Efficient GPU-Accelerated Computation of Isosurface Similarity Maps

Martin Imre*

Jun Taof

Chaoli Wang*

University of Notre Dame

ABSTRACT

We present an efficient GPU-based solution to compute isosurface
similarity maps for scientific volume data sets. Our approach first
replaces exact isosurface extraction with a binary volume indicat-
ing whether each voxel intersects the surface or not. We then em-
ploy bounding volume hierarchy (BVH)-trees to speed up the dis-
tance field computation. Finally, a self-similarity map is gener-
ated from which we identify representative isosurfaces. We apply
our approach to compute isosurface similarity maps from different
volume data sets of varying sizes and characteristics. The results
demonstrate significant speed gain with acceptable loss of accu-
racy, showing the potential of our solution for handling large-scale
time-varying multivariate data sets.

1 INTRODUCTION

Isosurface rendering and direct volume rendering remain two of
the most popular techniques for visualizing scientific volume data
sets. The former extracts and visualizes surface geometry equal to
a given isovalue while the later maps voxels to optical quantities
(color and opacity) for back-to-front or front-to-back compositing.
In this paper, we focus on isosurface rendering. One key question
for this surface-based approach is how to select salient or represen-
tative isosurfaces [2, 10, 11] so that the structures of the entire data
set can be visually perceived by observing these representatives.
A commonly adopted strategy is to select the most distinctive iso-
surfaces from a set of sample ones based on a similarity measure.
Early approaches relied on data histograms and higher order mo-
ments [10]. Recently, Bruckner and Moller [2] employed mutual
information to identify the similarity among isosurfaces and depict
them in a so-called isosurface similarity map. Given a discrete set
of n sampled isovalues, the self-similarity map is a n X n symmetric
matrix recording the similarity values for each pair of isosurfaces.
Haidacher et al. [3] used similarity maps to compare two different
variables of a single volume for multimodal surface similarity. In
this case, the similarity map is asymmetric.

Most scientific data sets are time-varying and multivariate. To
obtain comprehensive insights, we should conduct a complete in-
vestigation by considering the time-varying and multivariate nature
of scientific data sets and enabling comparative visualization across
time and variable. However, the biggest impediment for leveraging
isosurface similarity maps to study time-varying multivariate data
sets is the huge computation cost involved. The previous work [2]
reported around 25 minutes to compute a single similarity map. For
a data set with ten variables and a hundred time steps, this amounts
to more than 17 days just for getting self-similarity maps for all
volumes, not to mention the addition time to compute asymmetric
similarity maps for different pairs of variables or time steps.

We therefore present a cost-effective GPU-accelerated solution
that optimizes every step of the process to efficiently generate iso-
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surface similarity maps. The contributions of our work are as fol-
lows. First, we generate distance fields based on approximations
without computing exact isosurfaces. Second, we propose a heuris-
tic to improve the performance of searching the closest points us-
ing bounding volume hierarchy (BVH)-trees. Third, we implement
our approach in CUDA to leverage the massive GPU parallelism.
Finally, we run our solution on different data sets and provide thor-
ough performance comparison. Our GPU-accelerated solution thus
paves the way to computing isosurface similarity maps for large-
scale time-varying multivariate data sets.

2 RELATED WORK

Bruckner and Méller [2] introduced the concept of isosurface simi-
larity map to combat the weaknesses of value frequency based his-
tograms. While employing mutual information via joint histograms
yields better insights into the similarity between isosurfaces, it en-
tails a significant amount of computation. Haidacher et al. [3] ad-
vanced this approach to compare the isosurfaces of different modal-
ities. Wei et al. [11] used a level-set method to explore the relevance
of isosurfaces within subvolumess of a scalar field.

Ultimately, all of these methods rely on calculating the distance
fields, which are a common task in many graphics and visualization
applications. As distance fields are often needed for other processes
in a large pipeline, a wealth of research has been done to accelerate
their computation [5, 6, 7, 9, 12]. Yu et al. [12] introduced the so-
called distance tree based on distribution of the computation over a
cluster of CPU nodes. Liu and Kim [7] combined octrees and BVH-
trees to compute distance fields on the GPU. As BVH-trees seem
to be the preferred data structure for distance field computation, it
is worth mentioning that — to the best of our knowledge — there
exists no faster GPU based method of generating a BVH-tree than
the one introduced by Karras [4].

