generated images. Therefore, in addition to the
reconstruction loss, we apply an L1 norm loss and a total variation
(TV) loss as regularization terms in the loss function

L= LREC +λ1LL1 +λ2LTV, (8)

where λ1 and λ2 are weights of the regularization terms.
Reconstruction loss. During the training process, in each batch,

a set of rays R is randomly selected from the pool of all pixels from
the images. As characterized in Equation 2, we query n samples
along each ray r and predict the color of the corresponding pixel
Ĉ(r). The reconstruction loss is computed using the MSE between



the predicted colors Ĉ(r) and GT colors C(r) of the set of pixels in
each batch, and is defined as

LREC =
1
|R| ∑

r∈R

∣∣∣∣C(r)− Ĉ(r)
∣∣∣∣2

2 . (9)

L1 norm loss. To reduce overfitting by extracting more relevant
features, we employ L1 norm loss as a regularization term

LL1 =
1
|W | ∑

w∈W

{
||1−w||1 if W ∈ vp

||w||1 otherwise
(10)

where W are the weights in the vectors and matrices in the radiance
field representation, and vp is the set of vectors representing input
parameter features. For the vectors containing the parameter features,
the weights are initialized and regularized to 1 for no alteration in
the spatial content. Note that L1 regularization is only applied to the
vectors and matrices, not the implicit MLP decoder.

(a) no regularization

(b) L1+TV regularization

(c) no regularization (d) L1+TV GT
Figure 4: Spatial matrices and IR images of novel views generated
by ViSNeRF using 42 views of the vortex dataset for training. (a)
and (b) shows the three spatial matrices of density feature.

Total variation loss. Although L1 norm loss reduces the arti-
facts by preventing overfitting, if we have only a few views of the
scene available for training, the vectors and matrices would still be
noisy since some regions are not seen in these views. TV loss is a
regularization term that aims to denoise the vectors and matrices by
penalizing high variation and encouraging smoothness. That is,

LTV = LTV1 +LTV2 ,

LTV1 =
1

|V||Q|l ∑
v,q,i

(∣∣∣∣vi
q −vi−1

q
∣∣∣∣2

2

)
,

LTV2 =
1

|M||Q|hw ∑
M,q,i, j

(∣∣∣∣Mi, j
q −Mi−1, j

q
∣∣∣∣2

2

+
∣∣∣∣Mi, j

q −Mi, j−1
q

∣∣∣∣2
2

)
,

(11)

where v ∈ V , M ∈M, q ∈Q, V is the set of vectors, M is the set
of matrices, Q is the channels of the features, l is the length of the
vector, and h and w are the height and width of the plane.

4 RESULTS AND DISCUSSION

For dynamic volumetric scenes, we present the results of ViSNeRF
and compare them with four baseline methods (i.e., InSituNet, Co-
ordNet, StyleGAN2, and EG3D) in parameter-space exploration
tasks. For static volumetric scenes, we also compare ViSNeRF with
eight baseline and representative methods (i.e., InSituNet, Coord-
Net, StyleGAN2, EG3D, NeRF, 3DGS, Instant-NGP, and TensoRF).
The experimental results are furnished in the appendix. The ap-
pendix also includes optimization schemes, baseline training details,
hyperparameter study, and additional results and discussion.

4.1 Datasets
As shown in Table 2, we evaluate ViSNeRF in five dynamic volumet-
ric scenes from four simulation datasets with different controllable
parameters. The image resolutions are determined based on the
content present in the data. The vortex and Nyx are relatively simple
and can use low-resolution renderings. The Tangaroa and five jets
need high-resolution renderings to capture the details.

To evenly distribute the viewpoints around the volume data, the
camera positions are determined by the vertices of an icosphere,
which approximates a sphere composed of equilateral triangles. The
number of vertices starts with 12 at the subdivision level 0 (initial
icosahedron), followed by 42, 92, 162, and 252 for successive sub-
division levels. Experiments on static scenes show that 42 vertices
at subdivision level 1 are sufficient to create a training set that de-
livers satisfactory generation quality for ViSNeRF. Hence, we also
use 42 views per scene frame of dynamic volumetric scenes for
training ViSNeRF and the baseline models. For each viewpoint, we
record the camera poses for ViSNeRF and other 3D-aware methods
and convert them to the corresponding azimuth ([-180,180]) and
elevation ([-90,90]) for 2D-based approaches.

The parameter settings that define each scene frame are evenly
sampled within the chosen parameter ranges. The exact number of
sampled parameter settings is provided in Table 2. For inference on
the full 360-degree view, we synthesize 181 views along a path on
a spherical surface from azimuth -180 and elevation -90, through
azimuth 0 and elevation 0, to azimuth 180 and elevation 90. During
the inference sequence, as the camera moves, the scene dynamically
changes by varying parameters within their defined ranges.
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Figure 5: Illustration of two ways of interpolation over TFs of the
vortex dataset. The tuple of each control point indicates its scalar
value (x-axis) and opacity (y-axis).

4.2 Network Training
We use PyTorch to implement ViSNeRF and train it using a single
NVIDIA Tesla V100 GPU with 32 GB of video memory. We set
the number of low-rank components in the factorization of the 3D
tensor T 3 as Rs = 64, where it is split to Rσ = 16 for density and
Rc = 48 for color to represent the radiance field. Hence, the depths
of density and appearance features are 16 and 48, respectively. For
the factorization of the K-D parameter space, T K , we set Rp = 4.
The length of each parameter vector corresponds to the number of
distinct values available for each parameter in the training set. The
resolution of the spatial feature grid is initialized as N ×N ×N,
where N = 128. For more complex datasets like Tangaroa, the grid



Table 2: Parameter-space exploration of dynamic scenes: numbers of training images sampled and their resolutions.
dataset volume # images # parameters # parameter total # image

(scenario) resolution per scene (K) samples (M) images resolution
five jets (timestep) 128×128×128 42 1 11 462 1024×1024
Tangaroa (isovalue) 300×180×120 42 1 13 546 1024×1024

vortex (TF-1) 128×128×128 42 2 36 1512 256×256
vortex (TF-2) 128×128×128 42 1 11 462 256×256

Nyx-DVR/IR (simulation parameters) 256×256×256 42 3 45 1890 256×256

Table 3: Parameter-space exploration of dynamic scenes: average
PSNR (dB), SSIM, LPIPS, MS (in MB), TT (in hours), and IT (in
minutes) across all 181 synthesized views.