3 OUR APPROACH

Our approach to generating isosurface similarity maps consists of
three steps: sampling a set of isosurfaces, calculating distance
fields, and computing the similarity map. First, we sample over
the value range to generate a set of isosurfaces. Instead of comput-
ing the actual surfaces, we approximate each surface with a loosely
ordered set of points for performance gain. Second, we compute a
distance field for every sampled isosurface. We leverage BVH-trees
for fast queries of the closest points and use a heuristic approach to
improve the performance of traversing the tree based on the loose
order of points. Finally, we calculate the similarity of every pair of
sampled isovalues and organize all similarity values in a similarity
map. The similarity between two sampled isovalues is given by the
mutual information of their corresponding distance fields.

3.1 Isosurface Approximation

Isosurfaces are usually generated using the marching cubes algo-
rithm [8], which is not only costly but also unnecessary for distance
field calculation. The marching cubes algorithm computes inter-
section points of the isosurface with each voxel and connects these
points for the exact surface. However, to calculate a distance field
with reasonable precision, it is unnecessary to compute multiple
points for one voxel or know the connections of those points.

Our approach approximates an isosurface S corresponding to a
value v by generating one point for each 3D grid cell containing a
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Figure 1: Comparing similarity map and representative isosurfaces
generated using actual isosurfaces ((a) and (b)) against our approx-
imation ((c) and (d)) with the CT data set. The isosurfaces are col-
ored in the descending order of their importance: red, green, blue.
The number in the brackets indicates the index of sampled isovalue.
The marching cubes algorithm is used to extract the actual surfaces
shown in (b) and (d) for given representative values.

partof S. A gridcell isa 1 x 1 x 1 cube whose vertices are the eight
voxels in a 2 x 2 x 2 spatial region. Whether a grid cell contains a
part of S is determined by checking the values of the eight voxels
corresponding to it. If some of the values are larger than v and some
are smaller than v, linearly interpolated values at some points in the
grid cell must be v, which means that the grid cell contains a part
of S. In this case, the center of this grid cell will be recorded as a
sample point of S (for efficiency, we use the center instead of com-
puting the actual intersection point). Otherwise, the grid cell does
not contain any part of § and will be ignored. Our implementation
leverages the parallelism of GPU to scan the grid cells simultane-
ously. Each GPU thread checks a grid cell and stores the result in
a binary volume. Then we employ a GPU compaction scheme to
convert the binary volume into an array of point coordinates (i.e.,
the approximation of an isosurface). The points are listed in the
scanline order, providing loose spatial relationships among points.

Note that the error of using this approximation to compute the
distance from a point p to a surface S is bounded by v/3/2 (half
the diagonal length of the grid cell) due to the triangle inequal-
ity. This error is acceptable, since downsampled distance fields are
usually used to compute the similarity map [2]. In Figure 1, we
can see that our approximation (c) yields a very similar similarity
map as the exact marching cubes algorithm does (a). We further se-
lect three representative isosurfaces for each similarity map, which
are shown in Figure 1 (b) and (d), respectively. Although there are
slight differences in the selected isovalues, those are barely visible
in the surface rendering. This minor difference is neglectable as the
main goal of selecting the most salient values and depicting their
surfaces is still achieved.

3.2 Distance Field Computation

A distance field of an isosurface is a volume with every voxel con-
taining the distance from the center of this voxel to the isosurface.

In order to compute this, it is necessary to find the closest point
of an isosurface for every voxel in the distance field. To decimate
the search space for this problem, we downscale the resulting dis-
tance field. A typical solution for such a search problem is a tree
structure. In our approach, we leverage BVH-trees to accelerate the
search for the closest point. A BVH-tree is a binary tree used to
subdivide a scene into a tree structure. Each node of a BVH-tree
consists of a bounding volume that includes all of its descendants.
A leaf consists of a single primitive — in our case a single point.
Although other bounding volumes increase the traversal speed, we
use bounding boxes for lower construction time and apply Karras’s
algorithm [4] to build BVH-trees in parallel. This is essential since
a tree needs to be built for every isosurface approximation.