dataset method PSNR↑ SSIM↑ LPIPS↓ MS↓ TT↓ IT↓
InSituNet 16.37 0.850 0.176 351.74 39.22 0.70

five jets CoordNet 17.71 0.864 0.169 5.71 112.23 13.38
timestep StyleGAN2 16.41 0.854 0.180 158.68 53.25 1.07

(1024×1024) EG3D 22.74 0.908 0.067 152.14 75.75 1.03
ViSNeRF 27.51 0.945 0.050 15.43 1.43 21.20
InSituNet 17.08 0.841 0.230 351.73 51.97 0.42

Tangaroa CoordNet 19.83 0.876 0.178 5.72 120.90 11.84
isovalue StyleGAN2 18.53 0.860 0.178 158.68 60.64 1.19

(1024×1024) EG3D 22.92 0.915 0.081 152.14 89.52 1.17
ViSNeRF 29.36 0.967 0.042 69.91 2.49 31.42
InSituNet 17.03 0.726 0.211 199.66 17.52 0.18

vortex CoordNet 18.06 0.728 0.222 5.72 60.57 1.35
TF-1 StyleGAN2 18.38 0.823 0.201 103.62 9.07 0.10

(256×256) EG3D 26.20 0.929 0.054 150.64 82.78 0.22
ViSNeRF 37.26 0.994 0.005 12.79 1.68 1.55
InSituNet 16.75 0.779 0.199 199.66 6.13 0.08

vortex CoordNet 17.10 0.793 0.212 5.72 35.71 0.64
TF-2 StyleGAN2 17.08 0.790 0.197 103.62 4.15 0.10

(256×256) EG3D 27.53 0.969 0.024 150.63 37.97 0.35
ViSNeRF 36.58 0.995 0.006 12.79 1.42 1.45
InSituNet 14.06 0.495 0.294 199.67 21.41 0.12

Nyx-DVR CoordNet 15.09 0.514 0.370 5.71 87.80 0.85
simulation StyleGAN2 14.48 0.508 0.302 103.62 11.79 0.15
parameters EG3D 18.76 0.759 0.157 150.64 108.34 0.37
(256×256) ViSNeRF 30.02 0.978 0.018 12.79 1.66 1.62

InSituNet 16.52 0.550 0.234 199.67 21.89 0.12
Nyx-IR CoordNet 17.41 0.468 0.299 5.71 78.90 0.85

simulation StyleGAN2 16.88 0.562 0.250 103.62 11.85 0.15
parameters EG3D 20.38 0.759 0.149 150.64 101.65 0.35
(256×256) ViSNeRF 28.73 0.950 0.042 12.79 1.66 1.60

Table 4: Simulation parameter values for the Nyx dataset shown in
Figure 7.

subfigure OmM OmB h
(a) 0.128448 0.0215 0.55
(b) 0.155 0.022052 0.55
(c) 0.155 0.0235 0.591379
(d) 0.150227 0.023227 0.809091
(e) 0.146552 0.0215 0.55
(f) 0.155 0.023017 0.55
(g) 0.155 0.0235 0.808621
(h) 0.142273 0.022773 0.740909

resolution would increase at iterations 2,000, 4,000, 6,000, and
8,000, and the final grid has 3003 voxels. Note that the grid does not
necessarily stay cubic, meaning the length, width, and height can
differ depending on the shape of the bounding box.

The number of cells in the parameter feature grid MK corresponds
to the number of distinct values available for each parameter in the
training set. Refer to Table 2, for five jets (timestep) and vortex
(TF-2), K = 1 and M1 = 11. For Tangaroa (isovalue), K = 1 and
M1 = 13. For vortex (TF-1), K = 2 and M2 = 36 (6×6). For Nyx-
DVR/IR (simulation parameters), K = 3 and M3 = 45 (3×3×5).
The model size and training time should grow as the feature depth
(Rσ , Rc, and Rp) or the feature grid size (N3 and MK) increases.

For all static scenes, we train ViSNeRF for 30,000 iterations,
while the number of iterations is tripled for dynamic scenes in all
parameter-space exploration experiments. At iteration 2,000, we cre-
ate the mask volume for storing empty voxel information and shrink
the bounding box according to the actual scene content. At iteration

4,000, we update the mask volume and enable voxel skipping.
The MLP decoders for density and appearance have one hidden

layer, and each fully connected layer has 128 channels. We set the
batch size as 4096, considering the training efficiency and video
memory consumption. The number of sample points per ray starts
at 192 and increases to 512 if the grid resolution increases to 3003

voxels. The matrices and vectors and the two MLPs are optimized
by an Adam optimizer with β1 = 0.9 and β2 = 0.99. We set the
initial learning rate of the matrices and vectors as 0.02 and that of
the MLPs as 0.001. The weight of L1 loss (λ1) is set as 10−4 initially
and changed to 10−5 after 2,000 iterations. The weights of TV loss
(λ2) for density and appearance features are set as 1.0.

4.3 Baselines
For dynamic volumetric scenes, we compare ViSNeRF with meth-
ods that natively support the synthesis of visualizations, including
InSituNet, CoordNet, StyleGAN2, and EG3D:

• InSituNet [20] is a GAN-based surrogate model supporting
parameter-space exploration. We only use azimuth and eleva-
tion as the input and add extra upscaling residual blocks in the
regressor to support output resolutions larger than 256×256.

• CoordNet [18] uses an INR architecture for visualization gen-
eration. We use the original implementation as it can handle
any image resolution.

• StyleGAN2 [29] uses a style-based architecture with a discrim-
inator to provide adversarial supervision. We use azimuth and
elevation instead of a random latent vector to define the targets
explicitly.

• EG3D [5] can be seen as a style-based NeRF where a Style-
GAN2 generator produces the triplane representation.

We use StyleGAN2 instead of StyleGAN3 [28] due to two rea-
sons: (1) In the context of visualization generation, where the em-
phasis is faithful reconstruction, the new features of StyleGAN3,
such as translation and rotation equivariance, hardly improve the
quality but significantly increase the training difficulty. (2) As we
also incorporate EG3D with the StyleGAN2 backbone in our com-
parison, we aim to closely evaluate and compare the two approaches
and illustrate the transition from a 2D approach to a 3D method.