To compute the distance fields of a given isosurface approxi-
mation, we spawn a CUDA thread to search the closest point in
the BVH-tree for each voxel by traversing the tree in a depth-first
search manner. During the traversal for a voxel v, we maintain an
upper bound of the closest distance from v to the isosurface. The
sub-tree rooted at an internal node n will not be traversed, if the dis-
tance d(v,n) between v and n is larger than the upper bound. The
distance d(v,n) between a voxel v and an internal node n is given
by the minimum distance from v to the bounding box of n. The
distance d(v,n) between a voxel v and a leaf n is given by the dis-
tance between v and the corresponding point of n. Specifically, the
traversal procedure can be described in the following four steps:

1. Take a set of sample points P and calculate the initial upper
bound d,, = min,cpd(v, p).

2. Add the root to a stack.

3. Pop the first node n from the stack. If n is an internal node,
for each of its child node n., compute the distance d(v,n.).
If d(v,n;) < dy, push n. onto the stack. If n is a leaf, com-
pute the distance d(v,n) between v and n, and update d,, with
min(dy,d(v,n)).

4. Repeat Step 3 until the stack becomes empty.

For an efficient traversal, a good initial upper bound is needed.
Unlike the existing approaches, which usually initialize the up-
per bound when the first leaf is encountered, we estimate the up-
per bound before the traversal by computing the distance from the
voxel to a set of sample points. Note that the points approximat-
ing an isosurface are listed in the scanline order. By evenly sam-
pling the approximating points in that array, we obtain a set of sam-
ple points that is roughly evenly spaced over the isosurface. This
provides a tighter estimation of the initial upper bound, allowing
more branches to be pruned, especially at the beginning stage of
the traversal.

3.3 Similarity Map Generation

The similarity between two isosurfaces are measured by the mutual
information of their corresponding distance fields. To calculate the
mutual information, we compute a joint histogram of the two dis-
tance fields, where each entry (i, j) in the joint histogram contains
the number of voxels that fall into bins i and j in the first and second
distance fields, respectively. Then, the mutual information can be
derived from the joint histogram. In our GPU implementation, we
spawn a CUDA thread for each pair of sampled isosurfaces. Each
thread reads two distance fields, computes the joint histogram and
mutual information, and stores the value of mutual information in
the similarity map.

4 RESULTS AND DISCUSSION

We used multiple data sets with different characteristics to bench-
mark our application on a desktop with an Intel i7-4790 quad-core
CPU running at 3.6 GHz, 32 GB main memory, and an NVIDIA
GeForce GTX 760 GPU with 2 GB memory. Throughout the eval-
uation we used Bourke’s [1] implementation of the marching cubes



time surface distance similarity marching cubes approximation

data set variable step dimensions points approx. field map surface DF surface DF
Tonization GT 75 | 600 x 248 x 248 148,213 78.12 9.54 35.45 2607 14.50 590 9.54
Ionization GT 146 | 600 x 248 x 248 185,897 78.02 10.27 37.35 2617 12.67 590  10.27
Tonization H 150 | 600 x 248 x 248 156,086 77.85 7.32 21.10 2586 9.93 590 7.32
Combustion | CHI 45 | 480x720x 120 1,984,240 90.14 57.92 45.66 4033 69.91 695  57.92
Combustion | CHI 90 | 480x720x120 | 2,823,210 89.45 82.53 46.05 4524 102.77 683  82.53
Combustion | Mixture Fraction 45 | 480x720x 120 375,039 88.06 16.69 43.17 3085 20.63 666 16.69
Combustion | Mixture Fraction 90 | 480 x720x 120 495,256 87.85 20.45 43.72 3137 25.05 666  20.45
Combustion | Vorticity 45 | 480x720x 120 1,462,340 88.56 42.62 40.55 3710 52.62 669  42.62
Combustion | Vorticity 90 | 480 x720x 120 1,980,120 88.87 54.55 41.24 4031 66.72 672 54.55
CT - — | 256 %256 %230 248,607 32.90 8.05 17.16 1199 10.02 243 8.05
Hurricane Precipitation Ratio 17 | 500 x 500 x 100 639,957 53.81 16.28 24.21 2075 19.60 402 16.28
Hurricane Precipitation Ratio 36 | 500 x 500 x 100 790,787 53.97 20.36 25.06 2164 24.68 402 20.36
Hurricane Water Vapor Ratio 17 500 x 500 x 100 408, 140 53.56 11.98 25.99 1959 15.66 402 11.98
Hurricane Water Vapor Ratio 36 500 x 500 x 100 448,670 53.67 12.91 26.15 1975 16.46 402 12.91