4.4 Results
The quantitative results are displayed in Table 3. To evaluate the qual-
ity of generated visualizations, we employ three metrics: peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM) [57], and
learned perceptual image patch similarity (LPIPS) [72]. Overall,
ViSNeRF significantly outperforms the four baseline methods across
all three metrics, EG3D comes a distant second, and the rest of the
three methods are the worst.

InSituNet, CoordNet, and StyleGAN2 perform poorly because
they depend heavily on large training sets. With a small number of
training images, as in our experiments, these methods struggle to
produce desirable results. Moreover, they require far more scene
frames to capture the dynamic scenes adequately. For example, un-
der identical Nyx simulation settings, He et al. [20] used 100 images
per scene frame and 400 frames, resulting in 40,000 training images
for InSituNet. In contrast, ViSNeRF produces accurate results with
1,890 images, reducing the training data by 95%. This highlights
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Figure 6: Inferred images under different views for parameter-space exploration of dynamic scenes (timesteps, isovalues, and TFs). (a) and (b)
DVR images with interpolation over timesteps using the five jets dataset. (c) and (d) IR images with interpolation over isovalues using the
Tangaroa dataset. (e) to (h) DVR images with interpolation over TFs using the vortex dataset (TF-1: (e) and (f); TF-2: (g) and (h)).

ViSNeRF’s robustness and efficiency, offering a significant advan-
tage in dynamic scene reconstruction, especially as the demand for
training data increases with growing dynamic ranges.

EG3D, despite being 3D-aware, produces less accurate results due
to its reliance on convolutional layers to upscale low-resolution syn-
thesized images. While this approach helps address GPU memory
consumption issues, it fails to leverage the advantages of 3D-aware
reconstruction fully and, like 2D-based methods, depends on a large
number of training images to achieve satisfactory results.

For model size, CoordNet wins as the fully implicit representation,
ViSNeRF comes second as the hybrid neural representation, and the
rest of the three methods incur much larger model sizes. ViSNeRF is
the fastest for training time, followed by StyleGAN2 and InSituNet,
and CoordNet and EG3D are the slowest. InSituNet and StyleGAN2
are the fastest for inference time, followed by EG3D and CoordNet,
and ViSNeRF is the slowest. Nevertheless, for 256×256 images, the
frame rate is still at least 1.86 FPS for ViSNeRF. For 1024×1024
images, the frame rate drops substantially.

For qualitative results, the synthesized visualization images are
presented in Figure 6 and Figure 7. Figure 8 and Figure 9 show the
corresponding difference images. In the following, we examine the
qualitative results on a case-by-case basis.

Interpolation over timesteps. We use 1,000 timesteps of the

five jets dataset for temporal interpolation. We pick every 100th
timestep for training, resulting in 11 samples (including timesteps
1 and 1,000). To test the performance of ViSNeRF, we infer 181
images evenly from timestep 1 to timestep 1,000 in a full 360-degree
view. The inferred images are used as the test set for evaluation.
Figure 6 (a) and (b) show that CoordNet, StyleGAN2, and EG3D
generate blurry results. InSituNet produces results with better clarity,
but the reconstructed viewpoints deviate from GT, leading to the
worst quantitative performance (refer to Table 3). The results of
ViSNeRF are the best.

Interpolation over isovalues. We select an isovalue range [0.01,
0.3] for the Tangaroa dataset, producing meaningful IR occupying
the resulting images well. Within the isovalue range, we evenly pick
13 samples (including the two ends) for training and 181 samples in a
full 360-degree view for inference. Figure 6 (c) and (d) show that the
reconstructed viewpoints from InSituNet are completely wrong, and
ViSNeRF produces results with the best detail and clarity compared
with CoordNet, StyleGAN2, and EG3D.

Interpolation over TFs. In this experiment, we provide two
ways to interpolate TFs, denoted as TF-1 and TF-2, using the vortex
dataset. For TF-1, we interpolate the opacity for each visible value
range while keeping the ranges intact. As shown in Figure 5 (a), we
control the opacities of the red and blue value ranges. We sample 36
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Figure 7: Inferred images under different views for parameter-space exploration of dynamic scenes (simulation parameters). Inferred DVR (a to
d) and IR (e to h) images with interpolation over simulation parameters using the Nyx dataset. (a), (b), (c), (e), (f), and (g) are single-parameter
variation results. (d) and (h) are multiple-parameter variation results. Table 4 gives each case’s simulation parameter values.

steps, including the cases where both red and blue are opaque, one
is opaque and the other is transparent, and both are transparent. For
TF-2, we interpolate from a visible value range (source) to another
(target) using 11 steps. This is achieved by translating the source
while updating the bound and opacity to match those of the target.
As shown in Figure 5 (b), the blue range is shifted from low values
to match the red range at high values. The interpolation will show
intermediate ranges with interpolated colors (such as purple). In
either case (TF-1 or TF-2), we infer 181 images evenly from the
corresponding interpolation scheme. For TF-1, Figure 6 (e) and
(f) show that ViSNeRF is the best, followed by EG3D. CoordNet
and StyleGAN2 produce rather blurry results, and InSituNet yields
significant viewpoint deviations. Similar conclusions can be drawn
for TF-2 from Figure 6 (g) and (h).

Interpolation over simulation parameters. For this study, we
use an additional dataset, Nyx, derived from a cosmological sim-
ulation software developed by Almgren et al. [1]. Our investiga-
tion focuses on three critical parameters selected based on expert
recommendations. These parameters and their respective ranges,
inspired by the methodology used in InSituNet, include the total
matter density (OmM ∈ [0.12,0.155]), the total density of baryons
(OmB∈ [0.0215,0.235]), and the Hubble constant (h∈ [0.55,0.85]).
For the training phase, we selectively use 45 parameter configura-

tions derived from a combination of three values of OmM (0.12,
0.1375, 0.155), three values of OmB (0.0215, 0.0225, 0.0235), and
five values of h (0.55, 0.625, 0.70, 0.775, 0.85). The number of
intervals chosen for each parameter is determined by its relative
impact on the simulation outcome.

During inference, we analyze 181 rendered images, categorized
as follows: (1) single-parameter variation: 90 images for isolated
changes in each parameter (OmM, OmB, or h), along with 30 dif-
ferent views per parameter. This kind of variation results in 90
simulation parameter configurations. (2) multiple-parameter vari-
ation: 91 images with concurrent changes in all three parameters
(OmM, OmB, and h) back and forth, each with a different view,
testing complex interpolation conditions. This kind of variation
results in 46 simulation parameter configurations. As five simulation
parameter configurations are the same across these two kinds of
variation, we end up with 90+46−5 = 131 simulation parameter
configurations for inference.

Figure 7 shows the results obtained using different variations on
the Nyx dataset, encompassing both DVR and IR. The comparison
highlights that ViSNeRF produces the highest quality and most
accurate results. In contrast, InSituNet fails to generate correct
views, whereas CoordNet, StyleGAN2, and EG3D tend to produce
blurry outputs. The superior performance of ViSNeRF in simulation
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Figure 8: Difference images for Figure 6 of inferred images under
different views. (a) and (b) DVR images with interpolation over
timesteps using the five jets dataset. (c) and (d) IR images with
interpolation over isovalues using the Tangaroa dataset. (e) to (h)
DVR images with interpolation over TFs using the vortex dataset
(TF-1: (e) and (f); TF-2: (g) and (h)).

parameter interpolation is further confirmed by quantitative results
given in Table 3.

4.5 Limitations and Future Work

Our ViSNeRF framework has the following limitations, which we
will improve in future work. First, we use an icosphere to evenly
select sampled viewpoints and choose 42 samples for novel view
synthesis. This is not a tight lower bound, as the subdivision level de-
termines the number of samples, which increases significantly with
each subdivision level. An alternative solution, such as Poisson disk
sampling, provides a good balance between flexibility and control
over the density of camera viewpoints on a sphere’s surface, even
though the random sampling process may not guarantee complete
uniformity.

Second, ViSNeRF incorporates both DVR and IR from volume
visualization. For IR, there are better ways to synthesize rendering
images for isosurfaces than the underlying neural volumetric repre-
sentation. A more accurate representation should consider implicit
surfaces such as signed or unsigned distance functions [67].

Third, as indicated in Table 3, ViSNeRF renders images much
slower than InSituNet, which poses a challenge for real-time
parameter-space exploration. A potential solution is to adopt 3DGS
in the NeRF representation to improve rendering speed. Unfor-
tunately, state-of-the-art Gaussian splatting methods for dynamic
scenes [23, 24, 62, 65] are based on deforming a fixed set of 3D
Gaussians. This works well for real-world scenarios where motion,
like human movement, is the main source of dynamics. However,
it creates major problems in cases where different parts of a scene
could move, merge, split, appear, or disappear simultaneously, which
is common in scientific visualization. When parts appear or disap-
pear, these methods move Gaussians from nearby components with
similar colors instead of adding or removing them locally. This leads
to visible artifacts and reduces the reconstruction quality of inter-
polated scene frames. Adding more Gaussians can help by making
them smaller and less noticeable when moving, but such a practice
requires much more GPU memory. Thus, in the context of scientific
visualization, there is a clear need for more efficient and effective
methods to handle Gaussians in dynamic scenes to achieve real-time
parameter-space exploration.
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Figure 9: Difference images for Figure 7 of inferred DVR (a to
d) and IR (e to h) images with interpolation over simulation pa-
rameters using the Nyx dataset. (a), (b), (c), (e), (f), and (g) are
single-parameter variation results. (d) and (h) are multiple-parameter
variation results.

Finally, fully implementing ViSNeRF within the CUDA frame-
work could speed up rendering. However, it may present a barrier
for researchers aiming to extend ViSNeRF to other scientific visual-
ization tasks, such as segmentation or language embedding.

5 CONCLUSIONS

We have presented ViSNeRF, a novel solution for dynamic visual-
ization synthesis using NeRF. Compared with representative NeRF
methods, ViSNeRF achieves better quality across PSNR, SSIM,
and LPIPS using the same number of training views. Furthermore,
ViSNeRF excels in static scene reconstruction and showcases its
scalability and efficiency in handling dynamic scenes, thanks to its
novel factorization strategy. For parameter-space exploration tasks,
ViSNeRF also outperforms other deep learning-based methods, in-
cluding InSituNet, CoordNet, StyleGAN2, and EG3D, in terms of
visualization generation quality. Its superior performance suggests
that ViSNeRF is a well-designed framework for the visualization
synthesis of dynamic volumetric scenes.
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APPENDIX

1 OPTIMIZATION SCHEMES

Coarse-to-fine feature grid. To reduce the training cost at the
initial stage and regularize the matrices and vectors, like TensoRF
and HexPlane, we apply a coarse-to-fine scheme to the 3D feature
grid. The grid is initialized with a coarse resolution. After the initial
stage, the matrices and vectors are bi-linearly and linearly upscaled
to higher resolution multiple times in subsequent iterations. The
final fine resolution depends on the complexity of the visual content
in the scene (i.e., input DVR or IR images).

Two-phase progressive sampling and importance sampling.
The training is divided into two phases to optimize efficiency: warm-
up and finetuning. During the warm-up phase, the sample points per
ray begin at a small number, such as 64, and increase steadily until



Table 1: Novel view synthesis of static scenes: numbers of training
images sampled and their resolutions.

volume # DVR # IR image
dataset resolution images images resolution
vortex 128×128×128 42 42 256×256

five jets 128×128×128 42 42 256×256
Tangaroa 300×180×120 42 42 1024×1024
supernova 432×432×432 42 42 1024×1024

they reach the predetermined target number at the phase’s conclusion.
For the finetuning phase, the number of samples per ray matches the
final count of the warm-up phase, plus an additional small number
of sample points, which is 64 in our case. These points are sampled
using an importance sampling technique akin to NeRF. This two-
phase method not only accelerates convergence at the outset but
also minimizes early-stage overfitting artifacts. Additionally, it aids
the network in learning more intricate details by employing denser
sampling in higher complexity areas.

Ray skipping. If a ray does not pass through the scene with
any actual content, it is invalid, and we can skip it completely for
efficiency. To achieve this, we define a bounding box, which is
initialized to the full extent and shrunk to only capture the scene’s
actual content when the initial training stage completes. Such a tight
bounding box contains fewer empty voxels, making the ray-skipping
operation more effective.