Table 1: Timing and parameters for each data set and variable, as well as the comparison of running time of isosurface generation using
marching cubes and our approximation solution. All timing results are in seconds and for all isosurfaces of 256 sampled isovalues. The
column “‘surface points” shows the average numbers of points per approximated isosurface. Distance fields were downscaled by 8 in each
dimension. We used 1500 sample points prior to the traversal. The last columns of “surface” and “DF” show the running time for surface

computation and distance field calculation, respectively.

algorithm as a baseline. Table 1 shows the total time (in seconds)
spent in each step of the similarity map generation pipeline. The
timing results were collected with a GPU implementation for all
256 isovalues using each data set.

It took us under 2.5 minutes to generate an isosurface similarity
map for most of these data sets. The only exception is the combus-
tion data set, which has the largest volumes and the greatest num-
bers of points in the surfaces. As we can see from Table 1, the three
variables (CHI, mixture fraction, and vorticity) of the combustion
data set have the same dimensions and cost similar time to approx-
imate the isosurfaces. But these variables have a high fluctuation in
the number of points in surface approximation, which leads to dif-
ferent running times to compute the distance fields of the same size.
Generally, for all data sets, we can observe that the time for surface
approximation is proportional to the size of volumes and the time
for distance field computation depends on both the dimensions and
surface points. Furthermore, the traversal time for the BVH-trees
highly depends on the choice of sample points. For this evaluation
we opted to choose 1500 as this tends to yield a swift traversal time
for all of the data sets.

To demonstrate the quality of the isosurface similarity maps pro-
duced by our approach, we identified representative isosurfaces fol-
lowing the work of Bruckner and Moller [2]. Figure 2 shows the
three most significant isosurfaces for certain data sets and variables
in the first row and the corresponding similarity maps in the second
row. The blue isosurfaces are the most important ones, followed
by green and orange. The corresponding isovalues are highlighted
in the similarity maps as well. For each variable, we can observe
that the three selected isosurfaces capture the principal patterns. In
addition, Figure 1 shows that we obtained similar similarity maps
and representative isosurfaces as reported in [2]. With our acceler-
ation solution and the modern graphics hardware, the performance
is greatly improved, as the time to generate the similarity map is
reduced from 22.1 minutes (refer to Table 1 in [2]) to less than one
minute (refer to the CT data set in Table 1).

Furthermore, we examined the difference of similarity maps
when applying different levels of downsampling for the distance
fields. Specifically, we downscaled the distance fields by 8 along
each dimension and compared this to a version with a downscale by
4. While the overall time to calculate 256 distance fields for a data
set already shows a 3.5-fold increase, the similarity map computa-
tion suffered even more from increasing the accuracy. On average
the similarity map calculation took 7.8 times longer than that with a
lower resolution of distance fields. We computed the difference of
every entry in the similarity maps using the two downscaling fac-

tors for all data sets listed in Table 1. Our results show an average
difference of 1.5% using the lower resolution distance fields, which
is fairly acceptable in exchange for significant performance gain.
Further reducing the downsampling rate inevitably leads to an even
higher increase in computation time while not improving the results
by a reasonable amount.

4.1 Isosurface Approximation

With our approximation, we reduced the time for generating the
surfaces points by an ample amount. Table 1 compares the running
time of the marching cubes algorithm and our approximation both
running on CPU. As we can see, our approximation outperforms
the marching cubes algorithm, achieving an average speedup of 5.1
times for surface creation.