Voxel skipping. Although a compact bounding box eliminates
invalid rays, we could still waste time sampling at empty voxels,
forming substantial gaps along a valid ray. After the initial training
stage, we create a mask volume (i.e., a binary volume) recording
whether each voxel is empty so that we can skip empty voxels to
improve subsequent training efficiency. When ViSNeRF is trained
for a dynamic scene, we update the mask volume based on the empty
voxels determined from multiple static scenes.

2 NOVEL VIEW SYNTHESIS OF STATIC SCENES

2.1 Datasets
We evaluate ViSNeRF using four simulation datasets, each contain-
ing both a DVR scene and an IR scene. As listed in Table 1, in
addition to the vortex, five jets, and Tangaroa datasets, we include
the more complex supernova dataset to test ViSNeRF’s performance
on more challenging scenarios. Image resolutions are adjusted ac-
cording to the content of each dataset. For every scene, we use 42
views for training and 181 views for inference, while the parameter
settings remain constant throughout.

2.2 Baselines
In addition to the methods InSituNet, CoordNet, StyleGAN2, and
EG3D we use for dynamic scenes, for static scenes, we also include
four representative NeRF methods (i.e., NeRF, 3DGS, Instant-NGP,
and TensoRF):

• NeRF [35] is a 3D-aware novel view synthesis method that
uses neural radiance fields implemented with an MLP.

• 3DGS [30] uses Gaussian ellipsoids to represent radiance
fields, enabling efficient optimization and real-time render-
ing.

• Instant-NGP [36] utilizes multiresolution hash table encod-
ing to achieve rapid NeRF training and fast rendering while
maintaining a compact model size even for large and complex
scenes.

• TensoRF [7] employs tensor factorization in the radiance field
to speed up NeRF training and rendering while improving the
quality of reconstructed scenes.

2.3 Quantitative Analysis
As shown in Table 2, ViSNeRF outperforms all baselines in terms of
PSNR, SSIM, and LPIPS for novel view synthesis in static scenes,

Table 2: Novel view synthesis of static scenes: average PSNR (dB),
SSIM, and LPIPS values across all 181 synthesized views.

DVR IR
dataset method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

InSituNet 17.15 0.714 0.189 16.09 0.658 0.222
CoordNet 17.42 0.722 0.210 16.26 0.656 0.259

StyleGAN2 17.35 0.727 0.199 16.42 0.669 0.232
vortex EG3D 21.47 0.857 0.109 17.00 0.717 0.221

(256×256) NeRF 28.78 0.963 0.023 24.51 0.926 0.063
3DGS 33.30 0.990 0.009 28.60 0.966 0.028

Instant-NGP 32.00 0.986 0.014 26.03 0.933 0.092
TensoRF 35.43 0.993 0.005 29.30 0.968 0.027
ViSNeRF 37.32 0.996 0.003 29.46 0.970 0.025
InSituNet 17.19 0.794 0.152 19.93 0.822 0.140
CoordNet 18.30 0.820 0.119 20.70 0.849 0.119

StyleGAN2 17.26 0.806 0.163 20.50 0.836 0.137
five jets EG3D 24.13 0.911 0.044 26.79 0.936 0.046

(256×256) NeRF 28.48 0.957 0.023 26.32 0.952 0.051
3DGS 31.57 0.979 0.014 35.96 0.992 0.008

Instant-NGP 31.02 0.974 0.025 32.68 0.977 0.036
TensoRF 34.82 0.990 0.007 38.63 0.995 0.005
ViSNeRF 35.80 0.992 0.005 38.66 0.995 0.005
InSituNet 17.54 0.826 0.197 17.65 0.845 0.184
CoordNet 18.79 0.835 0.212 18.34 0.851 0.192

StyleGAN2 17.87 0.823 0.211 17.75 0.838 0.197
Tangaroa EG3D 22.82 0.873 0.089 20.61 0.884 0.102

(1024×1024) NeRF 29.64 0.954 0.045 23.95 0.928 0.089
3DGS 32.36 0.979 0.026 30.47 0.980 0.026

Instant-NGP 35.19 0.986 0.013 30.77 0.976 0.030
TensoRF 33.24 0.980 0.022 31.68 0.982 0.019
ViSNeRF 37.25 0.991 0.007 32.23 0.984 0.016
InSituNet 15.99 0.626 0.352 16.74 0.726 0.269
CoordNet 18.05 0.674 0.381 17.76 0.744 0.277

StyleGAN2 17.38 0.669 0.352 17.16 0.736 0.249
supernova EG3D 20.00 0.697 0.346 20.22 0.774 0.226

(1024×1024) NeRF 23.82 0.771 0.221 25.15 0.873 0.129
3DGS 24.21 0.815 0.129 27.49 0.931 0.051

Instant-NGP 25.99 0.830 0.148 27.58 0.914 0.082
TensoRF 25.86 0.828 0.181 29.32 0.938 0.071
ViSNeRF 27.01 0.859 0.120 29.71 0.946 0.049

Table 3: Novel view synthesis of static scenes: MS (in MB), TT (in
hours), and IT (in minutes) across all 181 synthesized views.

DVR IR
dataset method MS↓ TT↓ IT↓ MS↓ TT↓ IT↓

InSituNet 166.78 1.92 0.11 166.78 1.92 0.08
CoordNet 5.71 9.36 0.64 5.71 9.22 0.78

StyleGAN2 102.62 1.52 0.08 102.62 1.50 0.08
vortex EG3D 145.24 14.73 0.37 145.24 14.70 0.37

(256×256) NeRF 2.27 27.26 9.40 2.27 26.07 9.26
3DGS 21.64 0.06 0.07 37.49 0.07 0.08

Instant-NGP 14.31 0.05 0.23 14.49 0.05 0.23
TensoRF 12.41 0.41 0.97 12.51 0.42 1.47
ViSNeRF 12.57 0.22 0.83 12.60 0.25 0.88
InSituNet 166.78 2.02 0.08 166.78 1.91 0.07
CoordNet 5.71 10.08 0.66 5.71 9.48 0.71

StyleGAN2 102.62 1.49 0.10 102.62 1.50 0.10
five jets EG3D 145.24 14.64 0.37 145.24 14.59 0.32

(256×256) NeRF 2.27 25.80 9.06 2.27 25.66 9.26
3DGS 18.39 0.05 0.07 14.22 0.05 0.05

Instant-NGP 14.26 0.05 0.23 14.29 0.06 0.20
TensoRF 12.48 0.42 0.73 12.59 0.40 0.77
ViSNeRF 12.62 0.26 0.83 12.68 0.26 0.77
InSituNet 318.73 17.82 0.37 318.73 17.80 0.35
CoordNet 5.71 44.60 12.43 5.71 43.20 11.16

StyleGAN2 157.68 18.19 1.07 157.68 18.13 1.12
Tangaroa EG3D 149.76 26.15 1.49 149.75 26.25 1.49

(1024×1024) NeRF 16.36 27.89 148.99 16.36 27.23 148.06
3DGS 97.88 0.17 0.53 105.33 0.19 0.53

Instant-NGP 55.87 0.07 2.57 57.35 0.08 2.03
TensoRF 68.25 0.94 11.57 68.50 0.73 14.00
ViSNeRF 69.22 0.35 14.24 68.63 0.41 13.61
InSituNet 318.73 17.92 0.53 318.73 17.75 0.41
CoordNet 5.71 43.17 10.32 5.71 44.00 10.47

StyleGAN2 157.68 18.22 1.91 157.68 18.12 1.59
supernova EG3D 149.75 26.38 1.35 149.75 26.27 1.32

(1024×1024) NeRF 16.36 27.24 146.05 16.36 27.23 146.46
3DGS 149.41 0.32 1.22 120.55 0.26 1.07

Instant-NGP 57.06 0.08 6.90 57.17 0.08 4.57
TensoRF 67.16 0.90 23.38 67.22 0.61 17.45
ViSNeRF 67.29 0.57 35.50 67.22 0.49 24.85

using the same training datasets. This performance advantage is
consistent across resolutions, from lower resolution (256×256) to
higher resolution (1024×1024), and applies to both DVR and IR
scenes. These results demonstrate ViSNeRF’s ability to deliver
consistently higher-quality image generation than the baselines in



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 1: Novel view synthesis of DVR images for static scenes. (a) to (h): InSituNet, CoordNet, StyleGAN2, EG3D, NeRF, 3DGS,
Instant-NGP, TensoRF, ViSNeRF, and GT. Top to bottom: vortex, five jets, Tangaroa, and supernova.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 2: Novel view synthesis of IR images for static scenes. (a) to (h): InSituNet, CoordNet, StyleGAN2, EG3D, NeRF, 3DGS, Instant-NGP,
TensoRF, ViSNeRF, and GT. Top to bottom: vortex, five jets, Tangaroa, and supernova.

all tested scenarios.

According to Table 3, while ViSNeRF and TensoRF are signifi-
cantly faster than NeRF, their training and rendering speeds remain
slower than 3DGS and Instant-NGP. This is largely due to their
implementation in PyTorch rather than CUDA and differences in
NeRF representations. While not suitable for real-time rendering,
ViSNeRF is still practical for interactive applications. Transitioning
to the CUDA framework could be a future improvement, but the
current efficiency of ViSNeRF is acceptable. ViSNeRF has relatively
close model sizes to 3DGS, Instant-NGP, and TensoRF, as their train-
ing configurations are carefully adjusted to ensure fair comparisons

with equivalent model capabilities.
From Tables 2 and 3, we can draw similar conclusions as Table

3 in the paper for dynamic scenes when comparing ViSNeRF to
InSituNet, CoordNet, StyleGAN2, and EG3D.

2.4 Qualitative Analysis

Figures 1 and 2 show DVR and IR images synthesized by ViSNeRF
and baseline methods for comparison, where the difference images
are shown in Figures 3 and 4. The visual quality of images synthe-
sized by ViSNeRF is the best among all these methods. Similar to
the results observed in experiments with dynamic scenes, traditional



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 3: Difference images of novel view synthesis of DVR images
for static scenes. (a) to (h): InSituNet, CoordNet, StyleGAN2,
EG3D, NeRF, 3DGS, Instant-NGP, TensoRF, ViSNeRF, and GT.
Top to bottom: vortex, five jets, Tangaroa, and supernova.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 4: Difference images of novel view synthesis of IR images for
static scenes. (a) to (h): InSituNet, CoordNet, StyleGAN2, EG3D,
NeRF, 3DGS, Instant-NGP, TensoRF, ViSNeRF, and GT. Top to
bottom: vortex, five jets, Tangaroa, and supernova.

2D-based methods such as InSituNet, CoordNet, and StyleGAN2
struggle to reconstruct visualizations accurately. In contrast, NeRF-
based methods, including NeRF, 3DGS, Instant-NGP, TensoRF, and
ViSNeRF, synthesize visualization images with substantially better
visual quality. Among these, ViSNeRF demonstrates finer details
in the synthesized images as well as the lowest errors in difference
images for both DVR and IR cases due to its ability to handle trans-
parency and lighting with better accuracy and consistency in novel
views. This capability also ensures higher fidelity in synthesizing
visualizations for dynamic scenes.

3 BASELINE TRAINING DETAILS

Like ViSNeRF, all the baselines are trained using a single NVIDIA
Tesla V100 graphic card with 32 GB of video memory. While 3DGS
and Instant-NGP leverage the CUDA framework to accelerate train-
ing and rendering, other baseline methods, including InSituNet, Co-
ordNet, StyleGAN2, 3DGS, NeRF, and TensoRF, are implemented
in PyTorch. In Table 4, we provide hyperparameters of the base-
lines for network training. InSituNet, StyleGAN2, and EG3D are
trained with a batch of images per iteration, whereas CoordNet,
NeRF, 3DGS, Instant-NGP, TensoRF, and ViSNeRF are trained with
a batch of pixels in an image per iteration.