Another advantage of the approximation is that the points in
the surface are loosely sorted, which allows our heuristic sampling
method to find a tight initial upper bound for the tree traversal used
in distance field computation. This increases the performance of
distance field calculation by 20% on average. Although this only
amounts to a difference of a few seconds in a process that takes
around 10 minutes on average, once the GPU approximation is re-
alized, this difference would lead to up to 10% of the total time
before creating the similarity map.

4.2 Initial Upper Bound Estimation

We examined the impact of the number of samples to the perfor-
mance of BVH-trees traversal when estimating the initial upper
bound. As one could expect, the size of the sample point set has
a high influence on the duration of the traversal. With more sample
points, the time to estimate an initial upper bound increases, while
the traversal time decreases due to a tighter upper bound. Figure 3
shows the average time spent on traversing the trees for a given
number of sample points. Without an initial upper bound (i.e., zero
sample point), the traversal takes the longest time, as the tree needs
to be examined until the first leaf is reached. After that the aver-
age duration for the traversal falls rapidly in the beginning and then
slowly approaches the minimums. Most data sets have their lowest
traversal time between 2000 and 2300 points and just fluctuate by
one millisecond.

Interestingly, the two variables CHI and vorticity of the combus-
tion data set reach their minimums early with just 1200 and 1500
sample points respectively. After that, the running time rapidly
increases from 94.58 to 380.36 (CHI), and from 69.25 to 248.82
(vorticity). These two variables have higher numbers of points
in surface approximation (refer to Table 1), which makes it sur-
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Figure 3: Average traversal time for different numbers of sample
points. We sampled from 0 to 3500 points with a step size of 50.

prising since we expect that in those cases a higher quality upper
bound would be more beneficial. The rapid increases of the run-
ning time may be related to the different characteristics shown in
the isosurfaces of these two variables. We compared the represen-
tative isosurfaces of the variables mixture fraction and vorticity that
are shown in Figure 2 (a) and (b), respectively. Other than having
tremendously more points per isosurface, the isosurfaces of vor-
ticity distribute more evenly over the entire volume than those of
mixture fraction. The same nature can be observed for isosurfaces
of CHI. We suspect that the high number of points, coupled with
their spatial distribution of CHI and vorticity, allows an easy iden-
tification of tight upper bounds, rendering more examination prior
to the traversal unnecessary.

(&) (h)

Figure 2: Rendering of the most important isosurfaces (a) to (d), with their corresponding similarity maps (e) to (h). The first and second
columns show mixture fraction and vorticity of the combustion data set, respectively. The third column shows water vapor ratio of the
hurricane data set, and the fourth column depicts GT of the ionization data set.

We expect a similar increase of the running time for the other
data sets with higher numbers of sample points as this process con-
verges toward a brute force approach. But the performance gained
by using a tighter upper bound usually outweighs these costs dur-
ing the traversal for less than 1500 sample points. As we can see
in Figure 3, it is safe to take any value between 1000 and 1500 for
the data sets we chose. In general, if the data sets examined are of a
reasonable size, a value in that range will always be preferable over
a smaller value for selecting the initial upper bound.

5 CONCLUSIONS AND FUTURE WORK

With our approach we manage to achieve a considerable speedup
without impacting the quality when creating isosurface similar-
ity maps. Our isosurface approximation allows fast generation of
the point sets needed for computing the distance fields with small
bounded errors. Furthermore, we use BVH-trees to efficiently com-
pute the distance fields. The loosely sorted points from our ap-
proximated surface generation enables the use of our heuristic for
finding a tight upper bound before initiating the tree traversal. Our
experiment demonstrates that the number of samples can be safely
determined to achieve significant speedup.

We notice that the calculation of joint histograms and evaluation
of mutual information for the isosurface similarity map still takes
about a third of the total running time. This is due to the fact that
the sheer amount of data needed for this step does not easily fit into
the memory of our GPU. Thus the parallel computational power can
not simply be leveraged. Future work could aim on a change in the
algorithm or on diverse memory management in order to overcome
these obstacles. Our work allows users to extract the most impor-
tant isosurfaces from a data set within a much short amount of time,
opening up the possibility to perform a more thorough analysis em-
ploying multiple variables and time steps.
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