As shown in Tables 5 and 6, in experiments of dynamic scenes,
for a single parameter input (e.g., timestep), we found that tripling
the number of training iterations compared to the static scene was
enough for the models to converge adequately. When two or three
input parameters are used (e.g., TF-1 or simulation parameters), the
number of training iterations should be 6× or 7.5× for the static
scene to train the baselines fully. In contrast, ViSNeRF can still
be sufficiently trained for the tripled number of iterations. Other

Table 4: Hyperparameters of baseline training. For 1024×1024
resolution, the batch size is reduced due to GPU memory constraint
(shown in parentheses).

method batch size initial learning rate β1 β2
InSituNet 4 (2) 5×10−5 0 0.999
CoordNet 32,000 10−5 0.9 0.999

StyleGAN2 16 (2) 10−3 0 0.99
EG3D 4 (1) 2.5×10−3 0 0.99
NeRF 4096 5×10−4 0.9 0.999
3DGS 256 1.6×10−4 0.9 0.999

Instant-NGP 262144 10−2 0.9 0.99
TensoRF 4096 0.02 0.9 0.99

Table 5: Training iterations for different numbers of training images
with 256×256 resolution. The number of parameters is shown in
parentheses (refer to Table 2 in the paper).

method 42 (1) 462 (1) 1512 (2) 1890 (3)
InSituNet 150,000 450,000 900,000 1,125,000
CoordNet 150,000 450,000 900,000 1,125,000

StyleGAN2 150,000 450,000 900,000 1,125,000
EG3D 150,000 450,000 900,000 1,125,000
NeRF 100,000 — — —
3DGS 30,000 — — —

Instant-NGP 35,000 — — —
TensoRF 30,000 — — —
ViSNeRF 30,000 90,000 90,000 90,000

Table 6: Training iterations for different numbers of training images
with 1024×1024 resolution. The number of parameters is shown in
parentheses (refer to Table 2 in the paper).

method 42 (1) 546 (1)
InSituNet 150,000 450,000
CoordNet 600,000 1,800,000

StyleGAN2 150,000 450,000
EG3D 150,000 450,000
NeRF 100,000 —
3DGS 30,000 —

Instant-NGP 35,000 —
TensoRF 30,000 —
ViSNeRF 30,000 90,000

Table 7: Hyperparameter study: number of training images using
Tangaroa IR images.

# training images 12 42 92
PSNR↑ 24.16 32.23 33.72
SSIM↑ 0.937 0.984 0.988
LPIPS↓ 0.053 0.016 0.013

(a) 12 (b) 42 (c) 92 (d) GT
Figure 5: Inferred Tangaroa IR images using different numbers of
training images.

Table 8: Hyperparameter study: number of training iterations using
five jets DVR images.

# iterations 10,000 20,000 30,000 40,000
PSNR↑ 33.02 34.83 35.80 35.98
SSIM↑ 0.985 0.990 0.992 0.992
LPIPS↓ 0.010 0.007 0.005 0.005

hyperparameters and model configurations of baseline methods, such
as the number of channels in each layer and positional encoding
computation, follow the original papers and default values provided
in the code.



(a) 10,000 (b) 20,000 (c) 30,000 (d) 40,000 (e) GT
Figure 6: Inferred five jets DVR images using different numbers of
training iterations.

Table 9: Hyperparameter study: number of feature grid voxels using
supernova DVR images.

# voxels 2003 3003 4003 5003

PSNR↑ 26.01 27.01 27.17 27.22
SSIM↑ 0.821 0.859 0.864 0.865
LPIPS↓ 0.183 0.120 0.113 0.108

(a) 2003 (b) 3003 (c) 4003 (d) 5003 (e) GT
Figure 7: Inferred supernova DVR images using different numbers
of feature grid voxels.

Table 10: Hyperparameter study: depth of density feature using
supernova IR images.

depth 8 16 24 32
PSNR↑ 29.08 29.71 29.79 29.77
SSIM↑ 0.937 0.946 0.947 0.947
LPIPS↓ 0.072 0.049 0.051 0.050

(a) 8 (b) 16 (c) 24 (d) 32 (e) GT
Figure 8: Inferred supernova IR images using different depths of
density feature.

Table 11: Hyperparameter study: depth of appearance feature using
vortex DVR images.

depth 32 40 48 56
PSNR↑ 35.25 36.83 37.32 38.04
SSIM↑ 0.993 0.995 0.996 0.997
LPIPS↓ 0.005 0.004 0.003 0.003

4 HYPERPARAMETER STUDY

We investigate several key hyperparameters for ViSNeRF, including
the number of training images, training iterations, feature grid voxels,

(a) 32 (b) 40 (c) 48 (d) 56 (e) GT
Figure 9: Inferred vortex DVR images using different depths of
appearance feature.

Table 12: Unified vs. split feature grids: average PSNR (dB), SSIM,
LPIPS, MS (in MB), TT (in hours), and IT (in minutes) across all
181 synthesized supernova IR views.

feature grid PSNR↑ SSIM↑ LPIPS↓ MS↓ TT↓ IT↓
unified 29.64 0.943 0.056 67.22 0.98 33.22

split 29.71 0.946 0.049 67.22 0.62 24.13

Table 13: Tensor decomposition: average PSNR (dB), SSIM, and
LPIPS across all 181 synthesized supernova DVR views.

decomposition PSNR↑ SSIM↑ LPIPS↓
vectors 22.53 0.717 0.313

matrices 25.83 0.827 0.155
vectors+matrices 27.01 0.859 0.120

and depths of density feature and appearance feature.
Number of training images. Reconstruction accuracy largely

depends on the number of training images available to ViSNeRF. As
shown in Table 7, from 12 to 42 images, the additional 30 images
boost PSNR from 24.16 dB to 32.23 dB. Adding another 50 extra
images improves PSNR only by 1.49 dB with slightly fewer errors
shown in Figure 5. We conclude that 42 images are sufficient for
ViSNeRF to build knowledge of the entire visualization for most
cases. However, more images will help refine the reconstructed
visualization’s details, such as highlights, shadows, and ambient
occlusion.

Number of training iterations. As Table 8 and Figure 6 suggest,
ViSNeRF reaches satisfactory convergence after 30,000 iterations
for a single static visualization. While increasing the number of
iterations may slightly improve the performance, we set the training
iterations to 30,000 for all static visualizations to standardize the
training process.

Number of feature grid voxels. As indicated by Table 9 and
Figure 7, increasing the number of feature grid voxels may help
restore fine details in the visualization. In contrast, a sparse feature
grid could result in visualizations with reduced clarity. However,
increasing the size of the feature grid will significantly increase the
model size and training time. For example, if we increase the feature
grid from 3003 to 4003 for the supernova dataset, the mode size
increases from 67 MB to 119 MB, and the training time increases
from 34 to 59 minutes. To strike a balance, ViSNeRF has 3003

voxels in the finest feature grid for all the cases.
Depths of density feature and appearance feature. From Ta-

bles 10 and 11 and Figures 8 and 9, we find that the depths of density
feature and appearance feature are minor factors to the reconstruc-
tion quality. The results suggest that the optimal depth for the density
feature is 16, while that for the appearance feature is 48. Increasing
the depth beyond these values yields little quality improvement.

5 ADDITIONAL RESULTS AND DISCUSSION

Split feature grid. By splitting the feature grid, as shown in Ta-
ble 12, ViSNeRF achieves reduced training and inference times
while maintaining the quality of the synthesized images. Note that,
to maintain the model size, we set the depth of features in the unified



Table 14: DVR or IR vs. ViSNeRF for dynamic scenes. All timing numbers reported are in minutes, and data/image sizes or memory
consumptions reported are in GB.

DVR or IR ViSNeRF
dataset data processing RAM/VRAM image training inference RAM/VRAM

(scenario) size time consumption size time time consumption
five jets (timestep) 1.414 14.06 2.10/1.10 0.137 85.80 21.20 27.94/5.83
Tangaroa (isovalue) 0.877 1.51 1.00/0.27 0.117 149.68 31.42 27.77/9.91

vortex (TF-2) 0.008 0.23 1.01/1.26 0.010 84.92 1.45 3.87/5.24
Nyx-DVR (simulation parameters) 8.188 14.90 2.90/1.15 0.119 99.53 1.62 7.97/5.58

(a) unified (b) split (c) GT
Figure 10: Unified vs. split feature grids: ViSNeRF-synthesized
supernova IR images.

(a) vectors (b) matrices

(c) vectors+matrices (d) GT
Figure 11: Tensor decomposition: ViSNeRF-synthesized supernova
DVR images.

grid to 64, the sum of the depths of split feature grids. As shown in
Figure 10, with split feature grids, ViSNeRF generates synthesized
images of similar quality compared to those produced using a unified
approach.

Tensor decomposition. We investigate the effectiveness of
vector-matrix decomposition by ablating ViSNeRF regarding the
factorization of the 3D volume representing the radiance fields. As
shown in Figure 11, with vector decomposition, reconstructed visu-
alization is blurry. Although matrix decomposition is sufficient to
restore the visualization details, thinner areas, especially the shell
colored in green, are not correctly synthesized. By employing vector-
matrix decomposition, as shown in Table 13, the performance of
ViSNeRF is further improved.

Super-resolution synthesis. A by-product of VisReRF is the
ability to synthesize super-resolution rendering images from low-
resolution training images. With an optimized NeRF, visualizations
of any resolutions can be rendered by the volume renderer of ViS-

PSNR=28.62 
SSIM=0.942
LPIPS=0.119

(a) input (256×256) (b) bicubic (1024×1024)
PSNR=30.91 
SSIM=0.960
LPIPS=0.048

(c) ViSNeRF (1024×1024) (d) GT (1024×1024)
Figure 12: Super-resolution synthesis: low-resolution input and
high-resolution synthesized Tangaroa DVR images.

NeRF. As shown in Figure 12, leveraging the knowledge acquired
from training 256×256 resolution images, ViSNeRF demonstrates
its capability to restore images at a higher resolution of 1024×1024.
Most of the details in the high-resolution images can be recovered
by ViSNeRF despite noticeable artifacts due to a limited number of
42 training images.

Traditional rendering vs. ViSNeRF. In Table 14, we compare
traditional DVR and IR with ViSNeRF regarding memory consump-
tion and rendering time using the same GPU. Our results indicate
that traditional DVR and IR necessitate access to the original volume
data or isosurfaces, which can be sizeable, often reaching multiple
gigabytes in the case of time-varying or ensemble datasets. An ex-
ception is observed in the vortex dataset, where only a small volume
of 8 MB is necessary due to the interpolation across transfer func-
tions. In contrast, ViSNeRF operates primarily on rendered images
(PNG format), which typically occupy less storage than volume
data or isosurfaces. To illustrate, around 100 MB is sufficient for
processing 546 images of Tangaroa and 1890 images of Nyx, and no-
tably, only 10 MB is needed for 462 images of vortex. This storage
efficiency is significant, especially considering ViSNeRF’s ability
to produce high-quality visualization synthesis from interpolated
parameters without the actual data.

Regarding generation time to produce all rendering or inference
images, although traditional DVR and IR include the file reading
time, they are still more efficient than ViSNeRF, which requires train-
ing. However, ViSNeRF exhibits a faster generation time for Nyx
datasets of low image resolution (256×256). Regarding memory
usage, ViSNeRF inherently demands more RAM and VRAM, a com-
mon trait of machine learning methods. Before training commences,
ViSNeRF must load training and inference images, converting them
into a data structure of rays and associated attributes. Each ray con-
sists of ray origin and direction (six floats), RGB values (three floats),
and parameters (one float per parameter), totaling approximately ten
floats per pixel. Given that each 256×256 image comprises 65,536
pixels, the memory requirement for one image can be calculated as
65,536×10×4 = 2,621,440 bytes, equating to roughly 2.5 MB per
image. For a dataset like vortex, which includes 462 training images



and 181 inference images of 256×256 resolution, the total memory
footprint for storing these images as rays would be approximately
1.57 GB.

Considering the Tangaroa dataset, which utilizes images of reso-
lution 1024×1024, the initial memory requirement for storing image
data in ViSNeRF is substantial. The calculation for this dataset
would be 1024× 1024× 10× 4× (546+ 181) = 30,492,590,080
bytes, amounting to approximately 29 GB. However, ViSNeRF em-
ploys an optimization by filtering out rays that do not intersect with
the bounding box, effectively reducing the long-term runtime RAM
usage below 29 GB for the Tangaroa dataset. Most of the remaining
memory consumption, particularly VRAM, is attributed to the model
training process. This includes the storage of the density feature
grid, color feature grid, parameter feature grid, two small MLPs, and
their gradient graphs, which are essential for model optimization.
Given these requirements, we recommend a minimum of 32 GB of
RAM and 10 GB of VRAM for running ViSNeRF efficiently. A
configuration with at least 64 GB of RAM and 16 GB of VRAM
is ideal for optimal performance, especially with high-resolution
datasets.
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